
                                                                                                                                    

Uniqueness of the Virasoro algebra 
Jack L. Uretsky 
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 and Department of 
Natural Sciences, College of DuPage, Glen Ellyn, Illinois 60137 

(Received 6 October 1989; accepted for publication 18 April 1990) 

It is shown that the structure constants of the Virasoro algebra are uniquely specified, up to 
rescaling of the generators, by the requirement that they be nonvanishing. Permitting 
some of the structure constants to vanish leads to other Lie algebras, including the Witt 
algebras. Given the grading of the Virasoro algebra, non vanishing of the structure constants 
is both necessary and sufficient for the algebra to be the Virasoro algebra. 

I. INTRODUCTION 

Fairlie, Nuyts, and Zachosl and e have shown that the 
Virasoro algebra3 may be constructed by starting with two 
generators and imposing no more than six conditions upon 
the repeated commutators of the generators. It is appar
ently an open question as to whether our number of con
ditions is minimal. 

I investigate here the related question of the unique· 
ness of the algebra. That is, given a Z-graded Lie algebra 4 

of the form 

(1) 

what are the nontrivially different possible choices for the 
structure constants C(m,n)? The Virasoro algebra corre
sponds to 

C(m,n) =m - n. (2) 

A trivially different structure constant would be one that 
corresponds to a rescaling of the elements L m, that is, mul
tiplication of each Lm by some constant Cm. 

It turns out that if the C(m,n) are required to be non
vanishing for m and n different, then Virasoro is the only 
possibility consistent with the Jacobi identities and the an
tisymmetry of C( m,n). If C( n,O) is permitted to vanish for 
some n greater than 1, then a reSUlting algebra is a Witt 
algebraS on a field of characteristic n. If C( 1,0) is allowed 
to vanish, then at least one of the resulting algebras, which 
I have not investigated in detail, is nonsimple, unlike the 
Virasoro algebra. The condition that the structure con
stants do not vanish is accordingly both necessary and suf
ficient for an algebra satisfying Eq. (1) to have the struc
ture constants of the Virasoro algebra. 

The Jacobi conditions may be written in terms of the 
C(m,n) as 

C(I,m)C(I + m,n) + C(n,/)C(n + I,m) 

+ C(m,n)C(m + n,/) =0, (3) 

so that setting n equal to zero and using the antisymmetry 
of the C's gives 

C(l,m)[ C(I + m,O) - C(m,O) - C(I,O)] =0. (4) 

II. THE FIRST CASE: C(M,N)=I=O FOR M=I=N 

Let (I,m) in Eq. (4) take the values (1, - 1) and 
(2, - 1), respectively, to find that 

C( -1,0)= - C(1,0) and C(2,0)=2C(1,0). 
(Sa) 

Induction on 1 and replacement of Lo by LoIC( 1,0) then 
leads to the conclusion that 

C(I,O) =1, all IEZ. 

Next define for all I, 

C(I, - 1) = (I + 1)F(l), 

(Sb) 

(6a) 

where F(I) is an arbitrary function defined on the integers. 
Note that F(I) must of course be nonzero for 1 different 
from - 1. Equation (Sb) implies that F(O) is unity. The 
remaining F(I)'s may, however, be absorbed into the scal
ing of the Ll's according to the prescription 

and 

1 

L1-L1 II F(k), 1>0 
k=O 

1+ 1 

L1-L1 II F( _k)-I, i< -2, 
k=2 

with the result that the redefined operators satisfy 

C(I, - 1) = (l + 1). 

(6b) 

(6b') 

(6c) 

It is important to notice, however, that the scale of the 
operators L_I and L_2 is not yet established. 

Choosing the value - 1 for n in Eq. (3) leads to the 
equation, making use of Eq. (6c), 

(l + m + l)C(l,m) = (l + l)C(l- I,m) 
(7) 

+ (m + I)C(I,m - 1), 

with the values of C(I,O) , C(O,l), and C(l,/) already spec
ified for all I. It is then a straightforward matter to do 
induction on I and m to find that Eq. (2) holds for all 
positive (I,m) values. Also, induction on !for m equal to 1 
in Eq. (7) leads to the same result for all values of 1 (pos
itive and negative) with two notable exceptions. The coef
ficients C( 1, - 2) and C( 2, - 2) are not determined by the 
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Jacobi relations. The remark following Eq. (6c ) shows, 
however, that any choice of these two arbitrary functions 
may be incorporated into the scaling of L_l and L2 in a 
way that preserves Eq. (2). Induction on 1 and m in Eq. 
(7) and its counterpart for n equal to - 1 then demon
strates that the structure constants all satisfy Eq. (2). 

I have therefore showed that the Virasoro algebra is 
the unique Lie algebra (except for trivial rescaling of the 
operators) satisfying Eq. (1) with nonvanishing structure 
constants. 

III. THE SECOND CASE: WITT ALGEBRAS 

I now consider the possibility that C(I,O) vanishes for 
some value of 1 greater than unity. Let p be the value of 1 
for which C(I,O) vanishes, C(1,m) being nonzero for 
p> I> m > O. Equation (4) shows that when the C(I,m) 
are nonvanishing then the set {C(I,O)} is mapped homo
morphically by the additive group of integers. In the first 
case the mapping was an isomorphism. In the present case, 
with C(p,O) vanishing, the C(I,O) are isomorphic to the 
cyclic group of order p. 

I choose the scale of Lo, just as before, to make C( 1,0) 
equal to unity. Equation (Sb) then holds for integers 1 
modulo p. Equation (6a) becomes 

C(I,p - 1) = (I + 1)F(I), f,;;,p - 1, (8) 

where all arguments are now to be understood modulo p. 
Equations (6b) and (6c ) are then valid for 1 less than 
p -1 (modp). 

The induction implied by Eq. (7) may be performed in 
the field of characteristic p to obtain Eq. (2) modulo p. 

I conclude that the assumption that C(p,O) vanishes 
for some p greater than unity leads to the structure con
stants of a Witt algebra. (See Ref. 6 for the ipteresting case 
of p = 3 with the range of the structure constants shifted 
from {1,2',0} to { ± -./372,0}.) 

IV. THE THIRD CASE: ALL THE C(/,O) VANISH 

Another way to satisfy Eq. (4) is to have the structure 
constant C( 1,0) vanish. Equation (4) is then satisfied if all 
the C(I,O) equal zero (this does not appear to be the only 
possibility, however). 

Suppose further that the C(I,1) coefficients are non
vanishing. According to the discussion relating to Eqs. 
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(6a) and (6b) and the definitions of the C(I, - 1) struc
ture constants, I can scale the L-operators so that 

C(l,1) =1(1- 1), t~O. (9) 

I next set n equal to - m in Eq. (3) to get 

C(l,m)C(l + m, - m) =C(I, - m)C(l- m,m), (10) 

so that choosing m equal to 1 shows that the C(l, - 1) are 
all zero for 1 greater than 2. Further, C(2, - 1) is seen to 
be zero by setting n equal to - m + 1 with 1>3 in Eq. (3). 

Finally, by setting m equal to successively larger neg
ative integers in Eq. (7) and using induction on I, I con
clude that 

C(l,-m)=O, i>m>O. (11 ) 

Equation (11) shows that there are no "step-down" 
operators in the subalgebra generated by the 
{Ln In> O}. The subalgebra is accordingly an algebraic 
ideal. The Lie algebra characterized by vanishing structure 
constants C(I,O) is therefore nonsimple. 

V. CONCLUSION 

Nonvanishing of the structure constants of a Z-graded 
Lie algebra satisfying Eq. (1) is both necessary and suffi
cient for the algebra to have the structure constants of the 
Virasoro algebra. 
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A given unitary representation of the group SL(2,R), belonging to the discrete series. is shown 
to involve necessarily some special functions (in particular. Laguerre and Hardy-Pollaczek 
polynomials). Various realizations of this representation are investigated, including the 
coherent states one. More generally. it is shown that the representations ofthe discrete series of 
the universal coveringofSL(2.R) involves generalized Laguerre and Pollaczek polynomials. 
The Riemann zeta function is shown to be concerned with these representations. 

I. INTRODUCTION 

It is rather unusual to write an article devoted to a given 
representation of a Lie group. On one hand. mathematicians 
are more often interested in classifying all irreducible repre
sentations (defined up to an equivalence). This search leads 
them. secondarily. to the description of special functions in 
relation with the theory of characters or with the Peter
Weyl theorem. On the other hand. physicists. who are essen
tially concerned with the notions of observable and state, are 
often playing with different realizations of a given represen
tation. For them. functions are not essential. As an example. 
a plane-wave state can be described either by an exponential 
exp(ik·x) or by a Dirac delta function 8(3)(k). Both func
tions are identified in this context and denoted by a single 
ketlk). Our point of view is close to the physicist one, al
though slightly different in that our aim is to know which 
functions are involved in a given representation. This can be 
described as follows. Let Xl' X z .... ,Xn be a basis of the Lie 
algebra of a group G. These elements are Hermitian opera
tors corresponding to an irreducible unitary representation 
of G. They have either a discrete or a continuous spectrum. 
With physicists' notation, one can write, for instance, 

XI IXI ) = XI Ix l ), where Xl ESpectrum (XI)' 

X 2 1x2 > = x2 Ix2 ), where X 2 ESpectrum (X2 ). 

The "matrix element" (Xl Ix2 ) is a function mapping Spec
trum (XI) X Spectrum (X2 ) in C. This shows how functions 
are naturally involved in a given class of representations and 
how they can be effectively used to build a concrete example 
of this class of representations. 

In the above example, the functions are functions of a 
real variable. The unitary representation ofSL(2.R) we are 
interested in can be continued to a complex nonunitary rep
resentation ofSL(2.C). This is a way to extend our study to 
functions of a complex variable. Such a procedure is analo
gous to the one that permits the physicist to define coherent 
states from the real Heisenberg algebra. 

Another kind of generalization is possible and will be 
explored. It consists in replacing operators of the Lie algebra 
by operators of the enveloping algebra. This procedure per
mits us to enlarge the set of functions involved in the repre
sentation. 

Many of the formulas presented in this article were ob
tained in collaboration with Michael Boon and presented 

elsewhere without proof. I The representation of SL(2.R) 
we are interested in was studied some years ago by Itzykson2 

in a few realizations. in particular the one involving the Har
dy-Pollaczek polynomials. It is an irreducible and unitary 
representation belonging to the so-called discrete series and, 
due to the eigenvalue of the Casimir operator. it can be said 
to be of spin -! and is denoted D + ( -!) in the present 
article. 

The Lorentz group in three dimensions acts canonically 
on the (real) Lie algebra ofSL(2.R).1t follows that this Lie 
algebra has five kinds of nonzero elements (timelike future. 
timelike past, lightlike future. lightlike past. and spacelike). 
In the representation we are investigating. a timelike element 
has a discrete spectrum. Given one of them. any other ele
ment is associated with a set of orthogonal polynomials as 
follows: 

timelike (discrete spectrum) Meixner polynomials of the 
first kind 

lightlike (continuous spectrum) Laguerre polynomials 

spacelike (continuous spectrum) Meixner polynomials of 
the second kind 

This is a foretaste of our approach. 
In the next section, we investigate some general proper

ties of the representation class D + ( - !). It is shown how 
the Meixner and Laguerre polynomials appear in a natural 
way. Section III is devoted to some properties of the Hardy
Pollaczek polynomials. 3-5 a special case of the Meixner poly
nomials.s They have a slightly different writing (Pidduck 
polynomials6 

) that is of interest regarding special functions. 
In Secs. IV and V, we examine realizations where Hardy
Pollaczek and Laguerre polynomials are involved. Section 
VI relates our point of view with the usual realizations of the 
representation. especially the z realization. Section VII is 
devoted to the so-called coherent states realization and its 
dual. In Sec. VIII, we show how the Riemann zeta function 
is involved in the representation. Then. in the last section. we 
generalize our investigation to the so-called discrete series 
D + ( -! + E) of the universal covering group of SL (2.R ). 
It is necessary to emphasize that our notation is the one fa
miliar to physicists (Hermitian operators as elements of the 
Lie algebra). Many of the results of these sections are col
lected in some tables. 

Three appendices are added. Appendix A shows the re-
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lationship between the three-dimensional Lorentz group 
and SL(2,R). Appendix B gives a physicist derivation of the 
unitary dual of the universal covering ofSL (2,R). It permits 
us to have an idea of the topology of this space. The interest is 
explained in our conclusion. Appendix C shows the interest 
of what we call the x realization. Many special functions are 
described in a compact way with the aid of this realization. 

II. DESCRIPTION OF THE REPRESENTATION 

For convenience, the word "representation" is used 
here for the abstract representation (equivalence class of 
representations). The word "realization" will be employed 
exclusively for a concrete representation. In the present sec
tion, we are only interested in abstract aspects of the repre
sentation. 

With the physicists definition, the Lie algebra of 
SL (2,R) is made of traceless pure-imaginary 2 X 2 matrices. 
We choose the three following elements as a basis: 

J = - !a2 , K = - (i/2)a3 , L = (i/2)a p 

where the matrices a j are the standard Pauli matrices. We 
have the following commutators: 

[J,K] = iL, [J,L 1 = - iK, [K,L] = - iI. (1) 

Note that J generates a group isomorphic to U( 1); K 
and L generate groups isomorphic to R. In this two-dimen
sional representation, J has { - M} as a spectrum but K and 
L have a pure imaginary spectrum: { - i/2,iI2}. We will be 
interested later on in another kind of basis, namely, 

R=J+K, S=J-K, L, (2) 

where Rand S only have 1 as an eigenvalue. The commuta
tors are 

[R,S]=-2iL, [R,L]=-iR, [S,L] = is. (3) 

The representation D + ( - D we are interested in is en
tirely defined with the aid ofthree operators J, K, L (denoted 
for con venience by the same letters) verifying the properties 

J> 0, J 2 _ K 2 - L 2 = - i, ( 4 ) 

with the conditions that it is irreducible and unitary. In the 
present section, we do not give an explicit construction of the 
representation Hilbert space. Our aim is to obtain properties 
common to all realizations of this representation. We say 
that the spin has the value -! because the relation 
jU + 1) = -! impliesj = -l We note that this number is 
the only root of that equation. This is probably why the rep
resentation presents interesting fact. [We note that the map
ping j-+ - j - 1 does not change the value jU + 1) and 
change the sign of the "dimension" of the representation 
2j + 1.] 

The elements of the Lie algebra are of the form 

X = aJ + bK + cL = aJ + ! (f3K _ + f3 * K + ), (5) 

with 

2062 

K ± = K ± iL, f3 = b + ic. 

We define the Killing form as 

(X,X) = a2 _ b 2 _ c2 = a2 
_ 1f31 2

• 
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(6) 

(7) 

The SL (2,R) group acts on the Lie algebra in preserving this 
quadratic form. One recognizes the action of the three-di
mensional Lorentz group (see AppendixA). If it is positive 
(resp. negative, zero), the (nonzero) element will be said to 
be timelike (resp. spacelike, lightlike). It is clear that J is 
timelike and K and L are spacelike. Here, Rand S are exam
ples oflightlike elements (The interchange of the operators 
Rand S is performed by the so-called Cartan linear map
ping.) 

Given two elements X = aJ + bK + cL and 
Y = a'J + b'K + c'L, the Killing form provides us with a 
hyperbolic scalar product 

(X,y) = aa' - bb' - cc'. (8) 

The plane spanned by X and Y will be said to be 
(i) of hyperbolic type if (X,x)( Y,y) - (X,y)2 <0, 
(ii) spacelike if (X,X)(Y,Y) - (X,y)2>0 (Schwarz 

inequality) , 
(iii) tangent (to the light cone) if 

(X,x) (Y,Y) - (X,Y)2 = O. 
We state, without proof, the following lemma. 
Lemma 1: Set [X, Y] = iZ. The type of Z and the type of 

the plane II spanned by X and Yare related as follows: 

II is hyperbolic, Z is spacelike, 

II is spacelike, Z is timelike, 

II is tangent, Z is lightlike, 

and Z is orthogonal to II. 

This lemma is of general value since it describes a prop
erty of the abstract Lie algebra ofSL(2,R). It is interesting 
to emphasize the following interesting fact of the representa
tion we are interested in: The categories of time like and light
like elements split into positive and negative operators, cor
responding to the classical distinction between future and 
past Lorentz vectors (see Fig. 1). This last property is 
shared by all unitary irreducible representations of the class 
D + ( - ! + E) of the universal covering group of SL (2,R). 
(In all these representations (belonging to the so-called dis
crete series), investigated in Sec. IX, J is positive.) 

FIG. 1. J is timelike positive, Rand S are Iightlike positive, and K and L 
are spacelike. 
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Theorem 1: J has N + ! as a spectrum. Moreover, with 
standard Dirac notation, 

J In) = (n +!> In), n = 0,1,2, ... , (9a) 

K+ In) = (n + 1)ln + 1), (9b) 

K_ln)=nln-l), (9c) 

In) = (1ln!)K n+ 10), (10) 

Remark (oscillator realization): Before giving the proof 
of Theorem 1, we emphasize that the spectrum of J is the one 
of the Hamiltonian of the harmonic oscillator. We readily 
see that there exists a realization in terms of annihilation and 
creation operators a and a*. One has 

J = a*a + !, K _ = ~ a*a + 1 a, K + = a*~ a*a + 1 . 
(11a) 

These equations can be solved as follows: 

a=(J+!)- 1I2K_, a*=K+ (J+!)-I12. (lIb) 

We will come back to these operators in Sec. VII. 
Proof of Theorem 1: From Eqs. (4), we get 

K + K _ = J2 - J +!, K _ K + = J2 + J + 1. (12) 

Let In) be a normed eigenvector of J with n +! as an 
eigenvalue (we do not assume that n is an integer). From the 
commutators 

[J,K±] = ±K±, 

it is easy to see that K + In) (resp. K _ In» is an eigenvector 
of J with eigenvalue n + ~ (resp. n - !). From Eqs. (12), we 
obtain the conditions 

IIK+ In)1I 2 = (nIK_K+ In) 

= (n + 1)2 + (n +!) + 1 = (n + 1)2, 
(l3a) 

11K _ In)11 2 = (niK + K _ In) 

= (n + !)2 _ (n +!) + 1 = n2. (13b) 

According to assumption (4), we cannot obtain, by an 
iterated action of K _ , a negative eigenvalue of J. This im
plies that for some value ofn, K _ In) is the null vector. This 
means that n does take the value 0 and, consequently, our 
statement about the spectrum of Jis proved. The irreducibi
lity condition implies that the vectors In) span the whole 
Hilbert space. They form an orthogonal basis. Equations 
(10)-( 13) are readily obtained. • 

Corollary: Any timelike operator X = aJ + bK + cL of 
the Lie algebra has a discrete spectrum and has 

sgn(a)~ (X,X)(n + !> as eigenvalues (with n = 0,1,2, ... ). 
Proof It is well known that every Lorentz transforma

tion maps a timelike vector on a timelike vector with the 
same values of ll. and sgn(a) and that such elements ofthe 
Lie algebra are conjugate. Therefore they have the same 
spectrum. • 

The element J provided us with a natural basis in the 
representation space. It is natural to look for the "eigenvec
tors" of an arbitrary element X = aJ + bK + cL of the Lie 
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algebra and to express them with the aid of such a basis. For 
that purpose, we write 

Xix) =xlx), (14) 

with 
00 

Ix) = L Pn (x) In), (15) 
n=O 

where Ix) is a unit vector ofthe Hilbert space iff X is time
like. Otherwise, it is an "improper element" defined up to a 
factor. 

For obvious reasons, weassume,8 = b + ic=l=O. We then 
have the following theorem. 

Theorem 2: If Po (x) is a constant, the p/s are orthogo
nal polynomials in x. They are essentially: 

(i) the Laguerre polynomials if lal = 1,81 (lightlike ele
ments). As special cases, the operators Rand S of Eq. (2) 
are associated, respectively, with the polynomials 

( - )nLn (2x), and Ln (2x); 

(ii) the Meixner polynomials of the first kind if lal > 1,81 
(timelike elements). In particular, if (X,x) = sgn(a) = 1, 
we have x = n +!, with n = 0,1,2, ... ; 

(iii) the Meixner polynomials of the second kind if 
lal < 1,81· As special cases, the operators K and L are asso
ciated, respectively, with the Hardy-Pollaczek polynomials 
Pn (x) and ( - i)nPn (x), where 

00 

(l_iz)-1/2+iX(I+iz)-1/2-ix= L Pn(x)~. (16) 
n=O 

Proof Equations ( 14) and ( 15) provide us with the infi
nite set of equations 

apO (x) + ,8PI (x) = 2xpo (x), 

,8 *Po (x) + 3apI (x) + 2,8P2 (x) = 2xPI (x), 

2,8*PI (x) + 5ap2 (x) + 3,8PJ (x) = 2xP2 (x), 

n,8 *Pn _ I (x) + (2n + 1 )apn (x) + (n + 1),8Pn + I (x) 

= 2xPn (x). (17) 

It is a remarkable fact that if Po (x) is zero, all the p/s are 
zero. Therefore, we are sure that, whatever are X and its 
"eigenvector" Ix), one has (Olx) =1=0. It follows that, ifpo (x) 
is a constant, Pn is a polynomial of degree n in x. Equation 
(17) shows us that they are orthogonal polynomials. It is 
more usual, in this context, to write the recurrence relation 
( 17) in the following way: 

(n + 1 ),8Pn + I (x) 

=(2x- (2n+ 1)a)Pn(x) -n,8*Pn_dx). (17') 

The case,8 = 1, a = 0 corresponds to the Hardy-Pollaczek 
polynomials. Let us set 

Q (x) = (L) np (- ~x) 
n 1,81 n 2 ' 

a 
q=-. 

1,81 
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The recurrence relation becomes 

(n + I)Qn+ I (x) 

= [ - x - (2n + 1)u]Qn (x) - nQn_1 (x). (18) 

For u = - 1 (resp. u = 1), one recognizes the recurrence 
formula of Laguerre's polynomials Ln (x) (resp. 
( - )nLn ( - x». For lui> 1 (resp. lui < 1), we obtain spe
cial cases of the Meixner polynomials of the first (resp. sec
ond) kind. Thus, the representation D + ( - P ofSL(2,R) 
gives a nice interpretation of the well-known relationship of 
the Laguerre and Meixner polynomials: The set of Laguerre 
polynomials is "between" the two kinds of Meixner's sets 
(lightlike vectors separate spacelike vectors from timelike 
vectors). 

It is a simple matter to derive a differential equation 
obeyed by the generating function 

00 

F(x,z) = L Qn (x)zn, 
n=O 

• --2 aF 
(1 + 2oz+ z-) - + (x + u+z)F= O. 

dz 
We see that the three kinds of polynomials correspond to the 
three following situations, regarding the polynomial in z: 

1 + 2oz+r: 
(i) Two real roots: The Qn (x) are Meixner's polynomi

als of the first kind generated by 

F(x,z) = [1 + (u - ~ U 2 - 1 )z] - 112 - Y 

X [ 1 + (u + ~ U 2 - 1 )Z] - 112+ y, 

with 

y = x/2~ u 2 - 1. 

It is important to underline that the only eigenvalues of an 
operator satisfying a2 

- 1/3 12 = 1 and a > 0 are of the form 
x = n + !. The corresponding eigenvectors are vectors of the 
Hilbert space. 

(ii) Two equal roots (u = ± 1): Laguerre polynomials 
generated by 

F(x,z) = [11( - u - z) ]exp[ - uxz/(u + z)]. 

(iii) Two imaginary conjugate roots: Meixner's polyno
mials of the second kind, generated by 

F(x,z) = [1 + (u-i~l-u2)z] -1/2-i1" 

X [1 + (u + i~ 1 - U 2)Z] - 112+ i1", 

with 

y' = x/2~ 1 - u 2. 

Then we have proved Theorem 2. • 
It is a simple matter to write down the generating func

tions of the polynomials associated with the operators R, S, 
K, and L. We give in a Resume the main properties concern
ing the eigenvectors of these operators. 

Resume: If Pn and Ln denote, respectively, the Hardy
Pollaczek and Laguerre polynomials, we have, for the opera
tors J, K, L, R, S: 
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J In) = (n +!) In), 

Klk) =k Ik), Ik) = LPn(k)ln), (19a) 

Here, distinct arbitrary functions have been chosen for Po. 
We will show later on why it is "natural" to choose 

Po (r) =,fie - r and Po (s) =,fie - S but Po (k) and 
Po (A) = 1 as normalization factors. In the formulas, the 
only kets that are elements of the Hilbert space are the In) 'so 
They are vectors of norm 1. 

Theorem 3: The operators Rand S are positive. 
Proof Let Iif!) be an arbitrary unit vector. We can al

ways write it in the form 
00 

Iif!) = L if!n In). 
n=O 

We get 
00 00 

(if!I(2J±2K)Iif!) = L t/I': L if!m(nl(2J±2K)lm) 
n=O m=O 

= L [(2n + 1)1if!n 12 ± n(t/I':if!n-I 

+if!~-lif!n)] 

= L nlif!n ± if!n_11 2
, 

which is always positive. • 
Corollary: Lightlike elements of the Lie algebra are ei

ther positive or negative. 
The prooffollows from the transitive action ofSL(2,R) 

on future (resp. past) lightlike vectors. • 
It is interesting to underline that the Laguerre polyno

mials are also involved in other relations in the next theorem 
where a kind of duality is shown: 

(i) between - K + and 2R, 
(ii) between K + and 2S. 
Theorem 4: We have the following formulas: 

(1/n!)(2R)nI0) =Ln( -K+ )10), 

(- )nln) = (lIn!)( -K+ )nIO) =Ln(2R)10), (20a) 

(lin!) (2s)nI0) = Ln (K + ) 10), 
In) = (lIn!)K n+ 10) = Ln (2S) 10). (20b) 

Proof First, we need to prove the relations 

~! (2R)NI0) = nto (:)In), 

~! (2S)NI0) = nto (:)( - )nln). (21 ) 

This can be shown recurrently, with the aid of 
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2R In) = (K + + K _ + 2.1) In) 

= (n + 1)ln + 1) + nln -1) + (2n + 1)ln), 

2S In) = ( - K + - K _ + 2.1) In) 

= - (n + 1) In + 1) - n I n - 1) + (2n + 1) In). 

Then, we use (10) and the Laguerre formula 

N N! n 
LN(x) = I (-x) , (22) 

n=O n!n!(N - n)! 

to obtain the first part of Eqs. (20). The second part is ob
tained by use of the generating function 

I Ln (x)un = _1_ exp( - x _u_). (23) 
l-u l-u 

One gets 

uN(2R)N 
exp(2uR) 10) = '" 10) 

~ N! 

=_I_ exp(_U_ K + )10 ), 
l-u l-u 

uN(2S)N 
exp(2uS) 10) = '" 10) 

~ N! 

=_I_exp( __ u_ K + )10). 
l-u l-u 

If we set t = - u/ (1 - u), these relations become 

[1/(1 - t) ]exp( - [t /(1 - t) ]2R) 10) 

= exp( - tK + ) 10), (24a) 

[1/(1 - t)]exp( - [t /(1 - t) ]2S) 10) = exp(tK + ) 10), 
(24b) 

and, using again (23), we obtain, in identifying the terms t n 

of both sides, the second part of Eqs. (20). • 
Corollary: 

N NIN' 
R NIO) = I .. In), (25a) 

n=O 2Nn!(N-n)! 

N NIN' SNIO) = I (_)n .. In). (25b) 
n=O 2Nn!(N - n)! 

Proof These relations are a direct consequence of Eqs. 
(10), (20), and (22). • 

III. THE HARDY ... POLLACZEK POLYNOMIALS 

The oldest reference we know about these polynomials 
is the one of Pidduck,6 who used them in order to solve a 
physical problem, but did not study their properties. A 
slightly different form of them was investigated by Hardy.3 
They are the ones that are given here the name of Hardy
Pollaczek, and are defined by Eq. (16); in associating the 
name ofPollaczek, we are referring to the class of orthogonal 
polynomials studied by this last author.4 The whole class is 
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shown to play a role in the representations of the discrete 
series (Sec. IX). 

Theorem 5: The Hardy-Pollaczek polynomials [our 
polynomials are related with the Fn 's of Itzykson by the for
mula: Pn (A.) = ;nFn (A.)] satisfy the orthogonality relation 

f +OO Pn(A.)Pm(A.) dA.=D
nm

. (26) 
- 00 cosh(1TA.) 

Proof Let us set z = i tanh ( 1TU) in Eq. (16). We get 
easily 

exp(2i1TUA.) = I Pn(A.) (itanh(1TU)Y (27) 
n=O cosh(1TU) 

It is well known that the function sech is its own Fourier 
transform. More precisely, we have 

----= dA.. 
1 f + 00 e2iTru

). 

cosh (1TU) - 00 cosh (1TA.) 
(28) 

From these two formulas we obtain directly the orthogonali
ty relation of the Hardy-Pollaczek polynomials. For this 
purpose, it suffices to expand the expression e2i1r

(U - v»). in the 
integral 

f 
+ 00 e2i1r( U - v»). 

----dA., 
- 00 cosh (1TA.) 

according to (27), to use the relation 

cosh(1T(u - v» 

cosh ( 1TU ) cosh ( 1TV )( 1 - tanh ( 1TU ) tanh ( 1TV » 
1 00 

= I (tanh ( 1TU )tanh ( 1TV >y, 
cosh ( 1Tu)cosh( 1TV) n = 0 

and to identify the terms in (tanh ( 1TU>y (tanh ( 1TV»m. • 

A.Consequences 

(i) Symmetry properties of the H-P polynomials. By 
taking the complex conjugate of (27) and changing u into 
- u, we see that the polynomials are real. If we change the 

signs of u and A., we obtain the property 

(29) 

(ii) Normalization of the Ik )'s. Equation (26) can be 
written as 

f
+ 00 

_ 00 I: (A.)/m (A.)dA. = Dnm , 

where 

In (A.) = r(! + iA.)Pn (A.). 

Here we used the properties of the r function 

rq + iA.)r(! - iA.) = 1/cosh(1TA.) , 

rq + iA.)* = r(! - iA.). 

(26') 

Obviously, thein's satisfy the recurrence relation satisfied by 
the H-P polynomials. Ifwe define, instead of (19a), 

Ik) = I/n (k) In) = Irq + iA.)Pn (A.) In), 
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the Dirac formalism leads to 

Lfn (k)*fn (k') = ~(k - k '), 
n 

and 

f
+ 00 

In) = _ 00 r(! - ik)Pn (k) Ik )dk. (30) 

Theorem 6: The moments of the Hardy-Pollaczek poly
nomials are lEn l/2n

, where En is the nth Euler number de
fined by 

I 00 (1ru)n 

cosh(1TU) = n~o En -n-!-' 

Proof From (28) and (30), we readily get 

f + 00 00 (2i1TUA) n 00 ( 1TU) n 
L dA= L En--, 

-00 n=O n!cosh(1TA) n=O n! 

and, by identification, 

f + 00 A n dA = lEn I . 
_ 00 cosh(1TA) 2n 

It is clear that the odd Euler numbers vanish. The even 
ones have alternate signs (Eo = I,E2 = - I,E4 = 5, 
E6 = - 61,Es = 1385,EIO = - 50521, ... ). • 

We note the following property: 

E = (_)n 2
2n

+
2
(2n)! (1 __ 1_+_1 __ ... ), 

2n ~n + 1 32n + 1 52n + 1 

which is obtained with the aid of the expansion 
1/2 cosh x = e- X 

_ e- 3x + e- 5x - •••• 

B. The H-P polynomials as characteristic polynomials 

It is a simple matter to prove, with the aid of the recur
rence relation (17 a) , 

(n+ I)Pn(A) =UPn(A) -nPn_dA), 

that 

I 0 0 0'" 
U 2 0 0'" 

n!Pn (A) = de 0 2 U 3 0'" 
0 0 3 U 4··' 

where the matrix is nXn. 

C. Pldduck polynomials 

They are the polynomials /-In (x) related with the Har
dy-Pollaczek ones by the following formula: 

Pn(A) = (-i)n/-ln( -!+iA.). (31) 

They have interesting properties that are less transparent 
under the form of the Hardy-Pollaczek polynomials. Their 
generating functions are 

(32a) 

(32b) 
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where M denotes the confluent hypergeometric function. 
We note that the left-hand side ofEq. (32a) is invariant 

under the change 

u-+-u, x-+-x-l. 

It follows that (29) now reads: 

/-In( -x-I) = (- )n/-ln(x). 

The Pidduck polynomials can be written with the aid of the 
hypergeometric function as 

/-In (x) = F( - n, - x;I;2) 

m=n n'2m 
= L . x(x - I)(x - 2) 

m=O m!m!(n - m)! 

"'(x-m+l) (33) 

or, shortly, 

m=n (n )(x) /-In(x) = L 2m . 
m=O m m 

The proof is easy. We only have to write 

(1+u)X I (I 2U)X 
(1-u)x+I=I-u +I-u 

= mioo x(x-l)(x-2)"'(x-m+ I) 

m=O m! 

(2u)m 
X --'---'--

(1_u)m+I' 

and to expand 1/(1 - u)m + I. 

Equation (17a) provides us with the recurrence for
mula obeyed by the Pidduck polynomials: 

(n + I )/-In + 1 (x) = (2x + I )/-In (x) + n/-ln _ 1 (x). 
(34) 

The symmetry between n and x in F( - n, - x; 1;2) permits 
us to write immediately 

(x + I)/-ln (x + I) = (2n + I)/-ln (x) + x/-ln (x - 1), 
(35a) 

or, equivalently, 

~ [exp(!)x-xexp( - !)]/-In(X) = (n+!>/-ln(x). 

(35b) 

It follows that these polynomials are the eigenfunctions of an 
operator with N + ! as a spectrum. We are going to show 
that this operator is involved in the representation of 
SL(2,R) we are interested in. 

IV. A REALIZATION WITH THE H-P POLYNOMIALS AS 
EIGENFUNCTIONS OF J (L IS DIAGONAL) 

The realization we are going to describe has been ob
tained by Itzykson2 through a Mellin transform from the z 
realization described later on. The reason is that the z real
ization is one of the most "natural" when we are interested in 
group transformations of SL(2,R). However, the one in
volving the Hardy-Pollaczek polynomials seems more inter
esting because it has nice properties related with classical 
special functions. 
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We define the realization of the Lie algebra by 

R = exp( ! )x, S = - x exp( - !). 
L = - i(x + ~). (36a) 

[These operators give simple ways of writing some relations 
involving the hypergeometric functions, the factorial poly
nomials, and the Pidduck polynomials (see Appendix C). ] 

According to (35b), the eigenfunctions of J are the Pid
duck polynomials. If we set 

X= -!+a, 
we have 

R = exp( - i ~ )( - ~ + a ). 

S = (~ - a )exp(i ~), L = A. (36b) 

We note that R becomes S when we replace x by 
- x-lor A by - A. This transformation is the Cartan 

mapping since it maps J on itself and change the operators K 
and L into - K and - L, respectively. 

As shown by Itzykson, the H-P polynomials span the 
Hilbert space of the square-integrable functions on the real 
line with measure dA Icosh( 1TA). It is interesting to mention 
that the physicist would have defined abstractly, from Eq. 
(19b), the Hardy-Pollaczek polynomials as the 
Pn (A) = ( - W(A In) = r(nIA). For that reason we will 
refer to this realization as the A realization, the one which 
"diagonalizes" the operator L. 

A. Eigenfunctions of Rand S 

If we denote by [r Ir (x + 1)]p, (x) an eigenfunction 
of R associated with the eigenvalue r, we readily see that 
p, (x) must be a periodicfunction ofx of period 1. It follows 
from Eq. (19c) that 

r 
-r-(x-+-l-) p,(x) = I ( - )nLn (2r)f.Ln (x), 

where p, (x) is a periodic function of x, of period 1. In fact, 
we have the following theorem. 

Theorem 7: The eigenfunction of R (resp. S) with eigen
value r (resp. s) is 

I (- )ne -'Ln(2r)f.Ln(x) = 2r(:+ 1) , (37a) 

1 
~e-SLn(2s)f.Ln(x) =----
£.. 2r( - x).r+ I 

sin 1TXr(X + 1) 
= (37b) 

21T.r+ I 

Proof The fact that they are eigenfunctions of R (resp. 
S) is easy to check. Since (37b) follows from (37a), in re
placing x by - x-I and r by s and using the identity 

r( - x)r(x + 1) = - Isin 1TX, 

we only have to prove (37a). First, we note that, if 
Rep> - 1, 
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roo e-<P+\)tL
n
(2t)dt= (p-1)n . 

Jo (p + 1)n+ I 

This is a direct consequence of (22): 

i n!(_2)k rooe-<p+llttkdt 
k = 0 (n - k)!k !k! Jo 

n (n) (_ 2)k 1 ( 2)n 
= k~O k (p + l)k + I = P + 1 1 - P + 1 . 

From (32a) we get 

p-z-I = 2 ~ ( _ )nf.Ln (z) (p - 1)n 
£.. (p+l)n+1 

Since p - z - 1 is the Laplace transform of t Z/r(z + 1), we 
readily obtain the proof of (37a). • 

Remark: It is easy to show that f.L2n ( - !) 
= (2n - 1)!!/(2n)!! and f.L2n+ 1 ( -~) = O. For x = -!, 
the formulas (37a) and (37b) give both the following prop
erty of the Laguerre polynomials: 

I L 2n (2s) (2n - I)!! = ~. 
(2n)!! 2fiiS 

V. A REALIZATION INVOLVING THE LAGUERRE 
POLYNOMIALS (R IS DIAGONAL) 

We note the relation 

100 

e-tuuXLn(u)du 

= r(x + l)t -x- IF( - n,x + 1,1;1/t), 

Rex>O, 

and,sincef.Ln(x) = (- )nF( -n,x+ 1,1;2),weeasilyget 

( _)n ioo 
f.Ln (x) = e- 'rLn (2r)dr. 

r(x + 1) 0 

(38a) 

The inverse formula of this Mellin transformation is 

areal> - 1. (38b) 
This formula permits us to deduce the action of the Lie 

algebra on the Laguerre functions v'1e - 'Ln (2r). For in
stance, according to (36a), R transforms f.Ln (x) into 
(x + 1 )f.Ln (x + I); the integrand of (38b) becomes 

r(x + I)(x + 1)f.Ln (x + 1)r- x - 1 

=rr(x+2)f.Ln(x+ l)r- x
-

2
, 

and the integral is multiplied by r. 
This indicates the way we are able to obtain the realiza

tion that diagonalizes the operator R and that will be re
ferred to as the r realization. It follows that we can interpret 
thefunction Y2( - )ne- 'Ln (2r) as the scalar product (rln) 
and v'1e - sLn (2s) as the scalar product (sin). From the dif
ferential equations obeyed by the Laguerre polynomials, it is 
an easy task to show that these functions are eigenfunctions 
of the operator 

r d 2 1 d r 
J= ------+-. 

2 dr 2 2 dr 2 
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Finally, we get, for the r realization (This realization is used 
in Ref. 7.) 

R = r, S = - r ~ - ~, L = i(r ~ + ~) . (39) 
dr 2 dr dr 2 

The Laguerre functions are orthogonal according to the 
following formula: 

2 L'" e- 2r( - )nLn(2r)( - )mLm(2r)dr=~nm' 
The choice of our eigenfunctions of J corresponds to 

po(r) = V2e- r in Eq. (19c). Similarly, we take 
Po (s) = V2e-s in Eq. (19d). It follows that the eigenfunc
tions of the operator S, in the r realization are given by8 

i: 2e-(r+s)( - )nLn (2s)Ln (2r) =Jo (2..[si-), 
n=O 

where Jo is the Bessel function. With the physicist notation, 

the function Jo (2..[si-) represents the scalar products (rls) 
and (sir). 

Other relations can be found. First, the eigenfunctions 
(the scalar products (riA» of the operator L are 

(l/V2)/[ r- l12 
-;;. Ir(! - iA)]. 

The normalization [this corresponds to Po (r) = 1 in Eq. 
( 19c)] is such that the eigenfunction (associated with the 
eigenvalue ro) of the operator R is the distribution 

(l/.Jr;;r)~(Log r - Log ro), 

where ~ denotes the Dirac distribution. 

VI. THE z AND 9 REALIZATIONS 

In the book by Gelfand et al.,9 all representations of 
SL (2,R) are built with the aid of the space of homogeneous 
infinitely differentiable functions of two real variables x and 
y [except at point (0,0) ], satisfying the property 

f(ax,ay) = laIS-I(sgn a)'i(x,y) , 

where s is an arbitrary complex number and € = 0 or 1. 
In our case, s = 0 and € = 1; that is 

f(ax,ay) = (l/a)j(x,y), 

the representation is irreducible. The homogeneity of the 
functions can be expressed in requiring them to be eigenfunc
tions of the operator x a lax + y a lay with eigenvalue - 1. 
The space is spanned by the functions (x + iy)nl 
(x - iy)n + I with n = 0,1,2, .... A physicist will note imme
diately that they are the eigenfunctions of the operator 
J = - (i/2)(x(a lay) - y(a lax» with eigenvalues n +!. 
One is tempted to replace x + iy by; [the homogeneity con
ditionreads:;(ald;) +;*(ala;*) = -1] or to replace 
x by p cos 0 and y by P sin 0 [that permits to eliminate one 
variable, sincep(a lap) equals - 1]. One could also suggest 
to use the variables x and z = ylx (we are left with the only 
variable z). One gets for all these cases 

2068 

Operator J 

-~(x~-y~), 
Eigenfunctions 

(x + iy)n 
(x-iy)n+I' 
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!(;:;-;*a:*)' 

i a 
-2 ao' 

~ei(2n+ 1)8 , 
P 

. d' (z+i)n 
...:.. (z2 + 1) - +"':"z 
2 dz 2' (z _ i)n+ I 

Here we referred to the two last realizations as the 0 and the z 
realizations. It is a Mellin transformation on the z realization 
which leads Itzykson to the A realization involving the Har
dy-Pollaczek polynomials. The operators R, S, and L read 
as follows in the z realization: 

R=i~, S=i(z2~+z), L= -i(Z~+~). 
dz dz dz 2 

(40) 

We know that Land R are strictly positive operators. It 
follows that the number z corresponds to the eigenvalue of 
an operator that can be written as the quotient of Land R. 
More precisely, this operator is 

z= - (LR -I +R -IL)l2. (41) 

In the 0 realization, we have 

J = - - - , K = - - - sm 20 + cos 20-i a i ( . a ) 
2 ao 2 ao ' 

L = - ~ (cos 20 + sin 20~). 
2 ao (42) 

As it could be expected, the variable 0 being an angle, cannot 
be associated with an operator of the enveloping Lie algebra. 
Let us examine the operators e ± 2i8. The operator e2i8 can be 
expressed in terms of J and K + . One obtains 

e2i8 = K + (J +!) -I, e2i8 In) = In + 1). 

The operator e- 2i8 is such that K_ =e-2i8(J_~). We 
cannot solve this equation since the operator J - ~ has zero 
as an eigenvalue. We can only write e- 2i8 In) = In -1) for 
n#O. 

The various realizations we have studied permit us to 
classify relations between special functions. For instance, 
the relations expressing an eigenstate of R (or S) in the basis 
In), namely, 

Is) = {i I e - SLn (2s) In), 

that reads in the x realization: 

I{i(-)ne -rLn(2r)Pn(x) = r ,(37a) 
{ir(x + 1) 

I {ie- SL n(2s)Pn (x) = - sin1Txr(x+l) , (37b) 
{i1Ts"+ I 

and reads in the 0 realization: 

ei( 2n + I) 9 eirtg8 
= , (43a) 

2 cos o[ii 
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TABLE I. Some realizations of the Lie algebra. 

SL(2,R) n 

matrices (J diagonal) 

{ 
I 0 

(~i ~) 
3 2 

R 2 5 
2 0 0 3 

C' 
-I 

(~ ~) 
3 

S ..!.. 0 -2 
2 0 0 

L ~ C~;t ~) 

~(: 
0 0 

~(~ i ~) 
3 0 

J 0 5 
2 0 0 0 

A r z 

(L diagonal) (R diagonal) (LR -, + R - 'L. ) x dlag 
2 

0 

) 0 
3 (~ + iii )exp( - i ~) exp(!)x 

.d r -/-

7 
dz 

0 0 

) -2 0 
d 2 

5 -3 (+ - iii )exp(i ~) -xexp(!) 
d 

-z{z>!+z) -r----
-3 7 dr 2 dr 

A - i(x+ P (d I) -z{z~+..!..) / r-+-
dr 2 dz 2 

0 

) 0 
0 
7 



                                                                                                                                    

TABLE II. Eigenfunctions of R, S, L, J in some realizations. 

Spectrum A 

R R* 
r- 1/2 + iAe' 

+ 2r(l/2 + u) 

S R* 
s - 1/2 - jAe·~ 

+ 2r(l/2 - u) 

L R 0(,1, - ,1,0) 

J N +! P,,(A) 

ei(2n+l)e ie-islge 
'2>f2e-sLn (2s) = . (43b) 

21T 2 sin 0 [ii 
This similitude between different formulas is an example of 
the ones that are collected in Tables I-III. 

VII. THE COHERENT STATE REALIZATION 

Coherent states were defined for this group by Barut 
and Girardello. \0 Here we make use of the generalized defin
ition of sets of coherent states given by Perelemov. ll Then, 
we define a coherent state as a vector belonging to the orbit of 
the "ground state" 10) under the action of the SL(2,R) 
group. We have 

JIO) = !IO), 

and, if geSL(2,R), g transforms 10) into an eigenvector of 
gJg - 1 with the same eigenvalue: 

(gJg-1)gI0) = (aJ + 13K _ + f3*K + )gIO) = !IO). 

From the classification of elements of the Lie algebra [Eq. 
(7) ], it follows that 

a2 
- 1131 2 = 1. 

We choose the following parametrization: a = cosh ,p, 
13 = sinh ,p eil/J, with ,p > O. Bringing these expressions in Eq. 
(17a), with x =!, we get 

Pn = (- )ne -inl/Jtanhn(,p/2)po, 

and the normalization of the state ~o Ip n 12 = 1 is obtained in 
choosing Po = cosh (,p/2). Finally, the coherent states of the 
"ground-state" type are given by the formula 

x r z 

r"e' 8(Log(r/ro » 
2r(x+ l) {IV 

exp( - irz) 

e'sin 17'Xr(x + I) 
Jo (2,JSr) 1 CS) --; exp --; 21TS" + I 

,-II2-iAn 
ZI12 - lAO 

~r(l/2 - uo) 

",,,(x) ~(- )ne-'L,,(2r) 1 (z+ i)" 
(-)n-

,fiT (z- i)n+ I 

l,p,,,,) = f ( - )ne-inl/J tanh
n

(,p/2) In). (44) 
o cosh(,p/2) 

It is easy to verify that these vectors are eigenvectors of the 
annihilation operator A defined by 

A=(J+D-1K_ (45) 

To check that statement, it suffices to use Eqs. (9) 

A In) = (J + !) - lK _ In) 

= (J + !> - 1 n In - 1) = In - 1), for n # 0, 

A 10) =0. 

One obtains 

(46) 

Remarks: 
(i) The operator A we have defined is different of the 

one, denoted by a, we have introduced in the harmonic oscil
lator realization [Eqs. (11)]. 

(ii) In contradistinction with the harmonic oscillator 
coherent states that fill up the whole complex plane, the 
spectrum of A fills the unit open disk Izl < 1. 

These two remarks are an invitation to produce new 
kinds of "coherent states." Here, we proposed two sets, de
noted S states and ~ states, respectively. 

A. The s states 

They are defined by the relation 

( 
1 ) '" sn Is) =exp --lsI2 I-In). 
2 0 {iif 

(47) 

TABLE III. Transformation formulas involving Laguerre and Hardy-PoIlaczek polynomials. 

(z-i)" (-i)n+lf+~p"(A)(-iZ)-I12+i'< . 
----'----'-.,..= (-17'/2<arg( -IZ) <17'/2) 
(z+ i)"+ I 2 _ ~ cosh(17'A)dA 

P" (A) = i" cosh ( 17',1,) r~ (p - l)n p- i). - 112 
17' Jo (p + l) n+ I 

e-'L (2r) =_1_ r e-in (z- i)" dz 
" 217'i J( _ i) + (z + i) n + I 

(p-l)" = r~ e-(p+ll'L (2r)dr 
(p+l)"+1 Jo " 

P (A) = in r~ e-',;)'- '12L (2r)dr 
n rq+u) Jo n 

( - )"r 'L" (2r) 

=~f-"'+ ~ r(~ + u)p,,(A)';).-I12 dA (areal> -~) 
217' -'U-oo 2 2 
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They are vectors of the Hilbert space since they have a unit 
norm. Let 

(515) = f exp( - 1512) 151
2n 

= 1. 
o n! 

It is a simple exercise to verify that they are eigenstates of the 
anihilation operator a of the harmonic oscillator realization 
and that two 5 states cannot be orthogonal. . 

B. The ~ states 

It) =N(t) f Lin), 
o n! 

(48) 

where t is an arbitrary complex number and N(t) a norma
lization factor. Since 

(t It) = N(t)2 f Jf.L = N(t) 210 (21t I), 
o n!n! 

we see that N(t) = [10 (21t I)] -c 112, where 10 denotes the 
Bessel function. It is a simple matter to verify that the vectors 
It) are eigenvectors of the operator K _ . 

The scalar product of two coherent states is 

10 (2~t'*t) 
= -;~ l;:o ~( 2:;:;:1 t=;, I ~) l~o (:;;21::;::t ;:;1> 

(49) 

It is known that the zeros of the Bessel function 10 are all 
pure imaginary. Let us denote by ± 2ia k these zeros. [The 
roots ak (k = 0,1,2, ... ) are close to ± i(317"14 + k1T).] For 
two coherent states to be orthogonal, it is necessary to have 
t'*t= - ai· If we set t = 5 + iT] and t' = 5' + iT]" this 
condition reads 

5'71 - 571' = 0, 55' + 7171' = - aL 
which means (a) that the points tand t' lie on a line contain
ing the origin (the origin lying in between) and (b) that 

Itllt'l =ai· 
Let us see how a coherent state is expressed in the A 

realization. We have, according to (19b) and (32b), 

(A It) = f L (A In) 
o n! 

co tn 
= L - inpn (A) = etM(! - a,l; - 2t). (50) 

o n! 

The scalar product formula gives 

fco et'· +tM(! + a,l; - 2t'*)M(!a,l; - 2t) d,1. 

- co cosh(1T,1.) 

= 10 (2~t'*t)· (51 ) 

VIII. RIEMANN'S ZETA FUNCTION 

The Riemann zeta function is implied in a natural way 
in the representation we are concerned with. More precisely, 
as we will see, we have 
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(xjl/(1 +e-R)jO) = (1- 2- X )t(x+ 1), (52) 

or, if we take into account the relation x = -! + a, 
(A 11/(1 +e-R)IO) = (1-2- 1I2 - iA )t(!+fA.). 

Before investigating the relationship between the Rie
mann zeta function and our representation, we state a few 
lemmas leading to properties of the operators e"R. 

Lemma 2: Any function of the type 
(at + b)x/(ct + d)X+ I can be expanded in the,un basis. We 
get 

(at+b)X -2 co [(a-c)t+b-d]n () 
(ct+dy+1 - n~o[(a+C)t+b+d]n+I,un x. 

Proof The proof is easy. We only have to set 

u= [(a-c)t+b-d]l[(a+c)t+b+d], 

in Eq.(32a). • 
Lemma 3: The numbers v m,n defined by the expansion 

(at+p)n _ co m 
--'--'-'-'-:- - ~ v t, 
(yt+/j)n+1 m~o m,n 

have as a double generating function 

1 
~ v tmun = (53) 
~ m.n £ p , m,n U + yt - u - atu 

and verify the following recurrence formula 

/jvm+l.n + 1 =Pvm+l,n -yvm,n+1 +avm,n' (54) 

This formula permits to build the whole table of numbers 
from the "initial conditions" 

VO.n = pn//jn + I, vm,o = (_ y)m//jm+ I. 

Proof The double generating function comes from the 
relation 

co (at + P) n n _ 1 L u - , 
n=O (yt + /j)n+ I /j + yt - pu - atu 

and the recurrence relation comes from the identity 

in matching the term t m + IU n + I on both sides. Finally, the 
numbers v m,O and vO,n are easily obtained by setting u = 0 
(resp. t = 0) in the double generating function. • 

Remark: We note that the numbers are symmetric 
(,um,n = ,un.m) provided y = - p. That is the case for the 
so-called Delannoy numbersl2-14 for which we have 
a = P = - y = /j = 1. These numbers are the values taken 
by the Pidduck polynomials for positive integral arguments: 
,um (n) =,un (m) = ,unm' If the Delannoy numbers are sim· 
pIe, it is essentially due to their simple initial conditions 
,um,O = ,uO,n = 1. 

Lemma 4: The matrix elements V m•n (p) = (mle2pR In) 
of the operator e2pR in the basis In) have as a double generat
ing function 

L v m n (p) t mun = 1 . 
. (1-p) -pt-pu - (1 +p)tu 

Proof The proof becomes simple if we make use of the x 
realization of the Lie algebra. We remind the reader that 
R = exp(d /dx) x. We have, according to Eq. (32a): 
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00 

L e2pRI1n (X)t n 
n=O 

= e2pR (1 + tY 
(1_t)x+l 

_ 00 (2p)mRm (1+t)x 

- m~o m! (1 - t)n 1 

00 (2)m 
= L -P-(x+l)(x+2)"'(x+m) 

m=O m! 
(1+t)x+m 

X ---'-----'--'------:
(1_t)x+m+l 

1 
(1-2p(1 +t)/(1-t»x+l (1_t)x+l 

(1 + t)x 

[1-2p-t(1 +2p)]X+l 

Proof The proof is based on the following recurrence 
relation obeyed by the Jacobi polynomials: 

p~;lm,q)(S) = P~;t-l,q)(S) + p~-m,q)(s) 
+ [(s_I)/2]p~+I-m,q)(s). 

This nonstandard recurrence relation can be deduced easily 
from the standard list of the recurrence relations involving 
three polynomials, The following generating functions can 
be deduced: 

~ p(n-m,q)(s)t m = (1 +t)" , 
mL;:o m (1+t[(1-s)/2])n+ Q +l 

00 L p~n-m,q)(s)tmun 

m=O 

1 
(1 + (1-s)/2)Q 1 + [(1-s)/2]t-u-tu 

The end ofthe proof consists in a direct application of Lem
mas 2 and 3. • 

Lemma 5: The numbers v m,n defined by Eq. (53) are 
related to the Jacobi polynomials by the following relation: 

This last function is of type (53) when q = O. It is not diffi
cult to show from this formula that the v m,n of Lemma 3 have 
the generating function (53). In particular, the Delannoy 
numbers l2

-
14 I1m,n = I1n (m) = 11m (n) are the values taken 

by the Jacobi polynomials for the argument 3. • v = amp n - m p (n _ m,O) 1 - 2Pr . 
m,n t)n + 1 m at) The infinite matrix e2pR reads: 

P p2 p3 

I-p (1 - p)2 (1_p)3 (1_p)4 

P p2 + 1 p(p2 + 2) p2(p2 + 3) 
(1 _ p)2 (1_p)3 (1 _ p)4 (1_p)5 

p2 p(p2 + 2) p4 + 4p2 + 1 p(p4 + 6p2 + 3) 
(1_p)3 (1 _ p)4 (1_p)5 (1_p)6 

p3 p2(p2 + 3) p(p4 + 6p2 + 3) p6 + 8p 4 + 6p2 + 1 
(1 _ p)4 (1_p)5 (1_p)6 (1 _ p)7 

p4 

(1 _ p)5 

The matrix entries are, according to Lemma 5, the numbers 

pn-m(1 +p)m p(n-m,o)( 1 +p2). 
(1 - p) n + 1 m 1 _ p2 

Let us note that the operator e2pR is an element of the group SL (2,R) provided p is pure imaginary. We note that this matrix 
reads, for p = -!, 

1 
-
3 32 33 34 

5 9 13 
32 33 34 35 

9 33 73 
exp( - R) = 2 

33 34 35 36 

1 13 73 193 
34 35 36 37 

35 
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These matrix entries are the numbers [( - ) m + nj (3 n + I) ] 2 P ~n - m.O) (j). For the matrix exp ( - S), they would be the 
numbers (1/3 n + 1)2 P ~ - m.o> (j). 

Remark: The same lemmas could be used for computing the matrix elements of the operator exp(2i</JL). The natural 
realization to be used for this calculation is the Laguerre one. One obtains 

-th th2 - th3 

th - 2 th2 + 1 3 th3 
- 2 th - 4 th4 + 3 th2 

e2i4>L=_I_ th2 - 3 th3 + 2 th 6 th4 
- 6 th2 + 1 - 10 thS + 12 th3 

- 3 th 
ch 

th3 - 4 th4 + 3 th2 10 th5 
- 12 th3 + 3 th - 20 th6 + 30 th4 

- 12 th2 + 1 

where ch is put for cosh(</J) and th for tanh(</J). The matrix 
elements are generated by the function 
[(1- tu)cosh(</J) + (t - u)sinh(</J)] - 1, which is of the 
type (53). They obey the recurrence relation (54). 

A. The coefficients ~n 

They are defined by the series 

{; =(_)n f (_)k-I (k-l)" . (55) 
n k=2 (k+l)n+1 

It is not difficult to prove that these alternate series con
verge. For n = 0, we have {;o = 1 - Log 2. Unfortunately, 
these series are not convenient for practical calculations be
cause the convergence is very slow. Fortunately, we have the 
following theorem. 

Theorem 8: The numbers {;n obey the following rela
tions: 

1
00 e-rL (2r) 

{;n = ( - )n n dr, 
o 1 + er 

(56) 

( - )n{;n = -log 2 

+ ktl G)( - )k(2k - l)[{;(k + 1) - 1], 

(57) 

{;O = 1 - log 2. 

They are involved in the following expansions: 
00 

(1 - 2 - X){;(x + 1) = 2 L {;nftn (x), (58) 
k=O 

1 00 

--= 2 L {;n ( - )nLn (2r), 
l+e- r 

n=O 

(59) 

1 00 

--10) = 2 L (;n In). 
1 +e- R 

n=O 

(60) 

Proof We start with the proof of (60). The operator 
(1 + e2pR ) - I = l: k = 0 ( - ) ke2kpR has as matrix elements, 
the numbers given by the double generating function: 

00 1 

k~O l-kp-kp(t+u) - (1 +kp)tu 

1 
p(1 + t)( 1 + u) 

00 ( _ )k 

X k~O k - (1 - tu)jp(1 + t)( 1 + u) . 
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According to Ref. 8, p. 20, Eq. (6), this function is related 
with the hypergeometric function. It is 

_1_ F (1 tu - 1 . 
2 1 , , 

I-tu p(1+t)(1+u) 

1 + tu - 1 ; _ 1) . 
p(1 + t)(1 + u) 

The formula (60) concerns the elements 
(01 [1 + exp( - R)] - lin). They are obtained with the aid 
of the function we just obtained in making u = 0 and 
p = -!, that is, the function 

2FI(I,_2_;1 +_2_; -1) 
l+t l+t 

= 1 __ 2_+_2 ___ 2_+_2 __ ... 
t + 3 2t + 4 3t + 5 4t + 6 

00 (_)k-I 

= 1 + 2 k~2 (k _ 1)t + k + 1 . 

We want to write this function as a power series in t. By 
taking the nth derivative on both sides and making t = 0, one 
gets the series 

(61) 

with the {;;s given by Eq. (55). This proves Eq. (60). Before 
giving the proof of the other equations, let us give the values 
of the first coefficients {; n' 

{;o = + 0.30685 28194 40054 = 1 - Log 2, 

{;I = +0.04821 31137 11718, 

{;2 = - 0.00944 97563 42275, 

{;3 = + 0.00059 44724 73647, 

{;4 = + 0.00069 90473 19902, 

{;s = - 0.00049 57044 38210, 

{;6 = + 0.00020 94452 93504, 

{;7 = - 0.00005 34608 70199, 

{;s = - 0.00000 57666 01662, 

{;9 =+ 0.00001 88215 01375, 

{;10 = - 0.00001 56240 80434. 

Obviously, these numbers are not computed with the aid of 
series (55) that converges very slowly, but with Eq. (57) 
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and tables for the Riemann zeta function. Equation (59) is a 
direct consequence ofEq. (60) since it is Eq. (60) with In) 
replaced by its representative in the r realization (Laguerre 
polynomials). Equation (56) follows. Equation (58) can be 
proved in the following way. It is well known that 

(1-2-X)~(x+1)= f (_)k-I (62) 
k=1 kx+1 

This is an entire function (the limit exists when x goes to 
zero: it is Log 2). Ifwereplace (1 + u)/(1 - u) by (1lk) in 
Eq. (32a), we get 

_1_ = 2 ~ (x) (1- k)n . 
kX+ 1 n.f:=/"Ln (1 + kY+ 1 

We note thatfor k = 1, the right-hand side is 1. We bring this 
expression in Eq. (62). We obtain,· after having shown that 
the order of the two summations can be exchanged, our for
mula (58): 

"" 
(1-2-X)~(x+ 1) = L ~nJ.tn(x). 

n=O 

We are left with Eq. (57). It follows from our definition 
of the coefficients ~ n' We have 

Then, with the aid of (62), we get 

which leads to Eq. (57). • 
Other properties of the coefficients ~ n can be proved. 

Here we give some of them without proof. 

,. 1 i"" -2t " d n ( 1 )d ~n = - - e t - -- t, 
n 0 dt n 1 + et 

(_ )n~n = (-I)"-log2- r"" Ln(21) -Ln(t) dt 
Jo et -l 

n 

(2n 
- 1)~(n + 1) = 2n - L C:, )~m' 

m=O 

"" 1 L ~n =-log2, 
n=O 2 

"" 1 
L ~n( - )n=_, 

n=O 4 
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"" "" 
L~~=2L~2n+1 

n=O n=O 

To give an idea of the convergence of some of these series, we 
note that 

10 

L ~~ = 0.096 573590162", , 
n=1 

the infinite sum gives, instead, 0.096 573 590 279· ... 

IX. THE REPRESENTATIONSD+(--!+£) FOR £>--! 
It is natural to give a generalization of the above results 

to other representations ofSL( 2,R). In order to make a kind 
of synthesis, we want to include some of the representations 
that lie in the neighborhood of D + ( - !). That is why we 
give some results on the representations of the universal cov
ering of SL(2,R) that belongs to the series D + ( -! + E) 

for E> -!. They are representations of SL( 2,R) provided 
2E is an integer. We only give some indications about this 
investigation. The method is simply a generalization of the 
one used in the above sections in the case E = O. 

Instead of Eqs. (9), we get 

Jln) = (n +! + E)ln), 

K + In) = ~ (n + 1)( n + 1 + 2E) In + 1), 

K _ In) = ~n(n + 2E) In - 1). 

(63a) 

(63b) 

(63c) 

We readily see a characteristic of the representation 
D + ( - !): it is the only representation of this series for 
which these expressions involve rational functions of n. Un
fortunately, the orthogonal polynomials associated with 
Eqs. (63) are more complicated than Laguerre and Meixner 
ones. Equation (18) would read 

~(n + l)(n + 1 + E) Qn+ I (x) 

= [-x- (2n + 1 +2E)U]Qn(x) 

- ~n(n + E)Qn_1 (x). 

However, it is possible to simplify the calculation in choos
ing, instead of the orthonormal basis In), the orthogonal basis 
Iii) defined by the relation 

(64) 

In that case the polynomials involved become rational. (Let 
us emphasize that the operators K + and K _ are still Her
mitian conjugate but the corresponding matrices, in this new 
basis, are not.) We get 

K + Iii) = (n + 1 + 2E) I n + 1), 

K _ Iii) = nl n - 1), 

and, instead of the recurrence formula (17a), we get 

Henri Bacry 
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{3n+ I (n + 1)Pn+ I (x) 

= [2x - a(2n + 1 + 2€) ]Pn (x) 

-{3*(n + 2€)Pn_1 (x). 

Let us consider the cases of K (a = 0,{3 = 1) and R 
(a = {3 = 1). With Po (x) = 1, one obtains, for the generat
ing functions; 

00 

K: L Pn (x)zn = (1 - iZ)ix - E- 112(1 + iZ)ix - E- 112, 
n=O 

R: f Pn (X)Zn = (1 + z) - I - 2E exp( _ 2xz). 
n=O l+z 

This last function is the generating function of the Laguerre 
polynomials ( - )nL ~2E)(2x). 

Let us give the description of the x realization. We have 

R = exp(!) (x + 2€), 

s= -xexp( - !), L= -i(x+€+!>. (66) 

The polynomials 

J1-~E)(X) = rr(x+ 1) 
n!r(x+l-n) 

XF( - n, - n - 2€;x + 1 - n;~), 

obey the recurrence relation 

(n + 1 )J1-~Ell (x) = (2x + 2€ + 1)J1-~E) (x) 

+ (n + 2€)J1-~E~ I (x). 

Their generating function is 

LJ1-(E)(X)t n = (1 + t)x . 
n (1- t)X+2E+ I 

They are eigenfunctions of J: 

JJ1-~E) (x) = (n + € + !>J1-~E) (x). 

Their symmetry property reads 

J1-~E)(X) = (- )nJ1-~E)( -x - 2€- 1). 

(67) 

(68) 

(69) 

These polynomials are related with the Pollaczek polynomi
als4 as follows (Our labeling is different from the standard 
one.): 

P~E)(..i) =inJ1-~E)( -!-€+i..i). (70) 

They are orthogonal; 

22E 2 2 P~E)(..i)P~)(..i)d..i foo r(1 + € + iA)r(1 + € - i..i) 

- 00 17r(2€ + 1) 

=8nm • 

Finally, we note the relation of these polynomials with the 
Laguerre ones, through a Mellin transformation; 

J1-~E)(X) = (- )n (00 e-rr+2EL~2E)(2r)dr. 
rex + 2€ + 1) Jo 

(71) 

From that transformation, one can obtain the following real
ization: 
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R=r, 
d 2 d 

S= -r-- (2€+ 1)-, 
dr 2 dr 

L=i(r~+€+~). 
dr 2 

The eigenfunctions of J are now given by 

(z - 1)n _ ~f+ 00 Pn (..i)Z-I12+iA. d..i. 

(z+1)n+1 2 -00 cosh(1T..i) 

X. CONCLUSION 

In the previous sections, we have given ten realizations 
of the unitary representation D + ( -!> of the group 
SL (2,R ). Let us recall them, in mentioning the operator that 
is "diagonalized" and the corresponding name of the realiza
tion (Note that the angle operator 0 cannot be diagonalized 
in a strict sense ): 

Operator diagonalized 

J 
L 
x= -!+iL 
R 
S 
z= - (LR -I +R -IL)/2 

0= - (i/2) 
xlog[K+(J + p-I] 

A = (J + !)-IK_ 
a = (J + !)-1/2K_ 

K 

Name o/the realization 

n(matrix) 
..i (Hardy-Pollaczek) 
x (Pidduck) 
r( Laguerre) 
s(Laguerre) 
z 
8(Fourier) 

( <p, tf;) (coherent state) 
t(harmonic oscillator) 

t 
Apart the interest due to Fourier, Laplace, and Mellin trans
formations relating various special functions in a group 
theoretical context, we have to underline that there exist 
physical implications. We have already mentioned the one of 
Bracken et al. 7 We must also underline that the J spectrum is 
the one of the harmonic oscillator. Let us say a few words 
about that. The usual group associated with this physical 
system is the metaplectic group Mp (2,R), the double cover
ing ofSL(2,R). The harmonic oscillator states span the Hil
bert space of a reducible representation ofMp(2,R), namely 
the representations denoted D + ( -!> and D + ( - V in 
our notation. Both correspond to the eigenvalue - f& of the 
Casimir operator. IS The reduction of this representation 
separate even states from odd states. The representation 
D + ( - !) has the advantage to unify them. It is probably 
involved in an article of Leyvraz and Seligman [see Eq. 
(3.5) of their paper]. 16 

Section IX was devoted to the Riemann zeta function. 
The link between this famous function and the operators R 
and S in the x realization has been considered as a relevant 
fact by de Branges in his attempt to furnish a proof of the 
Riemann conjecture. The representation D + ( -!) seems 
to be related with the "critical line" of the zeta function. The 
representations D + ( - ~ + €) permit an exploration of the 
whole strip - 1 <Re(€) <0, where the critical zeros (The 
"critical" zeros are the nonreal zeros.) of the zeta function 
are known to lie. 
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APPENDIX A: HOMOMORPHISM OF SL(2,R) IN THE 
LORENTZ GROUP L(1 ,2) 

Let v be a real traceless 2 X 2 matrix. [Here, v is chosen 
as 2i(aJ + bK + cL), with 2J = - (72' 2K = - i(73' 
2L = i(7), in agreement with the choice made in Sec. II.] We 
make an elementgofSL(2,R) acting on it as follows: 

(AI) 

(one verifies that gvg -) is real and traceless). The set of 
these matrices is a real three-dimensional vector space. Each 
v can be written in the form 

( 
b 

v- a-c 
-a-c) 
-b ' 

where a, b, c are real numbers. We see that 
det (v) = a2 

- b 2 - c is conserved by the transformation. 
Therefore there exists a homomorphism 

SL(2,R) -+L( 1,2). 

The question is to know if parity and time reversal are imple
mented in L( 1,2). The answer is no. To prove it we have to 
check that there is no g such that 

g(~ ~ 1) = ( ~ I ~) g, 
and no g such that 

g(~ ~) = ( ~ 1 ~ J g. 
The proof is easy. 

Any g can be written in the form 

g = !(~ ~~ ~ ~ ; r), with t 2 + a 2 
_ P 2 - f = 4 

(where t is the trace). It is not difficult to obtain, from Eq. 
( 1), the formula 

t 2 +a2 +p 2 + f ap+tr tP-ar 

4 2 2 

(D- ap-tr t 2 _a2_p 2 + f ta-Pr (D 2 4 2 

ar+tP Pr+ ta t 2 _a2 +p 2 
- f 

2 2 

This formula permits to see that the only g's that act as 
the identity on R 3 are 

which proves that the kernel of the homomorphism is the 
group with two elements: 

SL(2,R) -L( 1,2)/Z2 • 

APPENDIX B: UNITARY DUAL OF THE COVERING 
GROUP OF SL(2,R) 

In the same physicist spirit, we give here a description of 
the set of unitary representations of the universal covering 
group ofSL(2,R). 

Let J, K, L the basis elements of the Lie algebra in a 
unitary irreducible representation for which the Casimir op
erator has T( T + 1) as an eigenvalue. The fact that it is a real 
number obliged us to consider the two following cases: 

(i) Tis real (we can impose T;> -!> 
(ii) Tis imaginary; then Re( T) = -! and Im( T) #0. 
Let 1m) be a normed eigenvector of J, with eigenvalue 

m. We have the relations 

Jim) =mlm), 

JK ± 1m) = (m ± 1) 1m ± 1). 

This shows that, provided that m ± 1 #0, K ± 1m) is an ei
genvector of J. A priori, we have four possibilities for the 
spectrum of J. It can be 
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(i) unbounded: m = mo, mo ± 1, mo ± 2, ... , where mo 
can be chosen in an arbitrary interval oflength one. 

(ii) bounded below: m = mo, mo + 1, mo + 2, .... This 
implies that K _ I mo) = O. 

(iii) bounded above: m = mo, mo + I, mo + 2, .... This 
implies that K + Imo) = o. 

(iv) bounded both sides: m = mo, mo + 1, mo + 2, ... , 
Imo + N), which implies K + Imo + N) = 0 and 
K_lmo) =0. 

From the relations 

K+K_ ~J2-J-T(T+ l)ld, 

K _ K + = J2 + J - T( T + l)ld, 

we get 

11K + Im)11 2 = (m - T)(m + T + 1), 

11K _ Im)11 2 = (m + T)(m - T - 1). 

Now, let us examine separately the two cases: 

1. T real 

(Bl) 

(B2) 

(i) Let us suppose that the spectrum is not bounded. We 
know that the expressions (Bl) and (B2) must be strictly 
positive, whatever m is. This situation corresponds to the 
open shaded regions on Fig. 2. We readily see that a sequence 
of eigenvalues mo, mo ± 1, mo ± 2, ... is only possible if 
- 1 < T < O. Since we can impose the relation T;> - !, we see 

that mo can be chosen in the triangle OMN (OM and ON 
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m 

FIG. 2. Supplementary series. 

excluded). Such a point defines a unique representation of 
the so-called supplementary series. 

(ii) Let us now tum to the case where the spectrum is 
bounded below. We know that K _ Imo) = O. We are in the 
region defined by the union of A and the two lines Px and Oy. 
Because of the symmetry T-+ - T - I, we can restrict our
selves to the case where the spectrum is bounded below by 
the line Px (point P excluded). Then the spectrum of J is 
T + 1, T + 2, T + 3, .... It is the series of representations 
D + (T). 

(iii) Symmetrically, we can define the series D _ (T) in 
replacing the region A by the region B. The spectrum of J is 
T - I, T - 2, T - 3, .... 

(iv) If the spectrum is bounded both sides, we must 
meet both lines Px and Px'. The only possibility is the point P 
itself. This corresponds to the trivial representation. 

2. Re(T) = --l and Im(T»0 

We get the so-called principal series. In that case, 
11K + Im)11 = 11K _ Im)II = (m +!)2 + (1m T)2>0. The 
spectrum of J is m o, mo ± 1, mo ± 2, .... One can always 
impose mo to lie in some given interval of width one. 

APPENDIX C: SOME RELATIONS EXPRESSED WITH 
THE AID OF THE OPERATORS RAND S 

The operators we are speaking about are the ones de-
fined by Eqs (36a), namely 

R(x) =exp(!)x, 

S(x) = -xexp( - !)=R(-X-I). 

It is not difficult to prove the following relations: 

R(x)nl = (x+ 1)(x+2)"'(x+n) 

k= n (n) 
= n!2 - n k~O k 'J.ldx), 

2077 J. Math. Phys., Vol. 31, No.9, September 1990 

S(x)nl = (- )"x(x-l)(x-2)"'(x-n + I) 

= n!( _ 2)n kin (n)( _ )n - k'J.lk (x), 
k=O k 

Pn(X) = (- )nLn(2R(x»1 = L n(2S(x»I. 

The hypergeometric functions have a shorthand writ
ing, namely 

F(a + I,b + I;c;z) = exp{z[R(a)R(b)/S( - c) HI. 
The Bessel function is easily related with the confluent 

hypergeometric function as follows: 

Iv (2FzS)l = f (zs)n 1 
o n!(n + v)! 

= 
~ x(x - 1) ... (x - n + 1) £. ---"-__ "'-----"-___ ---'- ( _ z) n 

o n!(n + v)! 

=M( -x,v+ I;z). 

We also note that the expression 

lex) = -Sex) 1= f ~ [-S(x)]nl 
exp[ - S(x» - Ion! 

takes, for the natural integers, the values/en) = Bn, where 
the Bn's are the Bernoulli numbers. This property follows 
from the relation 

BN = ~ (J( - )nBn· 

Finally, we write again the compact formula that ex
pressed the entire function (1 - 2 - x)t(x + 1), with the aid 
of R(x); 

(1-2-X)~(x+ I) = [1/(1 +e-R(X»)I. 
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Reduction theorems for the decomposition of induced and irreducible characters of W(Dn) in 
terms of induced and irreducible characters of W(Dn _ I ), respectively, are given. 

I. INTRODUCTION 

In recent years there has been a number of situations in 
which the Weyl groups W generated by the reflections of the 
root system of the classical Lie groups G have played an 
important role. This importance grew out of the various pos
sibilities of application to physical problems, especially on 
lattices (for instance, discrete u models, lattice gauge theo
ries, chiral models; see Refs. 1 and 2). 

Moreover, the set of maps from the circle to the Lie 
group G forms an infinite-dimensional group, called the loop 
group of G. The algebra of this group of maps is the untwist
ed affine Kac-Moody algebrag, whose root system is infinite 
but which spans a finite-dimensional space. With each Kac
Moody algebra is associated a Virasoro algebra (for details, 
see Ref. 3). Infinite-dimensional algebras of this sort occur 
in certain areas of physics such as the string theories of parti
cle interactions, two-dimensional statistical models (sys
tems of spins on lattices), and two-dimensional u models.4 

The Weyl group Wof g is the semidirect product of W 
and the root lattice obtained by interchanging the root 
lengths of the Lie algebra of G. Here, W is the subgroup of W 
that fixes any given point of the lattice of the Lie algebra dual 
tog. 

In fact, the groups W were classified many years ago by 
Coxeter.5 

The reduction of a representation of a group into repre
sentations of one of its subgroups is the subject of an ex
tended literature. For Lie groups there exist general branch
ing rules derived using tensor and spinor methods (see Ref. 
6) as well as results given by explicit algebraically closed 
expressions (for instance, see Refs. 7 and 8). The reduction 
ofthe general linear group into the symmetric group Sn has 
also been considered.9 A rule for the restriction Sn --+Sn _ I 

was obtained by Weyl.lO The symmetric group is the Weyl 
group of the Lie group SU (n). 

In a previous article, hereafter referred to as I (see Ref. 
11), the structure of the hyperoctahedral group W(Bn) has 
been considered, and branching rules for its simple (irredu
cible) and induced characters have been established. Here 
W(Bn) is the Weyl group of the classical Lie groups Bn 

= SO(2n + I) and en = Sp(2n) and W(Bn) = Z ~ Q:.Sn is 
the semidirect product of the Abelian group Z ~ generated 
by the n sign changes ( + i, - i), 1 <i<n, and the symmetric 
group Sn' The present paper is.concerned with W(Dn ), the 
Weyl group of the Lie groups SO(2n). Then, W(Dn) is a 
subgroup of W(Bn) ofindex 2 and consists of those elements 
of W(Bn) that contain in their cycle decomposition an even 
number of changes of signs. Its order is 2n 

- In! 

The group W(Dn) has already been studied (in particu
lar, see Refs. 12 and 13; also Ref. 14, Chaps. 4 and 5, Refs. 15 
and 16). Clearly, many ofthe results that will be stated be
low on the structure of W(Dn ) are well known. Our aim is to 
derive reduction rules for the simple and induced characters 
of W(Dn). Some results obtained in I will form the substra
tum, so to say, ofthis work. We shall follow, as far as possi
ble, the notions and notations displayed therein. 

In Sec. II, the characters and classes of W(Dn) are con
sidered. It must be remarked that W(D2n + I ) is isomorphic 
to the factor group W(B2n + I )/{l, - 1} while the analo
gous property is not true for W(D2n ). Hence, this difference 
between W(D2n + I ) and W(D2n ) will appear subsequently. 

In Sec. III the tables of the induced characters of 
W(Dn) are constructed and in Sec. IV the branching rule 
W(Dn) --+ W(Dn _ I) for the induced characters is estab
lished. Section V is dedicated to the simple characters of 
W(Dn) and Sec. VI to their reduction properly. 

II. THE CHARACTERS AND CLASSES OF W(Dn) 

A. The characters of W(Dn) 

The first step will be to establish a correspondence be
tween the notation employed by MayerJ3 and our notation. II 
Mayer denotes an irreducible character of W(Bn) by a pair 
of subpartitions A. and IL of n such that A. + IL = n. An irredu
cible character may then be written X (A;jl). For instance, in 
the case of W(B2 ) the irreducible characters are X(2;0), 

X<0;2),X(II;0),X<I;I), and X(O;II). In I, we denote these char-

acters, respectively, by 

and 

i.e., to the subpartition A. is ascribed the sign -, and to the 
subpartition IL, the sign +. Bearing this in mind, we tran
scribe the main result of Mayer concerning the characters of 
W(Dn)' 

Theorem 2.1: Let (A.;IL) be a pair of subpartitions of n. 
Then, (i) X (A;I') is an irreducible character of W(Dn) if 
A. =FIL; (ii) X (A;jl) = X (1';'<); (iii) X (A;A) is the sum of two 
distinct irreducible characters of W(Dn) of the same degree; 
(iv) every irreducible character of W(Dn) has the form 
X(A;I') (A. =FIL) or is the component of X (A;A) for some A.,IL; 
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(v) all the irreducible characters of W(Dn) mentioned in 
(iv) are distinct, subject to (ii). (For a proof see Ref. 13.) 

Note that (iii) occurs when n = even. 
As an example, for W(D2 ) the irreducible characters 

are in the present notation: 

and 

Remark: X (A;I') has been chosen instead of X (I';A). 

Moreover, A:;;'p (lexicographical order). The equality 
case is related to point (iii) of Mayer's result. 

Hereafter, we shall say that X (I';A) do not belong to 
W(Dn ). To clarify this fact, consider the irreducible char
acters X (3;2\) andX(21;3) of W(B

6
): In W(D

6
), only X(3;21) 

will be taken into account. 

Bo. The classes of W{Dn} 

If a/ and a j - are, respectively, the number of positive 
and negative cycles oflength i of a permutation, a = (at, 
a l- , ... ,a/ ,al- ) is called the a system of cycles. A class of 
W(Bn) with such an a system is denoted C(a). A class 
C(a) is even ( + ) ifall theaj are positive orifthe number of 
negative a j is even. If this is not the case, C(a) is odd ( - ). 
A table for the number of classes of W(Bn) for 1 <n< 150 
may be found in Ref. 17. 

The classes of the subgroup W(Dn) correspond to posi
tive classes of W(Bn ). A distinction must be made between 
n = odd and n = even. 

The number of classes of W(Dn) for n odd is equal to 

[number of classes + of W(Bn)] 

= ! [number of classes of W(Bn )], 

and for n even, is equal to 

[number of classes + of W(Bn)] + pen) inferior type even 
parts, 

where P( n) inferior type even parts is the number of parti
tions of n in even parts. 

Besides, the classes corresponding to the partitions of n 
in even parts are divided in two classes of equal order of 
W(Dn). For these classes all the a j are positive. That is, the 
classes that suffer such a subdivision are 

W(D2 ) + t:O 

W(D4 ) + CIJ:D. :l:EB 

W(D6 ) + 1IIII Z I .t E£fD tm 
(See Appendix A.) 

III. THE INDUCED CHARACTERS OF W{Dn} 

LetA = (AI, ... ,A.k) bea partitionofn (AI>'" >Ak) and 
b = (bl, ... ,bk ) be such that bj = 1 or 0 (if Aj = Aj+ p then 
bj<bj+ I)' 
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TABLE I. Induced characters of W(D2 ). 

Order 

Classes 

-0 1 1 1 1 

2 2 0 0 

2 0 0 0 

2 0 0 0 

A canonical subgroup of W(Bn) = Z ~ Q<.8n is defined as 
(Z2 (A, - b')Q<.8

1
) X '" X (Z2 (Ak - bk )Cx8 k ). In a similar man

ner, the canonical subgroups of W(Dn) may be constructed 
at once from the irreducible characters defined in Sec. II A. 
For example, for W(D2 ), the canonical subgroups are 

=8 AI =A2= 1, bl =b2=0 

(Z il - 0)Q<.8
1

) X (Z il - 0)Q<.8
1
), 

+-81 :;: 8"" ~ AI = A2 = 1, bl = 0 b2 = 1 

(Z il - 0)Q<.81) X (Z il - \)Q<.8
1
). 

In I, an algorithm for the character of the representation 
of WeB n ) induced by the identity representation of a canoni
cal subgroup is given. For the subgroup of W(Bn) we are 
dealing with, i.e., W(Dn ), it suffices to consider the induced 
characters of the canonical subgroups, defined via the corre
sponding partitions (see Sec. II A). 

Remarks.' For n even, 

( 1) pairs of identical induced characters appear. Each 
member of these pairs has a value equal to one-half the value 
of the corresponding induced character of W(Bn ) [this is 
related to Mayer's theorem, point (iii)]. 

(2) These pairs of induced characters have the same 
value for each subdivision of the classes related to the parti
tions of n in even parts. 

We denote the induced character table of W(Dn) by 
¢{W(Dn )} (see Tables I-III). 

TABLE II. Induced characters of W(D3 ). 

Order 

Classes 

-= 

I 366 8 

;~ =§ :EP =[P t= 
~- 1 

I 3 I 
r~ j--'---+-o 

~ 6 0 0 o 

tI2 -I 4 I __ °-L_O_-L __ O~ 
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IV. THE REDUCTION W(Dn)'" W(Dn_1 ): THE INDUCED 
CHARACTERS 

A brief discussion seems necessary before the statement 
of the reduction theorem. As already noted, the cases with n 
odd and n even must be treated separately. In both cases, 
however, the main pattern of the reduction theorem proved 
in I for W(Bn) --+ W(Bn_ l ) remains unaltered. But (1) for 
n = odd, n - I = even, and there is a splitting in two of the 
characters corresponding to equal sUbpartitions; (2) for 
n = even, n - 1 = odd, consequently there are no partitions 
formed of equal subpartitions. Besides it may happen that in 
the reduction process a partition that does not belong to 
W(Dn _ I) occurs, i.e~, in Mayer's notation, (Jl,A) is ob
tained instead of (A.,Jl) (see Sec. II A). From I, we know the 
reduction of induced and simple (irreducible) characters 
concerns only classes with at # O. By inspection of the char
acters tables, it is seen that for classes with at #0: (i) for 
the induced case, the characters of (A.;Jl) and (Jl;A.) are dif
ferent; and (ii) for the irreducible case, the characters of 
(A.;Jl) and (Jl;A.) are identical. 

Hence the partition that does not belong (see above) to 
W(Dn _ I) must be considered only when we are dealing 
with the reduction of the induced characters. 

To state the reduction theorem we employ the notation 
of I: (i+) a, denote a j subpartitions of n, of length i and sign 

+ , and (i- ) a'" a' j subpartitions of n, oflength i and sign - . 
Here (,H(1 + )a, (1- )a', (2+ )a, (2- )a', ... } represents an in
duced character of W(Dn ). 

-co:c 

:EfTI 
:EfTI 
:133 
;133' 
;133" 

-OJ] 

1 

1 1 

2 

2 

1 

3 

1 6 

6 

1 12 

1 24 

_. 
1 1 1 1 

3 1 1 

2 2 

6 

" 
1 

Theorem 4.1: The induced character of W(Dn ), 

/fo{( 1 +)a, (1-)a', ... } reduces into W(Dn _ l ) induced char
acters as follows: 

= 2a l/fo{ ( 1 + ) a, - 1 ( 1 - ) a', ••• } 

+ a' l/fo{ ( 1 + ) a, ( 1 - ) a', - I ... } 

For n odd, the same decomposition must be repeated for 
each partition of n - 1 = even into equal subpartitions. 

For n even, the resulting partitions, which do not belong 
to W(Dn -I ), must be considered. 

We omit the proof, analogous to that of Theorem 1 ex
pressed in I. 

This result allows us to construct a reduction matrix 
F :::~g:~ ,); each row of this matrix is given by the corre
sponding reduction. 

In general (see I), the reduction of the induced char
acters may be written as 

To exemplify this equation, let us consider an even case re
duction: F :::~g~: /fo{ W(D3 )} = /fo{W(D4 )} 

':::;J . ' -c 
--.,--,-- r-'---'--

1 1 1 1 I 1 

4 4 2 2 1 

844 2 

6 6 2 2 o 

6 2 I 2 o o 

6 2 2 0 0 

-
2 1 

I 
I 

2 1 I I 1 

--j---+-

4 i I 1 
I 

112 12 12 ±~ 
2412i'i210~ 
48 8 8 1 I] 0 

I--r---~ 
i 

4J 
! 

2 I 3 I 

1-4' t! 21~ 

" " 0 * 
I 48 ! 24 0 0 () I 

I I I 1 
I 48 i 8 1 I] I 0 0 I 
r---r--1 1 
1._48 I 8 '_0 0 I () J 
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TABLE III. Induced characters of W(D4 ). 

Order 1 6 1 12 12 24 6 6 12 32 32 24 24 
:B :8 :5 .p te;:i -cP , ,. 

classes:8 :8 :8 :tI :b ~t:J !t!3 :HJ :ffi :EJIl :EJIl.=',=,' 

-= 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 4 4 2 2 2 0 0 0 1 1 0 0 

8 4 0 4 0 2 0 0 0 2 0 0 0 

6 6 6 2 2 2 2 2 2 0 0 0 0 

6 2 6 2 2 0 2 2 0 0 0 0 0 

6 2 6 2 2 0 2 2 0 0 0 0 0 

12 12 12 2 2 2 0 0 0 0 0 0 0 

24 12 0 4 0 2 0 0 0 0 0 0 0 

48 8 0 8 0 0 0 0 0 0 0 0 0 

24 24 24 0 0 0 0 0 0 0 0 0 0 

48 24 0 0 0 0 a 0 0 0 0 0 
-1 

o ! 

48 8 0 0 0 0 0 0 0 0 0 0 0 

I I 01 48 B 0 0 o ~~~,-o~L~_ ~~. 0 
L 

Remarks: ( 1) The last column of F1 corresponds to the 

partition ! § which does not belong to W(D3 ). 

(2) The last line of t,6{W(D3 )} corresponds to the char
acter induced by the canonical subgroup corresponding to 

:§ 
(3) In t,6{W(D4 )} the characters correspond to the 

classes with at #0. 

V. THE IRREDUCIBLE (SIMPLE) CHARACTERS OF 
W(Dn) 

As in I, the table of irreducible characters of W(Dn ), 

X{W(Dn )}, can be obtained from t,6{W(Dn )}: each row t,6; 
of t,6{ W(Dn)} must be considered as a vector. 

It is shown that 
;~ I 

X; = t,6; - L (t,6;KXk )Xk (for i = 1,x1 = t,61), 
k~1 

(5.1 ) 

whereX; andt,6; are, respectively, theith rowsofX{W(Dn)} 
and t,6{W(Dn)} and K is a diagonal matrix whose elements 
are 

(Ka{3) = Da{3 (IC(a) I/r ~ In!), 

lC(a) I is the order of class C(a) of W(Dn ). As before, we 
must distinguish between n = odd and n = even. 

A.n=odd 
The procedure established in I for W(Bn) may be ap

plied directly, i.e., working out (5.1) the coefficients of the 
X; may be written as a matrix a{W(Dn )}. So finally, 

Remark that for n = odd, a is nonsingular and det a = 1. 
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B.n=even 

This case presents the same special features that must be 
taken into account to carry out the calculation of 
X{W(Dn)}· 

The characters of W(Bn) denoted by two equal subpar
titions are the sum of two distinct characters of W(Dn), of 
the same degree. Consequently, a coefficient ~ must precede 
each corresponding character of W(Dn ). 

Note that for n even: (i) a is singular (see Table IV for 
the case n = 4), and (ii) to obtain the irreducible characters 
corresponding to the subdivisions of the classes defined by 
partitions of n in even positive parts use must be made of the 
fact that their sum is known and of the orthogonality rela
tions. 

VI. THE REDUCTION W(Dn)-+ W(Dn~1 ): THE SIMPLE 
CHARACTERS 

For n odd, the reduction of the irreducible characters 
may be formulated in terms analogous to those of the corre
sponding result for W(Bn) (see I, Theorem 2): 

Theorem 6.1: The irreducible characters Xn of W(Dn) 
reduces into irreducible characters Xn ~ I of W(Dn _ I ) ac
cording to the equation: 

Xn = W~_IXn_I' 

where 

(For a proof, we refer to I.) 

For n even, an is singular and W~ _ I cannot be calcu
lated directly . We know that the matrices F ~ ~ I and W ~ ~ I 

TABLE IV. The matrix f). for W(D4)' 

2 2 '2 
1 1 
"2 '2 

------,---

r'!~!:._ !:. 0 1 

+ B3 ) . - r---- --+---+--j---+-+--+-+--+----i!---i 
l ~ I ~ 0 l l l 

2 I 0 o 0 i 
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have the same entries #0. For W:_\ these entries are equal 
to 1. This property is valid V n (see I). However, for n even, 
it must be recalled that for classes with a\+ #0, 
(A.;JL) # (p.;A.) for the induced characters and 
(A.;JL) = (p.;A.) for the irreducible characters. Hence, the co-

I 

1 1 1 1 1 

lumns of F: _ \ corresponding to (p.;A.) must be omitted in 
W: _ \, i.e., the characters (p.;A.) must be placed in the (A.;p.) 
column. 

Example: 

WjX{W(D3 )} = X{W(D4 )}, 

!8 
~i:j ;~ ~EP :/f :IJD 

. 
1 1 1 1 1 1 

f-- .-
1 1 2 2 0 o -1 3 3 1 1 0 

1 1 3 -1 1 -1 

1 1 1 -1 

1 3 -1 -1 

1 

1 1 

1 1 1 

1 1 

1 

/ 1 1 

1 

1 
.-

In Appendix B, we give a method to verify that W: _ \ has 
been correctly obtained from F: _ \ . 
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APPENDIX A: THE CLASSES OF W(Dn) 

Let us analyze the classes decomposition of W(Bn ) and 
W(Dn) for l<n<lO: 

n 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2082 

W(B,,) 
number 

of classes 

2 
5 

10 
20 
36 
65 

110 
185 
300 
481 

classes + 

I 
3 
5 

11 
18 
34 
55 
95 

150 
244 

classes -

I 
2 
5 
9 

18 
31 
55 
90 

150 
237 
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W(D,,) 
number 

of classes 

I 
4 
5 

13 
18 
37 
55 

100 
150 
251 

-1 

1 

0 

1 

0 

, 
4 0 2 0 1 

2 ~ 0 0 -1 

3 -1 1 -1 0 

3 - 1 -1 0 

3 3 -1 -1 0 
r---, 

I 8 i 0 0 0 ;-1 
f-- . 

o I C. 1-2 0 0 
-, 

1 I :,' -1 -1 ! 1 i-+ -I---!---+--/ 

4

1

,0 -44" 0

1

1 r--'- --
3 [-1 -1 1 0 
-j--- -

'J : -' 1-1 1 () 
~" --

For n odd the expression given in Sec. II B is obtained at 
once. 

For n even: 

number number 
of classes of classes + 

n of W(D,,) ofW(Bn ) p(n)evenparl:o. 

2 4 3 1 
4 13 11 2 
6 37 34 3 
8 100 95 5 

10 251 244 7 

For example, p( S ) even parts = S{S,62,44,422,2222} [ob
viously, pen )even parts = p(n/2)]. 

Hence, the expression given in Sec. II B is obtained 
[W(D4 ) has been considered in Ref. 4]. 

Remarks: ( 1 ) for n even, the relation between the posi
tive and the negative classes of W(Bn) is 

{number of classes + } = {number of classes - } 

+ pen ) even parts 

if n odd, pen) even parts = 0, ... (number of classes + ) 
= (number of classes - )]. 

(2) Using the expression for the number of classes of 
W(D" ) and for the number of classes + , we have 

number of classes of W(Dn) 

{
number of classes - } 

= ofW(B
n

) +2p(n)evenparts' 
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TABLE V. The equation F:_ I~"_I =~" W:_ 1 (n = 4). 

1 1 1 

1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

2 1 2 0 1 1 1 0 1 

1 1 2 1 1 1 1 1 0 1 1 1 
2" 2" 2" 2 2 

1 1 2 3 1 3 1 1 0 1 1 1 
__ L-- 2" 2" 2 "2 2" --I---

2 1 1 2 0 1 0 0 

2 1 1 1 2 1 1 0 0 1 1 

4 1 1 2 l 1 . 1 I 

4 1 3 0 2 0 0 

2 3 1 3 J 2 0 0 

2 1 1 3 1 1 
1 1 

'2 2" 2" 2" 
2 1 1 3 1 1 

1 1 
2 2" 2' 2" 

APPENDIX B: THE EQUATION F~_l ~n-l =~n Wn _1 

(n=even) 
In general, we have (see I) 

1 

3 

3 

3 
2" 
3 
'2 

Xn=W~_IXn_l' (Bl) 

¢n=F~-I¢n_l' (B2) 

¢n = 6.nXn· (B3) 

Multiplying from the left by 6.n, Eq. (Bl) becomes 

6.nXn =6.nW~_IXn_l· 

From Eq. (B3): 

¢n =6.nXn =6.nW~_IXn_l· 

From (B2): 

but 

and 

F~_I6.n_1Xn_l = 6.n W~_IXn_l' 

hence, 

F~ _ 16.n _ I = 6.n W~ _ l' (B4) 

2 

0 

2 

2 

2 

Since F~ _ 1 ,6.n _ l' and 6.n are known, Eq. (B4) provides a 
verification for W~_1 (n even). 

Note: F ~ _ 1 has an added column, in consequence 6.n _ 1 

must have a supplementary line. 
Table V gives expression (B4) for the case n = 4. 

APPENDIX C: ON THE DIMENSIONS OF THE 
REPRESENTATIONS OF W(Dn) 

In I we gave a procedure to evaluate the dimensions of 
the irreducible and induced representations of the hyper-
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---- -Til 

J-rl 
1- -J 

1 1 i 
-r
I 

I I 

---1-
1 : 

I-I---

+- --~ 
~J~ 

I I -r-~ 
0 I ! 
0 1 1 ! 1 1 , 

1 I I I 
1 2' 1"2 2j 
1 1. ,1.,1. 
__ 2_·....:.2.0 

octahedral group W(Bn ). The dimensions were obtained via 
the products of the reduction matrices Wand F, respective
ly. The same method may be applied to the present case, i.e., 
the dimensions of the irreducible representations of W(Dn) 
are given by 

W~_1 W~=~'" wi 
and the dimensions of the induced representations are given 
by 

F~_IF~=~···Fi· 

Example: (a) Dimensions of the irreducible representa
tions of 

1 1 1 1 

1 1 1 1 1 3 

1 1 1 1 1 1 4 

1 1 1 2 

1 1 1 1 3 
L--'---_ 

1 3 

1 1 3 

1 1 1 R 

1 1 6 

1 i 
1 1 I 

I I 1 

4 I 

ffi
;~· - , 

3 I 
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1 

1 

2 

(b) Dimensions of the induced representations of 

W(D4 ) = F1F~Ff, 

1 1 

1 1 1 2 

1 2 1 1 2· 

2 3 2 

1 2 2 2 

1 4 4 4 

2 1 

2 1 1 

4 1 

4 

2 3 

2 1 

1 i 2 1 
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1 

4 

8 

6 

6 

6 

12 

24 

48 

24 

48 

48 

48 
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Point symmetries of conditionally integrable nonlinear evolution equations 
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The Lie point symmetries of the first two equations in the Kadomtsev-Petviashvili (KP) 
hierarchy, introduced by Jimbo and Miwa, are investigated. The first is the potential KP 
equation, the second involves four independent variables and is called the Jimbo-Miwa OM) 
equation. The joint symmetry algebra for the two equations is shown to have a Kac-Moody
Virasoro structure, whereas the symmetry algebra of the JM equation alone does not. 
Subgroups of the joint symmetry group are used to perform symmetry reduction and to obtain 
invariant solutions. 

I. INTRODUCTION 

A recent article I was devoted to the integrability of 
equations in the Kadomtsev-Petviashvili (KP) hierarchy of 
equations, introduced by Jimbo and Miwa. 2 This is an infi
nite sequence of equations, involving an increasing number 
of independent variables. Jimbo and Miwa2 gave a r func
tion solution to the KP hierarchy that represents an N-soli
ton solution. 

Reference 1 concentrated on the second equation in the 
KP hierarchy. It was called the "Jimbo-Miwa equation" 
OM) and was written in the form 

wxxxy + 3wxy wx + 3wywxx + 2wy, - 3wxz = 0, (1.1) 

where w is a real scalar function of the real variables x,y,z,t 
and the sUbscripts denote partial derivatives. The first equa
tion in the KP hierarchy is the Kadomtsev-Petviashvili 
equation itself. In its potential form it can be written as 

( 1.2) 

It was shown that the JM equation (1.1) alone does not 
pass any of the conventional integrability tests. I Thus the 
equation, as a PDE, does not have the Painleve property, as 
defined by Weiss et al. 3 On the other hand, if one considers a 
subset of solutions of ( 1.1 ), that for fixed z = Zo also satisfy 
the potential KP equation, then these solutions do pass the 
Painleve test. I Furthermore, Eq. (1.1) was shown to have 
two types of solitary wave solutions, satisfying two different 
dispersion relations. lOne type also satisfies the PKP equa
tion ( 1.2) for z = Zo fixed, the other does not. Only the first 
type gives rise to N-soliton solutions with N~3. The solitary 
waves of the second type do not interact like solitons, i.e., 
they do not survive mutual interactions. In view of these 
properties, the concept of "conditionally integrability" was 
introduced. I The equations in the KP hierarchy of Jimbo 
and Miwa are integrable, under the condition that they are 
solved simultaneously with all the preceeding equations in 
the hierarchy. This implies that the usual linear integration 
techniques2

,4,5 will only provide a small subclass of solutions 
of the higher-order equations in the hierarchy. 

The aim of this article is to investigate the Lie point 
symmetries of the JM equation (1.1). More specifically, it 
was shown that the Lie algebra of the symmetry group ofEq. 
( 1.1) is infinite dimensional, I but that it does not have the 
Kac-Moody-Virasoro loop structure, typical for integrable 
equations in 2 + 1 or 3 dimensions. The symmetry algebras 

of the Kadomtsev-Petviashvili equation, the potential KP 
equation, the Davey-Stewartson equation, the three-wave 
resonant interaction equations, and several others have all 
been shown6-1O to be of the Kac-Moody-Virasoro 
type.2

•
II

,12 Here we shall show that the symmetry algebra of 
the set of two equations (1.1) and (1.2) does have a Kac
Moody-Virasoro structure. This further justifies the use of 
the term "conditional integrability" for such equations. 

A concept of "conditional invariance" of differential 
equations has also been introduced in the literature, 13-16 

(not necessarily always under the same name). It refers to a 
group oflocal point transformations leaving a subset of solu
tions of a given equation invariant, rather than the set of all 
solutions. The symmetry group of the system of equations 
( 1.1) and (1.2) can thus be viewed as the group of "condi
tional symmetries" of the JM equation, the condition being 
that the solutions also satisfy the PKP equation (1.2). 

II. THE LIE ALGEBRA OF THE CONDITIONAL 
SYMMETRY GROUP 

A. Determination of the Lie algebra 

In order to find the symmetry algebra of the JM + PKP 
system (1.1 ) and (1.2), we use a standard algorithm,17 im
plemented as a MACSYMA packagel8 (a REDUCE package is 
also availablel9 ). The Lie algebra is realized by vector fields 
of the form 

a a 
v = 1]; a + t/J a ' XI = X, X 2 = y, X3 = Z, X 4 = t, 

x,. w 

(2.1) 
where 1]; and t/J are functions of X; and w. We rewrite the 
system (1.1) and (1.2) in the symbolic form 

/1; = 0, i = 1,2, 

and request that the fourth prolongation 17 of the vector field 
V should annihilate the equations on their joint solution 
space: 

(2.2) 

Equation (2.2) implies a system of first-order linear partial 
differential equations for the coefficients 1]; and t/J in (2.1). 
The fact that we are restricting ourselves to local point trans
formations is reflected in that 1]; and t/J depend on X, y, z, t, 
and w, but not on derivatives of w. 

The determining equations are easy to solve and we ob-
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tain an infinite-dimensional symmetry algebra, depending 
on four arbitrary functions of one variable and one function 
of two variables. More explicitly, we have 

V=Z(f) + T(g) + Y(h) +X(k) + W(G), (2.3a) 

where 

Z(f) =.raz + ![xj + iJlif + ~t31)ax 
+! [yj +,\t 2j] ay + itiat 

- ![w/ + xyl + iter + itx)! + n,vt 3j]aw , 

(2.3b) 

T(g) = gat +:b[ 16yg + 9t 2g]ax + it gay 

-:b[ 4(3tx + 2y2)g + 9yt 2g:]aw , 

Y(h) = hay + ithax - H2xh + 3tyii Jaw' 

X(k) = kax - ykaw ' 

W(G) = G(z,t)aw • 

(2.3c) 

(2.3d) 

(2.3e) 

(2.3f) 

The functions/(z), g(z), h(z), and k(z) are Coo on some 
open set UeR,G(z,t) is C 00 on some open subset ofR X R; the 
dots denote z derivatives and Gz ,Gt below will denote partial 
derivatives. 

The commutation relations for the Lie algebra (2.3) can 
be summed up as follows: 

[Z(.t; ),Zct;)] = Z(.t;i; -it!;), 

[Z(f),T(g)] = T(fg-iig), 

[Z(f),Y(h)] = YUh -tfo), 
[Z( f),x(k)] = X(.tk - !kf), 

[Z(f),W(G)] = w{fGz + V(3tGt + G», 

[T(g. ),T(g2 >] = i Y(g.g2 - g.g2)' 

[T(g),Y(h)] = !X(3gh - 2gh), 

[T(g),X(k)] = iW{t(kg - 2kg», 

[T(g),W(G)] = W(gGt ), 

[Y(h. ),Y(h2 >] = iW{t(ii. h2 - h. ii2», 
[Y(h),X(k)] = !W(hk - 2hk), 

[Y(h),W(G)] = [X(k.),X(k2)] = [X(k),W(G)] 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

The commutation relations (2.4) show that the algebra 
L has a Levi decomposition20 (a nontrivial statement for an 
infinite-dimensional Lie algebra). Indeed, we have 

L =SI>R, (2.5) 

where S = {Z ( f)} is a simple Lie algebra, namely the cen
terless Virasoro algebra, isomorphic to the Lie algebra of 
real smooth vector fields on R (one of Cartan's infinite-di
mensional simple Lie algebras2• ). The radical (maximal 
solvable ideal) R = {T(g),X(k),Y(h),W(G)} is also infi
nite dimensional. 

B. A Kac-Moody-Vlrasoro subalgebra 

Contrary to the case of integrable systems in three di
mensions,6-1O we cannot directly identify R as a subalgebra 
of a Kac-Moody algebra, in view of the presence of the Abe
lian ideal {W(G)}, where G(x,t) depends on two variables. 
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The radical R does however contain a Kac-Moody type 
subalgebra RKM CR. To obtain a basis for RKM we expand 
the functions g(z), k(z), h(z), and G(z,t) into Laurent se
ries and consider the Lie algebra, spanned by 

RKM = {T(zn),X(zn),Y(zn),W(zn,t Q
) InEZ, 

a = O,I, ... ,5}. (2.6) 

That RKM is a Lie algebra follows from the commuta
tion relations (2.4), as does the fact that RKM is an ideal in 
the algebra 

L KMV = SvI>RKM' Sv = {Z(zn) InEZ}. (2.7) 

The algebra L KMV is a Kac-Moody-Virasoro algebra in 
which the Kac-Moody part is based on a 19-dimensional 
solvable Lie algebra .!.t' 0 with the following basis: 

Z. = xax + 2yay + 3tat - waw, 

Z2 = 12ytax + 9t 2ay - 8xyaw , 

Z3 = 3t 3ax - 2t(4y2 + 3tx)aw' Z4 =yt 3aw' 

T. = a" T2 = 2yax + 3tay, 

T3 =9t 2ax -4(3tx+2r)aw ' T4 =yt 2aw ' 

Y. = ay, Y2 = 3tax - 2xaw ' Y3 = tyaw, 

x. = ax, X2 =yaw , 

Wk = t k -·aw ' k = 1,2, ... ,6. (2.8) 

The nilradical of .!.t' 0 is 18 dimensional, spanned 
by the basis elements (2.8) without Z •. The largest 
Abelian ideal Ao C .!.t' 0 is 11 dimensional: 
{W., W2, W3, W4, Ws , W6 ,x.,x2' Y3 ,T4,Z4}' According to 
Ado's theorem,22 any finite-dimensional Lie algebra can be 
imbedded into sl(n,R) for large enough n. The fact that we 
have dim Ao = 11 already implies n;, 7. If we require that 
each basis element in (2.6) has a specific degree in a grading, 
that the degree of Z. be zero, and that the degree correspond 
to the distance of the first entry in the corresponding sl (n,R) 
matrix from the diagonal, we obtain n = 14. The algebra 

.!.t' KMV = {Z(zn),T(zn),x(z"),Y(zn),W(zn,t Q
), 

neR,a = O,I, ... ,5}, (2.9) 

is then identified as a subalgebra of the Kac-Moody-Vira
soro algebraS! ( 14,R). 

C. Comparison with the symmetry algebras of the PKP 
and JM equations 

The symmetry algebra L pKP of the PKP equation 7 can 
be summed up as 

A A A A A A 

V = T(a) + Y(b) + X(c) + Wed) + U(e), (2.1Oa) 

where a, b, c, d, and e are Coo functions of t and 

T(a) = aat + iYa'ay + H a'x + ja"y2]ax 

- [jwa' + ~V' + -My2a'" + -m,y4a""]aw, 
(2.1Ob) 

Y(b) = bay +jb'yax -aY[xb" +Vb"']aw, (2.1Oc) 

X(c) = cax - H c'x + jC"y2]aw, (2.1Od) 

W{d) = dyaw ' flee) = eaw • (2.1Oe,f) 
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The primes denote time derivatives. Notations ditrer slightly 
from those of Ref. 7. A basis for the symmetry algebra L]M of 
the JM equation can, on the other hand. be written as I: 

Pz =az ' PI =a" 
DI = zaz + yay. D2 = 3tat + xax - 2yay - waw , 

R(g) g(t)ax + jk(t)xaw ' 

Y(h), X(k), W(G), (2.11) 

where Y(h), X(k), and W(G) are given in (2.3d)-{2.3f), 
respectively. 

Let us now compare the symmetry algebra (2 .. 3) of the 
joint JM + PKP system with that of the PKP system alone 
namely (2.10). To do this we must consider the vector fields 
(2.3) as acting on functions of x, y, t, and w. The derivative 
a / az acts trivially and the functions f(z) , ... , 7(z) ,g(z) , ... , 
g(z), etc. are to be considered as independent constants. In 
this restricted sense the symmetry algebra of the JM + PKP 
system is a subalgebra of the PKP algebra and can be written 
as 

,. A _ A 

!f(z) T(t) + :&f(z) Y(t 2) 

+ -&flZ)X(t3) - -&7(z) W(t3), 
A A 

TR (g) g(z) T( 1) + ~(z) YU) 

+ ~(Z)X(t2) - :&8(z) W(t2), (2.12) 
A • A •• A 

YR (h) = h(z) Y(1) + ih(z)X(t) - !h(z) Wet). 
A • A 

XR (k) k(z)X(l) - k(z) W(1), 

n 

On the other hand, the JM + PKP algebra (2.3) is not a 
subalgebra of the JM algebra, nor is the converse true. The 
algebras (2.3) and (2.11) have a large intersection, namely 
{Y{h),X(k),W(G),Pz,p,}, but neither one is a subalgebra 
of the other. 

III. THE CONDITIONAL SYMMETRY GROUP 

A. The local Lie pOint transformations 

Anyone-dimensional subgroup of the symmetry group 
of the JM + PKP system can be obtained by integrating a 
vector field (2.3). The vector fields have the form (2.1), so 
we must solve the differential system: 

dX
i 

_ _ dw 
dA = 1Ji(X,W), dA f/J(x,w), x1lx=o = Xi' 

wlx=o W. (3.1 ) 

By construction, the result of integrating (3.1) is a local 
point tranformation of the form 

x = Ax (x,w), w = fix (x,w), (3.2) 

where the functions A and fi are defined in some neighbor
hood of the identity element (A = 0) and some neighbor
hood of the origin of the (x,w) space. 

We shall construct the one-dimensional subgroups, cor
responding to the individual vector fields (2.3b)-(2.3f). 
More general transformations are obtained by composing a 
finite, or at least in principle, infinite number of one-dimen
sional ones. 
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Let us now run through the individual types of sub
groups: 

1. The algebra WiG} 

The corresponding group transformations is 

Xi =Xj> w(x/) =w(x/) +AG(Z,t). (3.3) 

This is a pure gauge transformation, acting on the solution 
w, but not on space-time itself. 

2. The algebra X(k) 

We obtain 
-x=x+Ak(z), y=y, z=z, t=t, 

w(x,y,z,t) = w(x,y,z,t) - Ayic(z). 

3. Thealgebra Y(h) 

The transformation is 

(3.4) 

x X + !Ath(z), y y + Ah(z), Z = z, 

w(x,y,z,t) = w(x,y,z,t) - lA(2xh + 3tyii) 

t= t, 

- fiA 2t(iz 2 + 2hii). 

4. The algebra T(g) 

Integrating (2.3c) we obtain 

z=z, t=t+Ag(Z), y=Y+ik{Ut+A 2g), 

x = X + il[ (16gy + 9gt 2)A + 3(2,f + 3gg)tA 2 

(3.5) 

+ (2,f + 3gg)A 3g ], (3.6) 

w(x,y,z,t) = w(x,y,z,t) + AA + BA 2 

+ CA 3 +DA 4+EA 5, 

A = - (l125)[4(2y2 + 3tx)g+ 9t 2ygJ, 

B = - (3/29 )[48yt(gg+g'g) +9t 3(gz + 2gg) 

+ 32xgg], 

C = - (1/28) [18t 2(,fg+ ggz) + 8yg(4gg+ 3g'g) 

+ 45t2ggg], 

D - (3/28)tg[5g.f + 3ggz + 9ggg] , 

E - (3/5.28 )g2[5,fg + 3ggz + 9ggg]. 

5. The algebra Z( f) 

We integrate (2.3b) to obtain 

Z=f/J-I(A+f/J(Z». f/J(z) = (Z~, 
JZo f(s) 

- [fez) ]3/4 t= - t 
fez) 

y = [fez) ]1I2[y + ~ t 2 (i(z) - )(Z»] , 
/(z) 32 /(z) 

x = (f(Z) )114 [x + a(z,A)ty + P(Z,A)t 3 ], 

fez) 
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tv = (/(z») -114 [W + r(Z,A)XY + c5(Z,A)/t 
I(z) 

+ ,u(Z,A)yt 3 + W(Z,A)xt 2 + a(z,A)t 5
]. 

The expressions a(z,A), ... ,a(z,A) are easy to calculate, but 
they are cumbersome to present and not very informative, so 
we shall not present them here. They all vanish for A = O. 

B. A global physical subgroup 

Intuitively, or "physically" speaking, the most obvious 
symmetries of the JM + PKP system are the global ones. 
The corresponding subalgebra of the symmetry algebra 
(2.3) is obtained by restricting the functions I(z), g(z), 
h(z), and k(z) to be first-order polynomials in z. The func
tion G(z,t) will correspond to a global gauge tranformation 
if it has no singularities for finite values of z and t. The global 
transformations acting nontrivially on the space-time vari
ables are generated by 

X(l) =ax ' YO) =ay, ZO) = a., T(l) =a" 

X(z) = zax - yaw' Y(z) = zay + ~tax - !Xaw, 

Z(z) = zaz + 1xax + !yay + ~Ia, - !waw, 

T(z) = za, + !,vax + ~tay. 
It is now obvious that X(l ), YO), ZO), and T(l) gen

erate translations in the x, y, z, and I directions, respectively. 
Further, X(z) generates a "shear" transformation, acting on 
x, parallel to z: 

x' = X + Az, y' = y, z' = z, t' = I, W' = W - Ay. 

Similarly, Y(z) generates a shear, acting ony, parallel to z, 
accompanied by a Galilei transformation in the x direction: 

x' = x + iAt, y' = Y + AZ, 

z' = z, t' = t, w' = W - !XA. 

The vector field Z(z) generates a dilation with scale factors 
1,1, !,~, and - 1 in thez, x,y, t and w directions, respective
ly. Finally, T(z) generates the transformation 

z' = z, t' = t + AZ, y' = y + ;tAt + ~ 2Z, 

x' = X + !Ay + -fi,A 2t + -hA 3Z, w' = w, 

a linear transformation in the x, y, t plane, accompanied by a 
shear parallel to z. 

IV. SOLUTIONS OBTAINED BY SYMMETRY 
REDUCTION 

In order to obtain all types of group invariant solutions 
of the PKP + JM system we must perform a classification of 
the low-dimensional subgroups of the symmetry group. 
More specifically, we need to classify all subgroups having 
generic orbits of codimension 2,3, and 4 in the space X X U of 
independent and dependent variables, with nonzero projec
tions onto U. Such a classification is easy to perform, using 
methods developed for finite-dimensional Lie algebras23

,24 

that have also been extended to Kac-Mooody-Virasoro al
gebras. 9,25 

It is not our aim to study solutions of Eqs. (1.1) and 
( 1.2) systematically,»o we shall only give some illustrative 
examples. 
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A. Reductions obtained using one-dimensional 
subgroups 

Every one-dimensional subalgebra of the symmetry al
gebra (2.3) is conjugate, under the adjoint action of the sym
metry group of the JM + PKP equations, to one of the fol
lowing ones: 

Z(l), T(l), Y(l) + W(G), X(l) + W(G), W(G), 
(4.1 ) 

where G(z,t) is an arbitrary function. 
Invariance under the group generated by Z( 1) simply 

implies that the solution of the JM + PKP system satisfies 
W = w(x,y,t), where w simultaneously satisfies the PKP 
equations and the JM equations (1.1) from which the term 
wxz is dropped. Invariance under the group generated by 
T(l) implies w = w(x,y,z), where w satisfies a potential 
Boussinesq equation, together with Eq. (1.1), in which the 
term wy , is dropped. 

Invariance under the group generated by Y( 1) implies 

w = w(x,z,t) = I(x,t) + g(z,t) , (4.2) 

where g(z,t) is arbitrary and/(x,t) satisfies the once-differ
entiated potential Korteweg-de Vries equation 

[fxxx + 3/~ - 4J, lx = O. (4.3) 

For yO) + W( G), G #0 invariance implies 

w =yG(z,t) + I(x,z,t) , (4.4) 

where f satisfies (4.3) (with z considered as a fixed param
eter), and 

3Gfxx - 3fxz + 2G, = O. (4.5) 

The linear equation (4.5) can be solved for I(x,z,t) in the 
form 

1= ~ W, (z,t)x + g(z,t) + J r(S,t)dS, 

S = x + W(z,t), W(z,t) = J G(z,t)dz, (4.6) 

whereg(z,t) is arbitrary. From (4.3) we find that reS) must 
satisfy a Korteweg-de Vries equation with a right-hand side, 
namely 

rm + 6rr; - 4r, = ~Wtt(z,t). (4.7) 

Finally, the invariant solution is 

w(x,y,z,t) = yG(z,t) + ~ x J G, (z,t)dz 

+ J r(s,t)dS + g(z,t), ( 4.8) 

where G(z,t) and g(z,t) are arbitrary functions and r(S,t) 
satisfies (4.7). 

The group generated by X( 1) leads to the solution 

w=A(z)y+B(z,t), (4.9) 

where A (z) and B(z,t) are arbitrary functions. 
Finally, the subgroup corresponding to X( 1) + W( G) 

for G(z,t) #0 provides the solution 

w = [a(z)t + {3(z)]x + ja(z)y2 

+ [~a(z)t2+¥3(z)t+r(z)]y+L(z,t), (4.10) 
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where a(z), {3(z), r(z), and L(z,t) are arbitrary and G(z,t) 
is restrained to being 

G(z,t) = a(z)t + {3(z), (4.11 ) 

and for Gtt #0 the reduced equations are incompatible. 
We shall not consider reductions by two-dimensional 

subgroups of the symmetry group and instead go over imme
diately to examples of three-dimensional subgroups, provid
ing reductions to ordinary differential equations. 

B, Reductions obtained using three-dimensional 
subgroups 

1, The algebra (Y(1), T(1),Z(1)j 

In this case we have W = w(x). The JM equation (1.1) 
is satisfied trivially, whereas the PKP equation (1.2) re
duces to 

(4.12) 

Putting W = U x and integrating twice, we obtain 

u~ = - 2(u - u1)(u - uz)(u - u3), U1 <;uz <;U3, 

(4.13) 

where UI' uz, and u3 are constants. 
If the roots U; are all distinct we obtain a finite periodic 

solution in terms of Jacobi elliptic functionsz6 (cnoidal 
waves): 

u(x) = Uz + (u3 - Uz )cnZ(~ (u 3 - u1 )/2 (x - xo),k, 

(4.14 ) 

If two ofthe roots coincide, U\ = Uz < U 3 , we obtain a soliton 
solution 

U=U3 -(u3 -ul)[tanh~(u3 -u 1)/2(x-xo )]2, 
(4.15 ) 

satisfying U ..... U1 for x ..... ± 00, U = U3 for x = Xo' The group 
transformations of Sec. III can be applied to the solutions 
( 4.14) and (4.15) to introduce a polynomial dependence on 
y and t into the argument and a virtually arbitrary depen
dence on z (via the arbitrary functions k(z), h(z), g(z), and 
fez) ). 

2. The algebra (Z(1),Z(z),T(1)} 

A group invariant solution will in this case have the 
form 

W = F(S)y-IIZ, 5 = xy-IIZ. 

The JM and PKP equations reduce to 

{J! + 4F + 6sFF + 3FF + 6Fz = 0, 

4'P' + 24FF + 3s zF + 15sF + 9F= 0, 

(4.16) 

(4.17a) 

(4.17b) 

respectively. Integrating both equations once and eliminat
ing the third-order terms from the two equations, we obtain 
a second-order equation, that can again be integrated once to 
yield a Riccati equation: 

12F + 6Fz - 3s 3F + 6(AsZ + Bs + C) = 0, (4.18) 

where A, B, and C are constants. To linearize it we put 

F= 2.iJ IH, 4H - s3.iJ + (Asz + Bs + C)H = O. 
( 4.19) 
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Using (4.19) we can calculate F, ... , "Pin terms of Hand iJ 
and substitute back into (4.17). This provides a first-order 
differential equation for H(s), which is actually an algebraic 
equation for F(s). More specifically, we obtain a quadratic 
equation for F(s) from which an explicit algebraic solution 
is obtained, depending on the three integration constants A, 
B, and C. We shall not reproduce the result here. 

V, CONCLUSIONS 

"Conditional symmetries" of a differential equation, or 
system of differential equations, can differ very significantly 
from ordinary symmetries. The requirement of conditional 
symmetry is on one hand more restrictive: Instead of re
questing that the given system !1; = 0 be left invariant, we 
add further equations, !1A = 0, and request that the com
bined system be left invariant. On the other hand, only a 
subset of solutions of the original system is transformed into 
solutions of this system. The domain of application of the 
conditional symmetry group Gc is smaller than that of the 
usual symmetry group G. There is no a priori reason for one 
group to contain the other. Moreover, quite often the inter
section of the two tranformation groups, Gn Gc ' is simply 
the identity transformation. 

The case under consideration is the JM equation ( 1.2), 
for which the PKP equation (1.1) is viewed as the supple
mentary condition. We have found that the conditional sym
metries have the Kac-Moody-Virasoro character, typical 
for multidimensional integrable equations, whereas the ordi
nary symmetries do not. We do not have GJM C Go nor 
Gc C GJM • The conditional symmetry group Gc can hence be 
used to obtain interesting new reductions of the JM equa
tions to lower-dimensional equations and hence to obtain 
new solutions. 

On the other hand, if we view the PKP equation as the 
basic equation and the JM equation as a supp~ementary con
dition, then we find Gc C GpKP ' at least when Gc is viewed as 
a transformation group acting on the space {x,y,z = Zo ,t,w}. 
Hence, symmetry reduction using the group Gc will not pro
vide new solutions of the PKP equation. Instead, we obtain 
subclasses of solutions obtained from the GpKP group and 
can then use the Gc group to generate a z dependence compa
tible with the evolution according to the JM equation. 
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The two-dimensional magnetic field problem revisited 
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The Atiyah-Patodi-Singer index theorem is used to relate the analytic and topological indices 
of a spin !-charged particle in a two-dimensional magnetic field. 

I. INTRODUCTION 

Let D be the first-order elliptic differential operator 

~+ii.+ al/J +i al/J , (1.1) 
ax ay ax ay 

defined on coo (R\C), where l/JECoo (R2) is a real valued 
function such that l/J = Fin r, where F is some real constant, 

for r = ~ large enough. 
Despite the fact that the unique closed extension of 

DieO'eR') in L 2(R2), still denoted by D, is not a Fredholm 

operator, D and its formal adjoint D * do have finite-dimen
sional L 2 kernels, and then the analytic L 2 index of D is 
defined, as usual, by 

L 2 indexeD): = dim ker(D) nL 2(R2) 

- dim ker(D *) nL 2(R2
). 

The kernels and this analytic index were analyzed in detail in 
Refs. I and 2. 

In Ref. 3 Bolle et af. studied the Witten index associated 
to D and found that this was precisely the magnetic fiux, 
(l/21T)f R' i::J.l/J = F, which is also the topological index of 
Atiyah and Singer.4 

Since the two indices do not coincide, in general, it was 
asked3

•
s what the nature of their difference was. The Atiyah

Patodi-Singer index theorem for manifolds with boundary 
and nonlocal boundary conditions6 provides an elegant and 
natural way to answer this question: The difference is essen
tially the 1J invariant of the Dirac operator on the unit circle, 
shifted by the fiux F. 

II. THE ASSOCIATED BOUNDARY VALUE PROBLEM 

Identifying R2 and C in the standard way, 
(x,y)~z = x + iy, we can write 

D=i.+ al/J =e-"'i. e"" az az az 
D * = - i. + al/J = _ e'" i. e - "'. 

az az az 
(2.1) 

Now assume that for r: = ~X2 + y2 larger than some 
fixed constant R > 0, l/J = Fin r, where F is real constant. It 
is readily seen that in polar coordinates (r,O) we have, for 
r>R, 

D = ei(J(i. + i(a laO) + f'I, 
ar r-} 

D*= _e-i(J(i._i(alaO)+f'I. 
ar r-; 

(2.2) 

aj Present address: Department of Mathematics, University of North Texas, 
Denton, Texas 76203. 

Let uEL 2 (R2) be such that Du = o. The restriction 
UI>R ofutothecomplementCBR ofBR:={ZEq izi";;R} 
belongs to L 2( (R, co) XS I, r dr dO) and admits a Fourier se
ries expansion 

U - '" Uk (r) eik(J. I>R = £.. 
keZ 

Since (Du)I>R ~l:kEz{uk + [( - k + F)lr]uk} 
xei(k + 1)8 is 0, we get for any k E Z, 
Uk + [( -k+F)lr]uk =0, i.e., Uk =Ckyk-F, Ck con

stant. But then ul >R E L 2 only if Ck = 0 for k;,F - 1. 
This suggests the introduction of the following bound

ary value problem. Denote by (D, P < F _ I ) the operator 
whose domain is the set of functions v E COO (B R ) such that 
foranykEZ,k>F-l, 

_1_ {21r v(R,O)e - ik8 dO = 0, 
21T Jo (2.3) 

and on which D acts according to the first line in Eq. (2.1). 
Equation (2.3) amounts to a nonlocal boundary condition. 
Similarly, one defines (D *, P> F + I ). 

With these preparations we have the following proposi-
tion. 

Proposition 2.4: 
(a) ker(D) n L 2(R2) =ker(D, P <F-I ), 
(b) ker(D *) n L 2(R2) =ker(D *, P >F+ I). 
Proof (a) From what was said previously the map 

u ~ UI,R from ker(D) n L 2(R2) into ker(D, P <F- I) is 
one to one. The inverse map is seen to be 

ker(D, P d- I) 3 v ~ U E ker(D) n L 2(R2) 

{
V( r,O), 

V~U= k F ·k(J 
l:k<F_lvk(rIR) - e' , 

where Vk is the Fourier coefficient 
X e - ik(J dO. The proof of (b) is similar. 

III. THE RESULT 

r..;;R, 

r>R, 

( l/21T)f~1rv(R,O) 
D 

In order to bring the Atiyah-Patodi-Singer index 
theorem into the picture we need to take a different look at 
the operator (1.1) and the boundary condition (2.3). 

LeUP': Coo (R2,C2) -+Coo (R2,C2) be the Dirac operator 
on R2, i.e., 

!iJ = (01 - I) a (0 i) a 
o ax+ i Oay· 

Twisting the spinor bundle R2XC2 with the trivial bun
dle R2 xC equipped with the connection given by the one
form 

(J) = i al/J dx _ i al/J dy, 
ay ax 
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we get the corresponding Dirac operator, 

(0 - 1) a (0 
fiJ",= 1 0 ax+ i 

(0 1) a¢ (0 
+10ax+i 

or equivalently, 

fiJ '" = ( ~ DO *) . 

i) a 
o ay 

-I) a¢ 
o ay' 

(3.1 ) 

Now restrict fiJ '" to B R' It is the index of the associated 
twisted ~-Dirac operator that relates nicely to L 2 indexeD). 
In fact, the boundary conditions described by Eq. (2.3) are 
equivalent to the spectral boundary conditions introduced 
by Atiyah, Patodi, and Singer in Ref. 6. To see this notice 
that from Eq. (2.2) the tangential part of D is the self-adjoint 
elliptic operator A = [( 1ii)(a laO) - F]IR defined on 
C''' (aBR ) and with eigenvalues up to a scaling factor, 
{k - F} k E z, corresponding to the eigenfunctions eikf:J • 

Let P + be the spectral projection on the positive eigen
values of A and take on Coo (aB R ) the boundary condition 
P +v(R,') = O. Then (D, P +) is exactly our previously de
fined (D, P ,;;F)' 

Theorem 3.2: 
(a) indexeD, P +) = dim ker(D, P,F) 

- dim ker(D*, P>F+ I) 

(b) indexeD, P +) = F+! - ~(1JF(O) - h), 

where 1JF(O) is the eta invariant associated to A, i.e., the 
value at 0 of the analytic continuation of the 1J function, 

sgn(k - F) 
Ik-FI' ' 9't(s»O 

and h = dim ker A. 
Proof: (a) Since (D, P +) = (D, P"F)' (a) is a conse

quence of the fact that the adjoint (D, P + ) * of (D, P +) is 
precisely (D *, P> F + 1 ). This follows right away from the 
integration by parts formula 

(b) We can also interpret (D, P +) as a twisted version 
of the a operator on a compact surface with boundary. Then 
the Atiyah-Patodi-Singer index theorem for manifolds with 
boundary6,7 gives 

+ f C 1 (R
2 xC,¢) - J.. (1JF(O) - h), 

JBR 2 
(3.3 ) 

where cl(TcBR ) and c l (R2 XC,¢) are the first Chern 
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classes of the complex tangent bundle to B R' respectively, 
the twistor bundle R2XC. Now the Chern form ofa surface 
coincides with the Euler form, and so by the Gauss-Bonnet 
theorem f B R C 1 ( Tc B R) is the Euler characteristic of B R , 

namely, l. Also, c l (R2 XC) = (i121r)dw = (I/21r)11¢ 
Xdx dy. Part (b) of the Theorem 3.2 follows. 0 

Note that the right-hand side of Eq. (3.3) should also 
contain the A genus of BRand a secondary characteristic 
class of aBR , which accounts for the fact that geometrically 
BR is not a product near the boundary. These disappear 
since the A genus of any surface is O. 

Now we are ready to state our main result. 
Theorem 3.4: If D is the operator in (l.I) then 

L 2 indexeD) = _1_ f 11¢ _ sgn(F) 
21r JR' 2 

-! [1JF(O) + sgn(F)h], 

where 1JF(O) is the eta invariant associated to A = (IIi) 
(a lao) - F on Coo (Sl) and h = dim ker A. 

Proof: Assume first that F < O. From (2.4) and 3.2(a) 
we obtain 

L 2 index (D) = indexeD, P +) - [dim ker(D, P,F) 

- dim ker(D, P d-I)]' 

Since ker(D, P <F-I ) ~ ker(D, P<F)' the claim is 
proved if we show that ker(D, P ,F) = o. Now (2.1) states 
that an element in ker(D, P ,F) is essentially a holomorphic 
function, thus its Fourier series at the boundary must con
tain only eikf:J with k>O. However, P <F prevents this if F < O. 
WewanttostressthatL 2 indexeD) # index (D, P +),ifF>O. 

The case F> 0 follows interchanging the roles of D and 
D * in all we said so far, and F = 0 is trivial. 0 

A direct evaluation of the eta invariant 1J F (0) helps re
cover the Aharonov-Casher result. 1 

Proposition 3.5: If 

( ) _ " sgn(k - F) 
1JF S - ~ , 

kEZ,k#F Ik-Fls 
9't(s) >0, 

then 

1JF(O) 

{

2E - 1, if F>O, F= N + E, NEN, O<E< 1, 

= 1-2E, ifF<O, -F=N+E,NEN,O<E<I, 

0, if FEZ. 

Proof: See Ref. 8, or use the following regularization of 
the eta invariant: 

f3F(t) = I sgn(k - F)e- tlk - FI, 
kEZ 

o 

Corollary 3.6 (Aharonov-Casher l
): If Dis the operator in 

( 1.1) then we have 
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N, ifF>O,F=N+E,NEN,O<E<I, 
N-l, ifF>O,F=N,NEN, 

L 2 indexeD) = 0, if F = 0, 

-N, ifF<O, -F=N+E,NEN,O<E<I, 

-N+ 1, ifF<O, -F=N,NEN. 

Proof Immediate, using Theorem 3.4 and Proposition 
3.5. 0 

IV. REMARK 

A similar result can be proved for surfaces more general 
than R2, namely, those with Euclidean ends. A noncompact 
Riemann surface M is Euclidean at infinity if outside some 
compact set it is isometric to a disjoint union of finitely many 
eRR's.HeretheanalogofDisJ + Jt/J. For instance, ifM has 
just one Euclidean end and F < 0 then 

L 2 index(J + Jt/J) = F + (1 - 2g)/2 - ~(1JF(O) - h), 

where g is the genus of the compact Riemann surface ob
tained taking the one-point compactification of M. 
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Hosotani breaking of E6 to a subgroup of rank five 
Brett Mclnnes8

) 

Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts 
Institute of Technology, Cambridge, Massachusetts 02139 

(Received 19 September 1989; accepted for publication 28 March 1990) 

On multiply connected manifolds, it is possible to construct vacuum gauge configurations with 
nontrivial holonomy groups. This is the basis of the Hosotani mechanism. This naturally 
suggests a "Hosotani inverse problem": Ifwe wish to break a gauge group G to a subgroup H, 
what are the possible finite holonomy groups having this effect, and what can one say about 
the fundamental groups of the underlying manifolds? Usually, this problem is too difficult to 
solve, but we show that, for G = E6 and H locally isomorphic to the rank five group 
SU (3) X SU (2) xU ( 1) xU ( 1 ), a complete solution is possible. It is hoped that the results will 
aid a search for examples of Calabi-Yau manifolds leading to a low-energy gauge group of 
rank five. 

I. INTRODUCTION 

Recent developments in superstring theory, 1 and in the 
theory of the cosmological constant,2 have underlined the 
importance of understanding physical phenomena in the 
context of multiply connected manifolds. In particular, 
gauge vacua on such manifolds can differ profoundly from 
those defined on simply connected spaces: The vacuum ho
lonomy group can be nontrivial, and this can lead to gauge 
symmetry breaking. 

This remarkable phenomenon-gauge fields breaking 
gauge symmetry, as it were-can be exploited as a symmetry 
breaking mechanism in circumstances where the Higgs 
mechanism cannot be employed. True, there is certainly a 
sense in which the "mechanism" terminology is misleading: 
It suggests that the phenomenon is entirely at our disposal, 
or at least can be relied upon not to appear when it is not 
wanted. In reality, however, one can show that gauge config
urations of this type exist on all manifolds that are likely to 
be of physical interest, provided only that the manifold be 
mUltiply connected. In this sense, the "Hosotani3 effect" is a 
generic, fundamental aspect of gauge theory, and it should 
always be taken into consideration when dealing with gauge 
fields on multiply connected manifolds. 

Nevertheless, it is not unreasonable to hope that the Ho
sotani effect will make itself welcome in some way. The best
known application of this kind is in superstring phenomeno
logy, where the method is used to break E6 to the low-energy 
gauge group. The latter will be of rank six if the holonomy 
group is Abelian, and this case has received a great deal of 
attention. (Contrary to popular belief, it is not true in gen
eral that Abelian holonomy groups cannot reduce the rank; 
regrettably, however, this is true of E6 .) On the other hand, a 
non-Abelian holonomy group necessarily reduces the rank 
to five. Apart from the fact that this obviously brings us 
closer to the standard group, these non-Abelian compactifi
cations have many other virtues.4 Nevertheless, they have 
received less attention, mainly because very few explicit ex
amples of Calabi-Yau manifolds with non-Abelian funda-

a) Permanent address: Department of Mathematics, National University of 
Singapore, 10 Kent Ridge Crescent, 0511 Republic of Singapore. 

mental groups are known. It is not difficult to see why that 
should be the case: Finite non-Abelian groups are less famil
iar, more complex, and more numerous than their Abelian 
counterparts. For example, the authors of Ref. 4 begin with 
the Y7:2.2,2,2 space,5 a nonsingular intersection of four qua
drics in CP7. This space admits a fixed-point-free action by 
the non-Abelian group Z4 >4Z4, which can give rise to ho
lonomy groups isomorphic either to Z4 >4Z4 itself or to the 
dihedral group Ds. The latter leads to a more satisfactory 
theory, although in the end it, too, succumbs to the compari
son with phenomenology. The point, however, is this: 
Among all the various finite non-Abelian groups, just these 
two, Z4 >4Z4 and Ds , are of interest in this case. In order to 
unearth further examples of compactifications with non
Abelian fundamental groups, we need some way offocusing 
on the relevant groups. 

We could, for example, ask: What groups can act freely 
on simply connected six-dimensional Calabi-Yau mani
folds? Indeed, this is the question we would need to answer if 
we were to undertake a complete classification of all Calabi
Yau spaces. Unhappily, such a project is completely unreal
istic. We proceed instead as follows. In more detail, the Ho
sotani effect breaks E6 to the centralizer C( <1» of the holon
omy group, where <I> C E6 is the holonomy group and 

C( <1» = {gEE6 such that g¢J = ¢>g for all ¢>e<l> }. 

Thus if we know, for example, that the holonomy group is 
D 8 , we find the low-energy gauge group by computing the 
centralizer of D8 in E6 • But in reality, of course, our actual 
situation is just the reverse: We know the low-energy group 
C(<I», and we would like to find <I> (and the underlying 
fundamental group). This suggests that we attack the fol
lowing problem. Given a gauge group G and a subgroup H, 
together with a simply connected manifold ii, 

(i) find all subgroups <I> C G with C( <1» = H; 
(ii) insist that <I> be the holonomy group of some vacu

um gauge configuration constructed on if hr, and thus de
duce a list of candidates for 1T, the fundamental group. 

We call this, for obvious reasons, the "Hosotani inverse 
problem." Naturally, we must expect a high degree of non
uniqueness in our solution: We can only expect, for example, 
to obtain a "catalog" of possible holonomy groups and fun-
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damental groups leading to the breaking of E6 to a group 
(locally) isomorphic to SU(3)XSU(2)XU(1)XU(1). 
This non uniqueness must be reduced, in the manner of Ref. 
4, by phenomenological considerations. 

In fact, even this much less ambitious program cannot 
be carried out in most cases. Fortunately, however, the case 
of interest to us-G = E6 , H = the above rank five sub
group, if = Calabi-Yau-is one of the few exceptions. The 
purpose of this paper, then, is to solve the Hosotani inverse 
problem in this case. The most interesting groups-those 
corresponding to if with reasonably low Euler characteris
tic-are presented explicitly, in a form s.uitable for checking 
the existence of a free action (or for computing the transfor
mation behavior of various fields, in the case of the holon
omy group). We begin by formulating the problem more 
precisely. 

II. GENERAL FORMALISM 

In physical language, a vacuum gauge configuration is a 
gauge field with Fip.v = 0 everywhere. Mathematically, it 
corresponds to a principal fiber bundle with a flat connec
tion, (P,M,G,w), where M is the base manifold, G is the 
gauge group, and W is a connection with a zero curvature 
form. Gauge transformations correspond to smooth maps 
ft:P~P that map each fiber into itself and that satisfy 
ft0 Rg = Rg oft for all gEG, where Rg denotes the action of G 
on P. Now obviously the group of all gauge transformations 
(which is infinite dimensional) cannot be identified with G; 
and yet the two are evidently closely related. In the context 
of vacuum configurations, there is a particularly attractive 
way of making this relationship explicit. Let us define the 
vacuum symmetry group V to be the set of all gauge transfor
mations that preserve the flat connection w, in the sense that 
ft*w = w. Thus V is the group of internal symmetries of the 
whole structure, (P,M,G,w). Now V can be characterized 
with the aid of the following theorem. 

Theorem 1: Let (P,M,G) be any principal fiber bundle 
over a connected base manifold, and let w be an arbitrary 
connection on P. Then the subgroup of gauge transforma
tions satisfying ft *w = w is isomorphic to C( <1», the centra
lizer (in G) of the holonomy group of w. 

Proof References 6 and 7. 
Thus V, the vacuum symmetry group, is isomorphic to 

some subgroup of G. Now we obtain the relationship 
between G and the group of all gauge transformations. 

Lemma 2: Let G be any Lie group and M any connected 
manifold. Then there exists a vacuum gauge configuration 
over M with symmetry group V = G. 

Proof Let P be the trivial bundle P = M X G. The ca
nonical flat connection on P is defined by taking the horizon
tal subspace at (m,g)EM X G to be the tangent space to the 
submanifold M X {g}. The holonomy group consists of a sin
gle element, the identity eEG, and so the vacuum symmetry 
group V = C{e} = G. 

Thus we can interpret G as the largest possible vacuum 
symmetry group: That is, it is the largest subgroup (of the 
group of all gauge transformations) that can preserve some 
vacuum configuration. However, while Lemma 2 guaran-
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tees the existence of a maximally symmetric vacuum, there 
may also exist other vacua with symmetry groups V that are 
proper subgroups of G. In such a case one has the familiar 
situation in which the vacuum is less symmetric than the 
Lagrangian, and one says that the maximal symmetry group 
G has been broken to its subgroup V = C( <1». This is the 
mathematical basis of the Hosotani effect. 

III. CALABI-YAU SPACES AND FINITE HOLONOMY 
GROUPS 

Nontrivial vacuum holonomy groups arise as follows. 
By definition, the holonomy group <I> measures the nontri
viality of gauge parallel transport around arbitrary closed 
loops in M. If we consider only those loops that can be con
tracted to a point, then the restricted holonomy group <1>0 is 
obtained. Now <1>0 is a normal subgroup of <1>, and it can be 
showns that there is a homomorphism () that maps the fun
damental group 1T(M) onto <1>/<1>0' The Ambrose-Singer 
theoremS essentially states that the gauge curvature n gen
erates <1>0' so in the vacuum case we have a homomorphism 
from 1T(M) onto <1>. Unlike 1T(M), <I> is a subgroup ofG, and 
so this situation is often described in the physics literature as 
"embedding" 1T(M) (henceforth abbreviated to 1T) in G. 
This terminology is, however, both inaccurate and mislead
ing. First, there is a profound distinction between 1T (which 
reflects purely topological properties of M, and is not related 
either to geometry or to gauge theory) and <I> (which is a 
geometric object, dependent on the particular connection 
under discussion). Second, the homomorphism ():1T ~ <I> 
need not be one-to-one, so 1T and <I> may not even be of the 
same order-hardly what one would wish to call an "embed
ding." Instead of speaking4 of two "embeddings" of Z4 >4Z4 
in E6 , for example, one should speak of a manifold, with 
1T = Z4 >4Z4' on which one may wish to consider two differ
ent vacuum gauge fields, one with <I> = Z4 >4Z4' the other 
with <I> = Ds. In fact, the existence of a homomorphism 
():1T~<I> means that 1T admits a normal subgroup N (which 
may be trivial) such that 1T IN is isomorphic to <1>. [Indeed, 
Z4 >4Z4 has a normal subgroup Z2 such that 
(Z4 >4Z4 ) IZ2 = Ds .] Henceforth, we shall always strictly 
distinguish <I> from 1r, to do otherwise is to invite confusion. 

As 1T is always countable for a Riemannian manifold, 
the equation 1TIN = <I> means that vacuum holonomy 
groups are always discrete, though not necessarily finite. In 
general, then, the inverse problem may require us to deal 
with infinite discrete groups, which often have a subtle struc
ture. Fortunately, that will not occur in our case: The 
theorem of Cheeger and Gromo1l9 implies that if M is a 
compact Riemannian manifold with non-negative Ricci ten
sor and nonzero Euler characteristic, then its universal cover 
is compact and so its fundamental group is finite. The mani
folds in which we are interested are Ricci flat and (since the 
number of particle generations is proportional to the Euler 
characteristic) certainly have nonzero characteristic. Thus 
1T and consequently <I> are both finite, not merely discrete. 
This is an important simplification. [This is, however, the 
only point at which we use the fact that M is Calabi-Yau; 
thus all subsequent results apply to any class of manifolds 
(such as those with positive Ricci tensor bounded away from 
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zero) with necessarily finite fundamental groups.] Hence
forth, we shall consider only finite candidates for <l> and 1T. 

IV. FINITE SUBGROUPS OF £6: GENERAL RESULTS 

Our first problem is to find all finite subgroups of E6 
having as their centralizer the desired low-energy group. 
There are at least two reasons to expect that this will be 
difficult. First, a complete classification of all finite sub
groups is known for no more than a handful of Lie groups: It 
is most certainly not known for E6 • Second, it is quite possi
ble for two subgroups of a group to be abstractly isomorphic 
and yet have entirely different centralizers. For example, 
take SU(2) XSU(2). The first factor has centralizer 
Z2 X SU (2), while the diagonal subgroup clearly has centra
lizer Z2 XZ2 -and yet this diagonal subgroup is also iso
morphic to SU (2). In the general case, these difficulties rule 
out an explicit solution of the inverse problem. The purpose 
of this section is to show that, in our particular case, these 
problems can be surmounted. 

We begin by presenting the embedding of the standard 
group in E6 • We take this opportunity to emphasize, as 
strongly as possible, that Hosotani symmetry breaking oper
ates at the group level: One must compute the centralizer of 
the holonomy group in the gauge group. It is customary in 
physics, and normally harmless, to deal with Lie groups 
purely through their algebras-so that, for example, one 
speaks of the S0(10) "subgroup" of E6 , even though 
SOC 10) as a group cannot in fact be embedded in the group 
E6 • In the context of the Hosotani effect, however, such lax
ity can easily lead to swift disaster. For example, SOC 4) has 
SU (2) as a subgroup, and it also obviously contains SO (3); 
but the centralizer of SU (2) in SO ( 4 ) [ which is 
(SU(2) xSU(2) )/Z2 in fact] is just SU(2), while the cen
tralizer of SO (3) is clearly Z2> the diagonal matrices in 
SOC 4). Thus the centralizer can detect the distinction 
between SU (2) and SO (3), and so it is crucial to do all 
computations at the group level. 

It is customary to embed the standard group 
in E6 through the maximal subgroup 
[SU(3) XSU(3) xSU(3) ]/Z3' but for our purposes it is 
much clearer to choose an essentially equivalent embedding 
through [SU (2) X SU (6) ] /Z2' The factoring by Z2 means 
that - 12 in SU(2) is to be identified with - 16 in SU(6). 
One can see that this is necessary by noting that the 27 of E6 
decomposes as (2,6) + (1,15), whence it is clear that the 
pairs (/2,16 ) and ( - 12, - 16 ) are indistinguishable in E6 . 
(The author is grateful to the referee for this observation.) 
( Geometrically, it can be explained in terms of the theory of 
symmetric spaces.lO) Now consider the subgroup H4 of 
SU (6) consisting of matrices of the form 

[U' u, J 
where U3EU(3), U2 EU(2), and (detu2 )(detu3 ) = 1. Be
cause of this last condition, this group is locally isomorphic 
to SU(3) X SU(2) X U( 1), and is in fact the usual standard 
group. Now obviously it is essential, if we wish to breakE6 to 
H4 by means of the Hosotani effect, that it be possible to 
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express H4 as the centralizer of some subgroup of E6 • But we 
have the following "well-known" fact (see Ref. 11 for a rig
orous proof). 

Theorem 3: There exists no subgroup of E6 with H4 as 
its centralizer. 

Note that our inability to obtain the standard group fol
lows purely from the group theory of E6 , not from any as
sumptions about string theory. 

More satisfactory results can be obtained if we consider 
the rank five subgroup H s' consisting of matrices 

[U' u, J 
where Uz and U3 are as before, but r (det U2 ) - I 

(det u3 ) - I. This group is locally isomorphic to 
SU ( 3 ) X SU ( 2 ) X U ( 1 ) X U ( I ). It is possible to prove that 
Hs is the centralizer, in E6 , of the group H3 

[SU (2) X (U ( I ) xU ( 1 ) ) ] /Zz, where the U ( 1 ) xU ( I ) 
is embedded in SU (6) as the diagonal matrix diag 
(a,a,/3,/3,/3, a - 2/3 3). (We say "it is possible to prove," be
cause we want Hs precisely and not some disconnected 
group with Hs as its identity component.) 

Our problem now is to find a complete list of finite ho
lonomy groups that can break E6 to Hs. The problem is 
simplified by the following very simple result. We shall say 
that a subgroup H (of a group G) is a centralizer in G if it can 
be expressed as the centralizer of some other subgroup of G. 
(Thus, for example, H4 is not a centralizer in E6 .) 

Lemma 4: Let G be any group, let H be a centralizer in 
G, and let Fbe any subgroup of G with C(F) H. Then F 
must be a subgroup of CH. 

Proof: If CF = H, then CCF = CH. But evidently F is a 
subgroup of CCF. 
Now the centralizer of Hs in E6 is just H3 • [The relationship 
is reciprocal-C(H3) = Hs, and C(Hs ) = H3 .] Thus we 
obtain the conclusion that the finite holonomy groups for 
which we are searching are all subgroups of H3 . Regrettably, 
the converse is not true; some subgroups of H3 have larger 
centralizers. But in this case we can surmount this problem, 
because H3 is (barely) small enough for a complete survey 
of its finite subgroups to be possible. (In general, this is a key 
point in deciding whether an explicit solution of the Hoso
tani inverse problem is feasible: To find all finite holonomy 
groups breaking G to H, one needs at least some information 
on the finite subgroups of CH.) 

We defined H3 as [SU (2) X (U (l) xU (1» l/Z2' but 
there is a more concrete way of presenting it. 

Lemma 5: H3 is globally isomorphic to U( 1) XU(2). 
Proof: If sESU(2), any element of H3 has the form 

(s,a,/3) , where however we must bearin mind that (s,a,/3) is 
identified with ( - s, a, - (3). Now it is easy to verify that 
the map (s,a,{3) ..... (a{3,as) is a group homomorphism from 
H3 onto U( 1) XU(2). In fact it is an isomorphism, because 
the only triples mapped onto the identity (1,12 ) in 
U(1)XU(2) are (/2,1,1) and ( 12 , -1, 1), and both 
of these correspond to the identity in H 3 • (Note that this 
proof would break down if the subgroup of E6 had been 
[SU(2) XSU(6) J instead of [SU(2) XSU(6) l/Zz') 
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Now it is natural to split our study of U ( 1 ) xU (2) into two 
parts: SU(2) and the remainder. 

The finite subgroups of SOC 3) can all be found by geo
metric means.1O They are isomorphic to ( a) the cyclic 
groups Zn' (b) the dihedral groups, symmetry groups of the 
regular polygons, denoted D2n for n>3, (c) the symmetry 
groups TJ2 , 0 24 , and 160 of the regular tetrahedron, octahe
dron, and icosahedron, respectively, and finally (d) the non
cyclic group Zz XZz, which we denote D4 for formal rea
sons. All of these are non-Abelian except Zn and D4 , and 
their orders are indicated by the subscripts, a convention to 
which we adhere henceforth. Now there is of course a well
known two-to-one homomorphism ¢:SU (2) ..... SO (3), and 
~ we define Qs _= ¢-ID4, Q4n = ¢-ID2n , T24 ¢- ITJ2' 
0 48 =¢-1024 ,I120 =¢-116Q' TheQ4n,n>2,arenon-Abe
lian groups called the quaternionic groups, while the remain
der are called the binary polyhedral groups. It can be 
shown 10 that every finite subgroup of SU (2) is isomorphic 
either to a cyclic group or to one of these groups. However, 
this alone does not solve our problem, for we have seen that 
two different subgroups can have different centralizers even 
though they be abstractly isomorphic. In short, a classifica
tion up to isomorphism is not good enough for our purposes. 
Again, however, this (serious) problem is tractable in our 
particular case, as we shall now explain. 

Let A and B be two abstractly isomorphic subgroups of a 
group G. We shall say that A and B are isomorphic by conju
gacy if there exists gEG with B = g - lAg. This is a more 
restrictive notion than mere isomorphism; for example, it is 
easy to show that the diagonal SU(2) in SU(2) xSU(2) is 
not isomorphic by conjugacy to either of the explicit SU (2) 
factors. We now have the following result. 

Theorem 6: Let G be a group with the property that any 
two subgroups are isomorphic if and only if they are isomor
phic by conjugacy. Let Gbe embedded as a subgroup ofJ and 
let A be a proper subgroup of G with the property 
CJA = CJ G. Then if B is any subgroup of G isomorphic to A, 
we have CJA CJB = CJG. 

Proof By hypothesis, there exists gEG with B = g - lAg. 
Let CECJB. Then cg-1ag = g- lagc for all aEA, 
and so gcg la agcg- I

• Hence, gcg- IECJA, that is, 
cEg-I(CJA)g. That is, CJBc;;;,g-I(CJA)g =g I(CJG)g 

= CJG sincegEG. So we have CJBc;;;, CJG. But the fact that 
BC G clearly implies CJGc;;;, CJB. Hence, CJB CJG. 0 
Now SU(2) has precisely this property: It can be shown lO 

that if two finite subgroups of SU (2) are isomorphic, then 
they are isomorphic by conjugacy. Hence, these somewhat 
abstract considerations allow us to deal with our problem in 
a very concrete way. Take, for example, the group Q8' Ab
stractly it may be defined as a group with two generators x, y, 
satisfying the relations X2=y2, y-Ixy=X I. In SU(2) 
there is an uncountable infinity of distinct finite subgroups 
isomorphic to Qs. In particular, we may take x (b 0_ i) 
and y = (~ 0 I). Since every other Q8 in SU (2) is isomor
phic by conjugacy to this one, Theorem 6 says that if this 
representative has the same centralizer in E6 as SU (2), so do 
all the others. Hence our problem, as far as the SU (2) part is 
concerned, is reduced to an easy matrix computation. The 
quaternionic groups Q4n are given abstractly by xn = y, 
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y-lxy=X-I, and we can take X= (0 0 ) o 0- I , 

y= (~ 0-
1
), where D=exp (itrln). A straightforward 

computation shows that all of these groups have the same 
centralizer in E6 as SU(2) [namely, SU(6)]. Similarly, the 
cyclic groups can be represented explicitly by diagonal 
SU (2) matrices, whereupon it is obvious that they do not 
have the same centralizer as SU (2). Finally, we deal with the 
binary polyhedral groups as follows. In SO (3 ) the following 
inclusions are well known l2 (and have a clear geometric 
meaning): 

D4 C TJ2 C024 , 

D4 C TI2 CI6Q' 

Hence, lifting to SU(2), we have 

Q8 CT24 CSU(2), 

Q8 C048 CSU(2), 

Q8 CII20 CSU(2). 

In general, if A CBC GCJ, and if we know that CJA CJG, 
then CJGc;;;, CJBc;;;, CJA, whence CJB = CJG. We know that 
Q8 has the same centralizer in E6 as SU(2), and so we con
clude that the binary polyhedral groups likewise have the 
same centralizerin E6 as SU (2). We have proved the follow
ing theorem. 

Theorem 7: Let Fbe any finite subgroup ofSU (2) CE6 • 

Then F has the same centralizer in E6 as SU (2) if and only if 
F is not Abelian. 

We now understand how to replace SU (2) by some
thing finite. Now let us turn to the U ( 1 ) xU ( 1) factor of 
U ( 1) xU (2). It will of course have to be replaced by cyclic 
groups and products of cyclic groups. U ( 1 ) xU ( 1) is em
bedded in SU (6) as diag (a,a,/3,/3,/3, a - 2/3 - 3). Replace a 
by w, the generator of a Zn subgroup of the second U ( 1 ), so 
that Zn corresponds to diag (w,w,w - I,W - I,W I,W). (Re
call that the isomorphism of Lemma 5 identified the first 
U ( 1) with a/3 and the second with a, so if a/3 1 and 
a = w, then /3 w - I and a - 2/3 - 3 = w.) Similarly, if z 
generates the Zm replacing the first U ( 1 ), then Zm is diag 
(I, 1,z,z,z,Z- 3). Clearly, not all valuesofm and n are permis
sible, in the sense that, for some values of m and n Z XZ 
will not have the same centralizer in SU (6) as U ( 1') XmU ( 1 In. 
For exam pIe, if Z - 3 = I, then both diag 
(w,w,w- I,w-I,w I,W) and diag (l,I,z,z,z,l) will com
mute with a subgroup ofSU (6) that is locally isomorphic to 
SU(3) XSU(3) XU( 1). Thusz- 3 = 1 cannot be permitted; 
that is, m# 1,3. Similarly, if n = 1 or 2 (so that w ± 1), 

then we cannot allow Z = z - 3, so we must have m # 2 or 4 in 
that case. Finally, we shall later find it necessary 
to ask whether the product diag (w,w,w - I,W I,W I,W) 

xdiag(1,l,z,z,z,z 3) has the correct centralizer. The an
swer is yes unless n = 2m (because then w = ZW I) or 
m = 2n (because then zw - I = WZ - 3). Thus, identifying Z 

and w with their images in SU (6), we have the following: 

m#1,3. (I) 

If n = 1 or 2, then m#2,4. (2) 

The product zw has the correct centralizer only if 

n#2m, m#2n. (3) 
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Finally, let us bring together our findings on SV (2) and 
V ( 1 ) X V ( 1 ). In doing so, it is crucial to remember that 
V(2) is not isomorphic to V(1) XSV(2), but rather to 
[V ( 1 ) X SV (2) ] IZ2 • This is because - 12 belongs both to 
V( 1) and to SV(2), and must not be "counted" twice. Now 
Zn contains - 1 only when n is even, and so the finite sub
groups ofV(2) are given in two families: Zn XFp when n is 
odd [where Fp is any finite non-Abelian subgroup of 
SV(2)] and [Zn XFp ]/Z2' which we denote Zn oFp' when 
n is even. All of the Fp have Z2 as their center, and Zn OFp is 
called the central product of Zn and Fp. In the case of the 
quaternionic groups, these central products are given by 
three generators, w, x, and y, where w commutes with x and y 
and, for Zn oQp' 

(4) 

Note that the order ofZn oFp is ~np, not np. Allowing for all 
this and for ( 1) and (2) above, we have the following result. 

Theorem 8: Every finite subgroup of E6 having Hs as its 
centralizer is a subgroup of a group in the following list: 

Zm XZn XFp' n odd, 

Zm X (Zn oFp), n even, 

where Fp is any quaternionic or binary polyhedral group, 
and where (a) m:;6 lor 3, (b) m:;62 or4 ifn = lor 2. 

In principle, this solves our problem: We "merely" have 
to list the non-Abelian subgroups of these groups. In prac
tice, there are two problems here. The first is that some of 
these groups, and also their subgroups, are presented in an 
unfamiliar form: The reader who consults a standard cata-
10g\3 of finite groups will not, for example, find Z4 0Qs listed 
under that title. Consequently, we will not know, for exam
ple, whether our list has any redundancies. (Two finite 
groups can appear to be different and yet be isomorphic.) 
The second problem is that our solution is insufficiently ex
plicit. As is well known, one of the great virtues of Calabi
Yau compactifications is the fact that they give an under
standing of the generation problem: The number of genera
tions is IX1/21tTl, where X is the Euler characteristic of the 
universal cover, and ItTl is the order of the fundamental 
group. Since the holonomy group <I> is given by <I> = tTl N, it 
follows that ItTl is some multiple of 1<1>1. Hence, we wish to 
answer questions such as: "Are there any holonomy groups 
of order 6 breaking E6 to Hs?" (answer: no), or "which 
groups of order 36 occur in the list?" (answer: four of them). 

Now in fact it is extremely difficult to solve our problem 
as explicitly as this. But note that, if we arbitrarily assume 
the existence of four generations, then Ixl = 81tTi = 8rl<l>I 
for some integer r. Hence, the finite holonomy groups of very 
large order are relevant only to simply connected Calabi
Yau spaces with enormous Euler characteristics; for exam
ple, holonomy groups of order 64 are of physical interest 
only for manifolds with Euler characteristics 512, 1024, and 
so on. We shall therefore present completely explicit solu
tions only for the holonomy groups of lowest order. The 
computations cease to be feasible, at least by hand, at 
1<1>1 = 64; hence, we give explicit solutions for every <I> with 
1<1>1 <64. 
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V. CLASSIFICATION OF ALL FINITE HOLONOMY 
GROUPS OF LOW ORDER BREAKING E6 TO Hs 

As mentioned above, Theorem 8 gives us many groups 
in unfamiliar forms. We deal with this by settling on a stan
dard list. Reference 14 gives a complete list of all groups of 
order <32, in a way that is consistent with Ref. 13. For every 
group we encounter, we shall establish an isomorphism with 
one of the groups presented in Ref. 14. For groups of higher 
order, we give in the Appendix a list of standard forms in a 
style and notation consistent with those of Ref. 14. 

Aside from establishing these isomorphisms (which can 
be rather difficult, since it cannot be done in a systematic 
fashion), the procedure is fairly straightforward, if tedious. 
Let us illustrate with some of the simpler cases. The smallest 
admissible values of m and n are m = 2, n = 3, and the 
smallest Fp is Qs, so we have Z2 X Z3 X Qs' We must find the 
subgroups with the correct centralizer. First, of course, is 
Z2 XZ3 X Qs itself, a group of order 48 generated by z, w, x, 
y, wherer = w3 = 1, x 2 = y2,y - Ixy. Now it is important to 
bear in mind that if A and B are finite groups, then subgroups 
ofAXB need not have the form (subgroup of A) X (sub
group of B). That is true, IS however, if the orders of A and B 
are relatively prime. So we only need to examine the sub
groups of Z2 X Qs. For example, the subgroup generated by 
x and zy-denote it by (x,zy)-clearly has the same centra
lizer in E6 as Z 2xQs' Since x 2 =(zy)2 and 
(zy) - Ixzy = X - I, this subgroup is clearly isomorphic to 
Qs, and so we have obtained a second candidate, the order 24 
group Z3 xQs. We must also consider (zx,y); again, how
ever, (ZX)2 = y, Y - Izxy = zx - I = (zx) - I since r = 1, 
and so we obtain nothing new because this subgroup is also 
isomorphic to Qs . Again, (zx,zy) is isomorphic to Qs . 

Proceeding in this way, one obtains Table I. The groups 
are arranged in increasing order, from 8 to 60. The first col
umn gives the minimum possible value for lxi, assuming the 
existence of either three or four generations. In the second 
column the conventional name, if any, of the group is given, 
followed by its index number according either to Ref. 14 or 
to the Appendix. In most cases it is not easy to see how the 
group in question arises, so we specify it as a subgroup of one 
of the groups in Theorem 8, giving the values of m, n, and p. 
(This is ambiguous for the binary polyhedral groups, but in 
fact they appear in only one single case, indicated by the 
asterisk in the table.) In every other case, (m,n,p) refers to 
Zm XZn X Qp for n odd, or to Zm XZn oQp for n even. The 
precise embedding is given by the appropriate combination 
of canonical generators: z generates Zm , w generates Zn' and 
x and y generate Qp [see Eqs. (4)]. For example, we found 
above that Z3 X Qs, of order 24, occurs as a subgroup of 
Z2 XZ3 xQs; hence, (m,n,p) = (2,3,8). In terms of the ca
nonical generators, it was (w,x,zy) , and, hence, the entry in 
the table. 

A full proof that Table I is complete, for groups of order 
< 64, is extremely long and technical. We shall instead con
centrate on a few of the more interesting and subtle cases. 

A. The dihedral group 0 8 

Begin with the group Z2 X (Z4 0Qs), generated by 
z,w,x,y with r = 1 and w2 = x 2 = y2, Y - I xy = X - I. It is 
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TABLE I. All finite holonomy groups of order less than 64, breaking E6 to a subgroup of rank five. 

Subgroup of Zm X Zn Canonical 

IXlmin <P (X or 0) Qp generators 

g=3 g=4 Conventional TW m n p Z,W,X,Y 
48 64 D. 8/4 2 4 8 (wx,zy) 
72 96 Dl2 12/3 2 4 12 (zx2,wy) 

Ql2 12/5 4 4 12 (x2,zwy) 
96 128 (Z2 XZ. ) >4Z2 16/8 2 4 8 (w,x,zy) 

Z 2 XD. 16/6 2 4 8 (z,wx,y) 

Z. >4Z2 16/11 2 8 8 (zx,wy) 

Z, >4Z2 16/13 2 4 16 (wx,zy) 

Dl6 16/12 2 4 16 (zx,wy) 

(Z2 XZ.) >4Z2 16/9 4 4 8 (zx,wy) 

z. >4Z. 16/10 4 4 8 (x,zwy) 
108 144 Z,XD6 18/3 2 12 12 (x2,zwy) 
120 160 D20 20/3 2 4 20 (zx2,wy) 

Q20 20/4 4 4 20 (x',zwy) 
144 192 Z,XQ, 24/8 2 3 8 (w,x,zy) 

Z,XD, 24/7 2 12 8 (w',w'x,zy) 

Z.XD. 24/9 2 4 12 (w,x2,zwy) 

Z2 XD 12 24/4 2 4 12 (z,x,wy) 

Z, >4Z, 24/14 2 8 12 (x',zwy) 

D24 24/10 2 4 24 (zx,wy) 

Z, >4D, 24/15 2 4 24 (wx,zy) 

Z2XQl2 24/6 4 4 12 (x,zwy) 
168 224 D2• 28/3 2 4 28 (zx',wy) 

Q2' 28/4 4 4 28 (x2,zwy) 
180 240 Z,XD. 30/3 5 4 12 (zx',wy) 

Z,XDIO 30/2 6 4 20 (z',x2,z-'wy) 
192 256 Z 2X[16/8] 32/10 2 4 8 (z,w,x,y) 

Z 2X[16/11] 32/13 2 8 8 (z,x,wy) 

(Z2 XZ.) >4z, 32/17 2 8 8 (zw,x,y) 

Zl. >4Z2 32/22 2 16 8 (xz,wy) 

(Z2 XZ.) >4z, 32/26 2 4 16 (w,zx,y) 
32/32 2 8 16 (zx,wy) 

(Z. XZ.) >4Z2 32/31 2 8 16 (wx,zy) 

D'2 32/49 2 4 32 (zx,wy) 

Zl. >4z, 32/50 2 4 32 (wx,zy) 

Z4>4Z, 32/15 4 4 8 (zw,x,y) 

Z 4 XD, 32/14 4 4 8 (zw,zx,y) 

z, >4Z. 32/19 4 8 8 (zx,wy) 

(Z2 XZ. ) >4Z2 32/27 4 4 16 (zx,wy) 

Z. >4Z4 32/29 4 4 16 (x,zwy) 
32/28 4 4 16 (zwx,y) 

Z, >4Z4 32/30 4 4 16 (wx,zy) 

Z.>4Z, 32/21 8 1 8 (x,zy) 
216 288 Z 3 XQl2 36/6 2 3 12 (w,zx,y) 

Z 6 XD. 3615 2 12 12 (zx,wy) 

D3• 36/8 2 4 36 (zx2,wy) 

Q3. 36/12 4 4 36 (x2,zwy) 
240 320 Z,xQ. 40/5 2 5 8 (w,x,zy) 

Z.XDIO 40/6 2 4 20 (w,x,zy) 

Z 2XD20 40/7 2 4 20 (z,x,wy) 

z, >4Z. 40/12 2 8 20 (x2,zwy) 

Z,>4D, 40Ill 2 4 40 (wx,zy) 

D40 40/10 2 4 40 (zx,wy) 

Z,XQ2o 40/8 4 4 20 (x,zwy) 

Z,XD, 40/4 5 4 8 (z,wx,y) 
252 336 Z , XD6 42/2 7 4 12 (z,x2,wy) 

Z 3XDl4 42/3 6 4 28 (z',x2,z'wy) 
264 352 D .. 44/3 2 4 44 (zx',wy) 

Q .. 44/4 4 4 44 (x2,zwy) 
288 384 Z.xQ, 48/9 2 3 8 (z,w,x,y) 

Z3 X[16/8] 48/11 2 12 8 (w,x,zy) 
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TABLE I. (Continued.) 

IXlm;n ct> 

~XD8 48/8 

Z.XDI2 48/7 

ZsXD. 48/6 
Z 2X[24/14] 48/19 

Z, ><IZI6 48/26 

Z,XQI6 48/17 

D24 ><IZ, 48/24 

Z,XD2• 48/18 
Z 2 X[24/15] 48/20 

Z, ><Il 16/10] 48/28 

Z, ><II 16/13} 48/29 

Z2 XT24 48/21 

D.s 48/22 

Z'4 ><IZ2 48/23 

Z,XII6/1O] 48/13 

Z,XI16/9] 48/12 

Z.XQI2 48/10 

ZI2 ><IZ. 48/25 

Z3 ><II 16/9] 48/27 

Z 3X116/11] 48/14 
Z 3 X[16/13] 48/16 

Z 3 XD16 48/15 
300 400 Z,XDIO 50/3 
312 416 D" 5213 

Q" 52/4 
324 432 z.,XD6 54/4 

Z 3XZ3XD. 54/5 

Z 3XD1• 54/6 

336 448 Z,XQ8 56/5 

Z.XDI4 56/6 

Z 2 XZ2 XD14 56/7 

Z, ><IZ. 56/10 

D5• 56/9 

Z, ><IDs 56/11 

Z 2XQ'8 56/8 

Z,XD. 56/4 
360 480 Z, XQ12 60/5 

Z3 X Q,O 60/6 

Doo 60/7 

Z,XD12 60/4 

~XDIO 60/3 

Qoo 60/8 

easy to see that the subgroup (w,z,zy), generated by w, x, and 
zy, is isomorphic to the group Z4 0 Qg of order 16, that is, to 
(w,x,y) itself. But what is that group? Clearly, it is also gen
erated by w, wx, and wy, where (WX)2 = W2X2 = x· = 1. 
(This last is true because y - 1 xy = X-I implies 
y-Ix 2Y =X- 2, whence r=x- 2.) Similarly, (wy)2= 1 
and w· = x· = 1, while (wy) Iwxwy = w(wx) -I, so our 
group has the form (a,b,c) with a2 = b 2 = c· = 1, 
b - lab = c2a - I. This is the semidirect product 
(~XZ4 >4Z2, type 16/8 in the notation of Ref. 14. Again, 
consider (z,wx,y). A short calculation shows that 
x - Iyx Y - I, and so we have (wx) - Iy WX = Y I, where 
(WX)2 = y. = 1. Thus wx andy generate the dihedral group 
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Subgroup of Zm XZ" Canonical 
(X orO) Qp generators 

12 8 (z,w',x,ufy) 
4 12 (z,w,x,y) 
8 12 (zw,x,y) 
8 12 (z,x2,wy) 
16 12 (x2,zwy) 
3 16 (w,x,zy) 
4 24 (w,x,zy) 
4 24 (z,x,wy) 
4 24 (z,wx,y) 
8 24 (wx,zy) 
8 24 (x,zwy) 

• • (z,x,y,wv) 
4 48 (zx,wy) 
4 48 (wx,zy) 
3 8 (w,x,zy) 
12 8 (w"zx,ufy) 
4 12 (zw,x,y) 
4 24 (x,zwy) 
4 24 (wx,zy) 
8 8 (zl,z'x,wy) 
4 16 (zl,wx,z'y) 
4 16 (z',z',x,wy) 
20 20 (x,zwy) 
4 52 (zx',wy) 
4 52 (x2,zwy) 
4 12 (z,x2,wy) 
12 12 (z' ,x' ,z-'wy) 
4 36 (zl,x',z'wy) 
7 8 (w,x,zy) 
4 28 (w,x,zy) 
4 28 (z,x,wy) 
8 28 (x',zwy) 
4 56 (zx,wy) 
4 56 (wx,zy) 
4 28 (x,zwy) 
4 8 (z,wx,y) 
5 12 (w,x,zy) 
3 20 (w,x,zy) 
4 60 (zx2,wy) 
4 12 (z,x2,wy) 
4 20 (z,x',wy) 
4 60 (x2,zwy) 

Dg, and so (z,wx,y) = Z2 XDg. Similarly, (wx,zy) Dg. 
This is the smallest finite holonomy group capable of break
ing E6 to Hs. We leave it to the reader to show that all other 
admissible subgroups of Z2 X (Z. oQs) are isomorphic to 
one of these three. Note that (zw,x,y), (x,zwy), and so on are 
not admissible, because in this case n = 2m, and we saw in 
the previous section that zw does not have the correct centra
lizer when n = 2m or m = 2n. It is important to eliminate 
these special cases. 

B. The semidirect product Za >4Z2, type 16/13 

Take Z2 X (Z. OQI6 ), with ~ = 1, w2 = x. = y2, 
y-Ixy = X 1. The group Z4 oQI6 is also generated by x, 
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wx2, wy, where x 8 = 1 = (WX2)2 = (wy)2, and we have 
(wy) -lwx2wy = wx- 2 = W2(WX2 ) -I = X4(WX2) -I, so 
Z4 0QI6 is isomorphic to (Z2 XZs ) ~Z2' type 32/26. The 
subgroup ofZ2 X (Z4 0Q16) generated by wx, zy, is also gen
erated by zwxy, wx. Noting that (xy)2 = xyxy = xly- Ixy 

=xlX- I =y2, we have (zwxy) 2 = 1, (wx)s=l, 
(zwxy)-I wx(zwxy) = wx- I = w2(WX)-1 =x4 (WX)-1 

= (WX)4(WX)-1 = (WX)3. Hence, (wx,zy) isZs ~Z2' type 
16/13. 

C. The semldlrect product Z3 ~D8 

Consider the (wx,zy) subgroup of Z2 X (Z4 0Q24)' We 
have w2 = x6 =l,y-Ixy = X-I, and so (WX)6 = 1. Clear
ly, wx can be replaced by (WX)2 and (WX)3 together, where 
(WX)2 = xSisoforder 3 and (WX)3 is of order 2. Now y4 = I, 
and (y,(WX)3) is Ds since [(WX)3] - IY(WX)3 

= (WX)3Y (WX)3 = w6x 3yx3 = w2y (because w4 = 1 andxyx 

= y, so x 3yx3 = y), and then w2y = y- I since w2 = y2 and 
l = y - I. This Ds acts on the Z3 generated by XS according 
to y - IxSy = X - s, and so the group is Z3 ~Ds' type 24/15. 

D. The group 32/32 

Not all of our holonomy groups can be expressed as a 
semidirect product of cyclic or dihedral groups. An interest
ing counterexample is provided by the (zx,wy) subgroup of 
Z2 XZs OQI6' with ~ = I, w4 = X4 =y2, y-Ixy = X-I. We 
have (zx)s = (wy)s = I, butthe group is of order 32 because 
(ZX)4=X4 =W4 =(wy)4, and (wy)-lzxwY=ZX-1 

= (zx) - I. This is the group 32/32, which is not a semidi
rect product. On the other hand, (wx,zy) is also generated by 
wx, w2( = (zwxy) - 2) and w2zy, which satisfy (WX)4 
= (W2)4 = (W2zy)2 = I, (w2zy) - IWX (W2zy) = w2(wx) - I, 

and so this subgroup is a semidirect product, (Z4 XZ4) 
~Z2' type 32/31. 

E. The quaternionic group 0 36 

The reader may finj it surprising that our list contains 
QI2' Q20' Q2S' Q36' and so on, but not Qs, QI6' etc. The 
reason is simple: All of the quaternionic groups QSn + 4 are 
semidirect products Z2n + I ~Z4' while the others are not. It 
is easy to verify, for example, that Q36' defined by x 9 

= y2, 
y- Ixy = X - I, is also generated by x 2 and y, where 
(X2)9=y4= l,y-l(x2)y= (X2)-I. Hence, the subgroup 

of Z4 X (Z4 0Q36) given by (x2,zwy) is also isomorphic to 
Z9 ~Z4 = Q36' The corresponding statements for Q32 or 
Q40 would not be valid. 

F. The group Z2 X f24 

As there are only three binary polyhedral groups, they 
are of particular interest, and it is perhaps unfortunate that 
they appear in our list only once, and even then only at order 
48. The tetrahedral group Tl2 is D4 ~Z3' and, correspond
ing, 1'24 is Qs ~Z3' with three generators X,y,v satisfying 
x 2 = l,y-Ixy = X-I, v3 = 1, v-Ixv =y, v- Iyv = xy. Tak
ing Z2 X Z3 X 1'24 (with ~ = w3 = 1), one sees easily that 
the subgroup (z,x,y,wv) is isomorphic to Z2 X 1'24' The bina-
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ry polyhedral groups do not appear again until one reaches 
order 96. (The interesting group Z4 01'24 is of order 48, but it 
occurs as the (zw,x,y,v) subgroup ofZ2 X (Z4 01'24)' which 
is forbidden because n = 2m.) 

G. The group Zs XD10 

This group is remarkable because it is one of only nine 
groups in the table with order not equal to a mUltiple of 4. It 
occurs as the (x2 ,zwy) subgroup ofZ2 X Z20 oQ20' a group of 
order 400. We have x lO = (zwy) 10 = I, so zwy can be re
placed by (zwy)2 and (zwy)5. The former is w12 and gener
ates Zs' while the latter is zwSy, of order 2. Since (zwSy) - I 
x2 (zwSy) = X - 2, we have the group Zs XD IO , of order 50. 

This concludes our discussion of the derivation of Table 
I. We now consider an application. 

VI. FUNDAMENTAL GROUPS OF CALABI-YAU SPACES 
ON WHICH E. BREAKS TO Hs 

Table I tells us that if, on a given manifold M with fun
damental group 1T, we can construct a vacuum gauge config
uration with holonomy group (say) Z4 ~Z4' then we can 
break E6 to Hs on that manifold. We know that a necessary 
condition for this is that 1T should have a normal subgroup N 
with 1T/N isomorphic to the holonomy group. But-al
though this is universally taken for granted-it is very far 
from obvious that this condition is sufficient. Given, say, a 
manifold4 with fundamental group Z4 ~Z4' one might ex
pect to find that, in many cases, a principal E6 bundle with 
holonomy group Z4 ~Z4 simply cannot be constructed on 
that manifold. It is a remarkable and regrettable fact that 
this cannot happen on physically interesting manifolds. 

Theorem 9: Let M be a connected paracompact mani
fold with dimension greater than I, let G be a connected Lie 
group, and let Fbe a finite subgroup of G. Then there exists a 
principal G bundle over M, with a connection having holon
omy group isomorphic to F, if and only if the fundamental 
group 1T (of M) admits a normal subgroup Nwith 1T/Niso
morphic to F. 

The proof is a special case of one of the results of Ref. 11. 
It depends on the difficult Hano-Ozeki-Nomizu theorem, S 

and hence is anything but trivial. The theorem shows that on 
a manifold with fundamental group Z4 ~Z4' it is indeed pos
sible to construct an E6 bundle, together with a connection 
with holonomy group Z4 ~Z4; and since 
(Z4 ~Z4 )/Z2 = Ds, it is also possible to construct (an
other) E6 bundle with a connection having holonomy group 
Ds. This justifies the assumptions of Ref. 4. 

The theorem also shows us how to solve the second part 
of the Hosotani inverse problem: Now that we know precise
ly which <I> can break E6 to H s , what are the possibilities for 
1T? We must find all1T with 1T/N = <1>. Of course, there are 
infinitely many such 1T for each given <1>, but again we are 
mainly interested in the groups oflowest order. That means 
that N should be as small as possible, and so we can ask, for 
example, for all groups 1T satisfying 1T /ZI = Ds, 1T /Z2 = Ds ' 
1T/Z3 = Ds, and so on. 

Now this is a very well-known problem in group theory: 
The groups 1T satisfying 1T/N = <I> are called extensions of <I> 
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(or of N, but the former is more appropriate here). The 
problem of finding extensions can be formulated in terms of 
cohomology theoryl6 and is well understood in principle. 
There can, however, be few areas of mathematics in which 
practice diverges more completely from principle than here; 
he who wishes actually to compute the relevant extensions 
will find the study of the corresponding cohomology rings as 
futile as it is amusing. Instead we shall use a combination of 
elementary group theory and force. Table II presents a com
plete list of all groups of order less than 48 with 1T I N isomor
phic to some group in Table I. (The number 48 was chosen 
for convenience; it would be tedious, but by no means impos
sible, to extend this to 60.) The full proof is, once again, far 
too long to be given here, and so we merely sketch the main 
ideas. 

Notice first that we can always choose N to be trivial, 

and so 1T = <I> is one candidate for every <I> in Table I. Clearly, 
for 1<1>1>24, these are the only extensions with order less 
than 48, and that is why Table II stops at order 20 (that is, to 
avoid needless repetition, not because these are not valid 
extensions) . 

Second, the case N = Z2 is fairly easy to handle, because 
it is not difficult to show that if Z2 is normal, then it must be 
a subgroup of the center. To find all1Twith 1TIZ2 = D 12 , for 
example, one merely needs to examine the tables of groups of 
order 24 in Ref. 14, and factor by Z2 subgroups of the 
centers. For the groups of order 40 with 1TIZ2 = D20 , we 
proceed differently. Since the extensions are central, we take 
D20 (generated by a,b, with a lO = b 2 = 1, b - lab = a - I) 

and introduce a new generator e that commutes with a and b 
and satisfies e2 = 1. Then we put a lO = ea

, b 2 = cP, 
b - lab = era - 1, where a, fl, r are equal to 0 or 1 and must 

TABLE II. All candidates of order less than 48, for fundamental groups of manifolds on which E. breaks to a subgroup of rank five. When I<PI > 20, the 
groups 11" with 111"1 < 48 are all of the form 11" = <P, and so may be read from Table I. 

Ixl 

<P 11" N g=3 g=4 

D. D. Z, 48 64 

DB 16/6,16/9,16/10,16/12,16/13,16/14 Z, 96 128 
DB 2417,24/10,24/15 Z, 144 196 

D. 32/8,32/11,32/12,32123,32/24, 
32125,32127,32128,32129,32130,32/36 Z,xZz 196 256 

DB 32114,32/21,32126,32131,32132,32/34, 
32135,32139,32149,32150,32151 Z. 196 256 

DB 40/4,40/10,40/11 Z, 240 320 
D,z DI2 Z, 72 96 

DI2 24/4,24/6,24/9,24/10,24/11,24/15 Zz 144 192 

D,z 36/5,36/8,36/9,36/10,36/14 Z, 216 288 

QI2 Q,z Z, 72 96 

Q,z 24/6,24/14 Zz 144 192 

Q,z 36/6,36/11,36/12 Z, 216 288 
16/6 16/6 Z, 96 128 
16/6 32/8,32/11,32112,32114,32/23,32/24, 

32/25,32/26,32133,32134,32/35,32/36, 
32/37,32/38,32139,32144,32/45 Zz 192 256 

16/8 16/8 Z, 96 128 
16/8 32/10,32/14,32115,32116,32/36,32137 

32/38,32139,32140,32/41 Zz 192 256 
16/9 16/9 Z, 96 128 
16/9 32/11,32/18,32/20,32/27,32128,32/31, 

32/46,32/47,32/48 Zz 192 256 
16/10 16/10 Z, 96 128 
16/10 32/12,32/18,32121,32/29,32/30,32/32 Zz 192 256 
16/11 16/11 Z, 96 128 
16/11 32113,32/19,32120,32121 Zz 192 256 
16/12 16/12 Z, 96 128 
16/12 32123,32/27,32129,32149,32150,32151 Zz 192 256 
16/13 16/13 Z, 96 128 
16/13 32/24,32127,32/28,32130 Zz 192 256 

ZJXD. ZJXD6 Z, 108 144 

ZJXD. 36/5,36/6 Zz 216 288 
Dzo Dzo Z, 120 160 
Dzo 40/6,40/7,40/8,40/10,40/11,40/14 Zz 240 320 

Qzo Qzo z, 120 160 

Qzo 40/8,40/12 Z, 240 320 

2102 J. Math. Phys., Vol. 31, No.9, September 1990 Brett Mcinnes 2102 



                                                                                                                                    

be determined. Clearly, (a,p,y) = (0,0,0) isjust Z2 XD2o , 

while (1,1,0) gives a lO = b 2, b -lab = a-I which is Q4O; 
less trivially, (0,1,1) is the group with relations 
a lO = 1 = b 4

, b -lab = b 2a- l, which is also generated by 
a2

, as, b. These satisfy (as) - Ibas = aSbas = b - I (because 
aba = b 3 = b - I) as well as b - la2b = a - 2. This is the 
group Zs ><IDs. This procedure yields all of the desired ex
tensions. 

For the groups of order 32 with 1TIZ2 isomorphic to a 
group of order 16, this method is too unwieldy. But in this 
case (and also for 1TIZ2 = Ds ) one can use the tables of Ref. 
13, but in reverse. Those tables give the "first quotient sig
nals" of every group of order 32. Thus, if one wishes to find, 
for example, all Z2 extensions of DI6 (the groupT 3al in the 
notation of Ref. 13), then he needs only to run through the 
tables and identify all groups of order 32 with first quotient 
signal3al. 

The case N = Z3 is more difficult because such exten
sions need not be central. The extensions of Ds of order 24 
are easily found using the Sylow theorems: 15 Every group of 
order 24 has a Z3 subgroup that is normal only if it is unique. 
The tables of Ref. 14 then quickly settle the matter. For the 
groups of order 36, the easiest procedure is simply to list all 
of them and compute. (The ten non-Abelian groups of order 
36 are Z6XD6, D6XD6' Z3xQ12' Z3XT12 , Z2XDIs , 
Z2 X [(Z3 XZ3 ) ><IZd, (Z3 XZ3 ) ><IZ4' (Z2 XZ2) ><I~, 
Q36' and D6 ><ID6·) 

The cases N = Z2 XZ2 and N = Z4' <I> = Ds are the 
most unpleasant of all. Take the full list of groups of order 
32, with generators and relations given in Refs. 13 or 14, and 
compute. (That is, factor out all Z2 XZ2 and Z4 sub
groups.) 

The final case, N = Zs' <I> = Ds , is easy because of the 
following theoremY If 1TIN = <I> and the integers IN I and 
1<1>1 are relatively prime, then 1Tmust be a semidirect product 
of Nand <1>. By definition, semidirect products Zs ><IDs cor
respond to homomorphisms from Ds to the automorphism 
group of Zs' which is Z4' There are no homomorphisms 
from Ds onto Z4' but there are two onto its Z2 subgroup 
[corresponding to Ds/Z4 and Ds/(Z2 XZ2 )] and so we 
obtain Zs ><IDs, a second group isomorphic to D 40' and of 
course Zs XDs. This concludes our discussion of the deriva
tion of Table II. 

The table is arranged as follows. Each group of order 
less than 48 in Table I is listed under <1>. The second column 
gives a complete list of all fundamental groups 1T of mani
folds on which it is possible to construct an E6 bundle with a 
connection having a holonomy group isomorphic to <1>. The 
next column gives the normal subgroup N such that 
1TIN = <1>. The last column lists the corresponding values of 
X for g = three or four generations. All of the 1T are listed 
according to their index numbers assigned either in Ref. 14 
or in the Appendix. 

VII. CONCLUSIONS 

The original purpose of this work was to put the (slight
ly mysterious) finite group theory of Ref. 4 into perspective 
and to survey all possible groups that can arise in this con
text. Tables I and II give the complete solution for the lowest 
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values of Ixl. The fundamental group of the manifold con
sidered in Ref. 4 is Z4 ><IZ4' type 16/10. This group occurs in 
Table II (in the column labeled 1T) twice, corresponding to 
holonomy group <I> = Ds or <I> = 16/10 itself. On this mani
fold, then, it is possible to break E6 to Hs in two distinct 
ways; this is in agreement with Ref. 4. 

The main result of this paper is the fact that a complete, 
explicit solution of the "inverse problem" is possible in some 
cases, including G = E6 , H = Hs . But can one use this solu
tion to guide a search for further examples of Calabi-Yau 
manifolds on which E6 can be broken to a low-energy group 
of rank five? We consider that this may well be possible, 
along the following general lines. 

First, the tables already strongly restrict the universal 
covering manifold Mby giving the possible values of Ixl. The 
values less than 200 are (for three generations) 48, 72, 96, 
108, 120, 144, 168, 180, and 192. This already considerably 
reduces, for example, the list given in Ref. 17. 

Secondly, Ref. 4 shows that we have some direct control 
over <1>, as follows. Both <I> and the residual gauge symmetry 
C( <1» are subgroups of the original gauge group G. The sub
set <1>. C( <1» consisting of products of elements drawn from 
<I> and C( <1» is in fact a subgroup of G. It is isomorphic to 
[<I>XC(<I»]lZ<I>, where Z<I> is the center of <1>. Thus 
[<I>XC(<I»]lZ<I> [and not <l>XC(<I» as is often said] is a 
subgroup of G. Irreducible representations of G will decom
pose into irreducible representations of [<I> X C( <1» ]lZ<I>, 
and not of the low-energy group C(<I» alone. Thus, in gen
eral, <I> itself has an effect on the low-energy multiplets, and 
so it may be possible to use phenomenology directly to con
strain <1>. That is precisely what is done, most ingeniously, by 
the authors of Ref. 4. In that case, 1T = Z4 ><IZ4' G = E6 , 

<I> = Z4 ><IZ4 or Ds , and [<I> X C( <1» ]lZ<I> = [(Z4 ><IZ4) 
XHs ]/Z2 or [Ds XHs ]/Z2 since both Z4 ><IZ4 and Ds 
have centers isomorphic to Z2' and a careful analysis of the 
behavior of various multiplets under the action of these 
groups permits a direct deduction that <I> = Ds is to be pre
ferred to <I> = Z4 ><IZ4' It should be possible to generalize 
these arguments so that, independently of other consider
ations, certain candidates for <I> can be pronounced more 
(physically) interesting than others. Then candidates for 1T 

could be read from Table II. 
Finally, of course, one must verify that 1T acts freely on 

M. That would eliminate many--or, in some cases, all
candidates for 1T. The remainder will yield spaces M 11T on 
which it is certainly possible to break E6 to Hs by means of 
the Hosotani mechanism. (Notice, however, that except for 
considerations involving the Euler characteristic, we have 
not hitherto used the assumption that 1T acts freely.) It 
would undoubtedly be preferable to have at least some neces
sary condition for 1T to act freely on simply connected Ca
labi-Y au manifolds, since that might permit us to eliminate 
many entries in the tables. At the level of generality (deliber
ately) maintained in this work-where M can be any com
pact manifold, not necessarily even a Calabi-Yau space
there is little hope of finding such criteria; yet it might be 
possible for more specialized classes. 

In short, then, the possession of a complete list of finite 
holonomy groups capable of breaking E6 to a low-energy 
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group of rank five does suggest a program for finding examples of the appropriate Calabi-Y au manifolds. We hope to pursue 
this in a more specific context elsewhere. 
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APPENDIX: SELECTED GROUPS OF ORDER> 32 

Reference 14 lists all groups of order less than 33. Here we extend the list and give definitions, in terms of generators and 
relations, of some groups of higher order. Note that these lists are not complete (except for order 36): we have included only 
those groups, of each order, which appear in Tables I and II. Furthermore, we have not always included product groups, since 
the structure of these is obvious. 

Group Index No. Generators Nontrivial relations 

Z6X D6 36/5 a3 = b 2 = e6 = 1 b -lab = a-I 

Z3 xQ12 36/6 a6 = b 4 = e3 = 1 b - lab = a - l,a3 = b 2 

Z3 XT12 36/7 a2 = b 2 = e3 = d 3 = 1 e-Iae = b,e-Ibe = ab 

Z2 XD I8 · 36/8 a9 = b 2 = e2 = 1 b-Iab=a- I 

Z2 X [ (Z3 X Z3 ) >4Z 2 ] 36/9 a3 = b 3 = e2 = d 2 = 1 e - I ae = a - I,e - I be = b - I 

D6XD6 36/10 a3 = b 2 = e3 = d 2 = 1 b -Iab=a-I,d -Ied=e- I, 
d - I ad = a - I,e - I be = ba 

(Z3 X Z3 ) >4Z4 36/11 a3 = b 3 = e4 = 1 e - I ae = a - I,e - I be = b - I 

Q36 36/12 al8 = b 4 = 1 b -lab = a- I,a9 = b 2 

(Z2 XZ2 ) >4Z9 36/13 a2 = b 2 = e9 = 1 e-Iae = b,e-Ibe = ab 

D6 XD6 36/14 a3 = b 2 = e3 = d 2 = 1 b -Iab=a-I,d -Ied=e- I 

Z5X D8 40/4 a4 = b 2 = e5 = 1 b -Iab=a- I 

Z4XDIO 40/6 a5 = b 2 = e4 = 1 b -Iab=a- I 

Z 2XD20 40/7 a lO = b 2 = e2 = 1 b -Iab=a- I 

Z2 XQ20 40/8 a lO =b 4=e2=1 b - lab = a - l,a5 = b 2 

D40 40/10 a2°=b 2=1 b -Iab=a- I 

Z5 >4D8 40/11 a4=b 2=e5= 1 b -Iab=a-I,a-Iea=e- I 

Z5 >4Z8 40/12 a5 = b 8 = 1 b -lab = a-I 

Q40 40/14 a20 = b 4 = 1 b -lab = a-l,alO= b 2 

Z24 >4Z2 48/23 a24 = b 2 = 1 b -lab =all 

D24 >4Z2 48/24 a I2 =b 2=e2 = 1 b -lab=a- l,e- lbe=a6b 

Z12 >4Z4 48/25 a I2 =b 4=1 b -lab=a- l 

Z3 >4Z 16 48/26 a3 = b 16 = 1 b -lab=a- l 

Z3 >4[ 16/9] 48/27 a4=b 2=e2=d 3= 1 b -lab = ea-l,a-lda = d - I 

Z3 >4 [16/10] 48/28 a4=b 4=e3= 1 b -lab=a-l,a-Iea=e- l 

Z3 >4[16/13] 48/29 a8 = b 2 = e3 = 1 b - lab = a5,a - lea = e - I 

Z7 >4Z8 56/10 a7 = b 8 = 1 b -lab=a- l 

Z7 >4D8 56/11 a4 = b 2 = e7 = 1 b -lab = a-l,a-lea = e- l 
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A new approach to global stability analysis of one-dimensional continuous 
dissipative systems 
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It is proved by a direct construction that symmetry-breaking instabilities in one-dimensional 
dissipative continuous systems can be studied in terms of a suitable function G whose minima 
correspond to stable steady states of the system, while other extremal points correspond to 
unstable states. The existence of such a function is proved for a large class of continuous 
dissipative physicochemical systems in one spatial dimension. The function G is exact, in the 
sense that it is obtained by taking into account all nonlinear terms in the evolution equations of 
the system. Since in some respect this function has properties similar to the Ginzburg-Landau 
function widely used in second-order phase transitions, it is called the nonlinear Ginzburg
Lan~~u function (NLGLF) of the system. The NLGLF may be useful for studying the global 
stablhty under symmetry-breaking conditions as well as the character (first and second order) 
ofthe transitions between different steady states. The construction of the NLGLF usually 
requires simple numerical or analytical calculations. A specific example, taken from the 
physics ofliquid crystals, has been worked out analytically in the present paper. 

I. INTRODUCTION 

Symmetry-breaking instabilities have been known from 
a very long time in hydrodynamics, I but only in more recent 
times they have been extensively studied in spatially inho
mogeneous physicochemical systems,2 In the last decade, 
much effort was devoted to the study of symmetry-breaking 
instabilities in nonlinear optics of intense laser beams in Kerr 
media3 and in liquid crystalline media.4 

Symmetry breaking may occur only when the system is 
driven far from equilibrium by external constraints, some of 
which are under the control of the experimenter. Variation 
of the control parameters modifies the motion of the system. 
Over a certain range of values of the control parameters, the 
trajectories of the motion undergo quantitative modifica
tions, whereas at critical values ofthe control parameters the 
system trajectories undergo qualitative changes. Specifical
ly, we will consider trajectories of the perturbed motion so 
that when a critical value of the control parameters is at
tained, by varying the system constraints, there can occur an 
unstable transition between two steady states of the system, 
having different spatial organization. 

The systems exhibiting spatial symmetry breaking are 
usually described by a set of nonlinear partial differential 
equations in space and time coordinates. Several mathemat
ical methods have been exploited to study the occurrence of 
instability in such system as the fixed point or the maximum 
principle method,5 but certainly the most useful and widely 
used ones are Liapounov's first and second methods. Lia
pounov's first method consists of linearizing the given set of 
differential equations around the given reference solution, 
which may correspond to the equilibrium state or to any 
other steady state of the system. Boundary conditions are 

a) Also at Centro Interuniversitario di Elettronica Quantistica e Plasmi 1-
80125, Napoli, Italy. 

b) Also at Centro Interuniversitario di Struttura della Materia 1-80125, Na
poli, Italy. 

then exploited to expand the solution of the linearized prob
lem in a series of spatial modes. The time dependence of each 
mode is assumed of the form exp (At), A being the Liapounov 
exponent of the mode. The resulting eigenvalue problem is 
finally solved to obtain the set of Liapounov's exponents. 
The reference state will be locally asymptotically stable if 
and only if all Liapounov's exponents have a negative real 
part. This method, although yielding both necessary and suf
ficient conditions for asymptotic stability, leads to very long 
calculations, since it must be repeated for each steady-state 
solution of the full nonlinear problem. Moreover, this meth
od yields criteria for local stability only, i.e., for stability with 
respect to very small perturbations. The regions of stability 
of the system (i.e., the range of allowable perturbation am
plitudes for which the reference state remains stable) cannot 
be determined by Liapounov's first method. 

A not local sufficiency criterion for stability is provided 
by the second (or direct) Liapounov's method. This method 
was in great vogue some decades ago, especially because it 
was hoped that it would provide a general nonlinear thermo
dynamic criterion for stability offar from equilibrium dissi
pative systems. 2 The direct method was first formulated to 
study the stability of finite-dimensional systems (described 
by a set of total differential equations) and then adapted to 
treat continuous media.6 In the finite-dimensional case, the 
method consists of looking for a special function, the Lia
pounov function, of the thermodynamic variables of the sys
tem that will act as a bowl with the reference steady state at 
its lowest point and such that the solution of the equations of 
motion always runs down to this lowest point. In the contin
uum case, the Liapounov function must be replaced by an 
appropriate Liapounov's functional of the thermodynamic 
variables and their spatial derivatives. The direct method has 
the disadvantage of providing only sufficient criteria for sta
bility. It should be noted, however, that when physicists for
mulate complex problems, they generally start with an ac-
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tion, or a free energy, or a Liapounov functional, because 
they know that their problem has a conserved quantity or at 
least an equilibrium state, and that general differential equa
tions will not have integrating factors that lead to this. This 
phenomenological point of view will be adopted in this paper 
too, so that we will assume the existence of a Liapounov 
functional far from the beginning [see Eq. (1), below]. 

As we noted before, the passage from discrete to contin
uum systems implies the replacement of the Liapounov func
tion with a functional. Since a functional is an object much 
more complicated that a function, this passage is not without 
cost, as we will see from the following example. 

Let us suppose, for instance, that the plot of the Lia
pounov function for a finite-dimensional system is as shown 
in Fig. 1. Here, q denotes the set of thermodynamical coordi
nates of the system. Then, theminimaofG(q) correspond to 
the stable and the maxima to the unstable steady states of the 
system. Moreover, since G(q) accounts for all the system 
nonlinearities, the distance between two successive maxima 
yields the stability region for the state M. If external control 
parameters are present, we obtain a family of Liapounov 
functions G (q;a), a denoting the set of control parameters. 
The study of G(q;a) in function of the control parameters 
permits us to find the critical values of I at which instability 
occurs. Moreover, from this study, we can also deduce the 
character of the transition (first or second order7

) at the 
critical point, as shown in Fig. 2. From the figure, the simi
larity between the Liapounov function in the finite-dimen
sional systems and the Ginzburg-Landau function used to 
describe phase transitionsS is evident, the q's playing the role 
of order parameters. It should be noted, however, that the 
Ginzburg-Landau function is usually obtained after a power 
expansion in the order parameter, whereas G (q;a) accounts 
for all nonlinearities of the system. We may say, therefore, 
that, in the finite-dimensional case, the Liapounov function 
also provides a nonlinear Ginzburg-Landau function 
(NLGLF) for the system. 

The situation is quite different in the case of continuous 

u.. 
...J 

<!) 

8 

a-coordinate 

FIG. 1. A typical NLGLF for a multisteady-state system. The minima (in
dicated by arrows) correspond to stable steady-states, the maxima to unsta
ble steady states. Here t::. is the energy barrier between the stable states A and 
B. The energy t::. must be provided to the system by external sources to in
duce the transition A ~ B. 
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FIG. 2. The NLGLF G( Q;a) ofthe system considered in Sec. VIII for var
ious values of ad (d is the sample thickness). The equilibrium state Q = 0 
becomes unstable for ad > 1T. The positions of the minima of G( Q) are indi
cated by the arrows. For ad = 21T, G( Q) has a cusp at Q = O. 

systems. The thermodynamical coordinates q = q(z,t) are 
now functions of both time t and space coordinate z. Physi
cally acceptable steady states of the system are described by 
some curves C: q = q(z) in the space X of the thermodynam
ic coordinates. The Liapounov function is replaced now by a 
suitable functional F[ C], defined on the set of continuous 
curves C: q = q(z) in X, having class Ct. (The physical 
meaning of F[ C] depends on the particular problem envis
aged; in many cases it may be identified with the total free 
energy of the system.) The main property of the Liapounov 
functional F[ C] is that stable steady states q(z) of the sys
tems afford a minimum value to F[ C]. In this work, the 
existence of such an F[ C] is taken for granted. 

Although the functional F[ C] itself may be of some util
ity in studying the stability of the system steady states [see 
Ref. 6], one of the most useful properties of the Liapounov 
function is lost: namely, the property that just looking to the 
plot of this function permits us to get immediate global infor
mation on all steady states of the system as well as on all 
regions of stability. 

The main purpose of this work is to show that for a large 
class of nonlinear, one-dimensional, space-dependent dissi
pative systems, a global stability analysis of steady states can 
be performed by replacing the functional F[ C] by an ordi
nary function G(q) of the thermodynamic coordinates, hav
ing, in essence, the same properties of the nonlinear Ginz
burg-Landau function employed in the case of discrete 
systems. In particular, minima ofG(q) are put in one-to-one 
correspondence with asymptotically stable steady states of 
the system. The NLGLF G(q) is obviously intimately relat
ed to the functional F[ C] and, as we will see below, we may 
always arrange the system so that, at the point q = q, corre
sponding to the steady state q(z) of the system, the function 
G( q) takes the same value as the function F[ C] evaluated 
along q(z). It should be stressed, however, that the existence 
of an NLGLF G(q) also for continuous systems is a nontri
vial result pursued in this paper. 

In Sec. II the main properties of the simple dissipative 
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systems considered in this paper are revised, the total free
energy and the dissipation functionals are introduced, and 
their general relationships with the equations of motion, 
governing the decay of the system toward equilibrium, are 
established. The NLGL function G(q;a) is introduced in 
Sec. III, which contains the original part of the paper. The 
remarkable properties of this function are outlined in this 
section, while Sec. IV is devoted to their rigorous demonstra
tion. The explicit construction of the NLGLF G(q;a) is 
made in Sec. V with particular emphasis on its suitability for 
numerical computation. Sections VI and VII deal with the 
particular cases of fixed boundary conditions and of a multi
valued function G(q;a). Finally, in Sec. VIII a significant 
example, taken from the physics ofliquid crystals, is worked 
out analytically. Two appendices are devoted to the most 
technical aspects of the theory. 

II. SIMPLE DISSIPATIVE SYSTEMS 

Consider a continuous dissipative system described by a 
set of internal generalized thermodynamical coordinates 
qi(Z,t) (i = 1,2, ... ,N) expressed as functions of one space co
ordinate z and time. Equilibrium steady states are described 
by curves C: qi = qi(Z) in the N-dimensional space spanned 
by the thermodynamical coordinates. In general, we allow 
for multiple steady states. 

Stable equilibrium steady states are assumed to afford 
local minima to a suitable functional F[ C], having the gen
eral form 

F[C] = (C) Sod L(q,q',z)dz+fo(qo) -fd(qd)' (1) 

where L(q,q',z) is a function of class C2 in its arguments, q' 
denoting the tangent vector to the curve C: q'(z) = dqi /dz. 
The arbitrary functionsfo(q) andfd (q) lead to an explicit 
dependence of F from the endpoints qo = qi (0) and 
qd = qi(d) of C. The functions fo and fd in Eqs. (1) are 
usually referred to as the surface potentials. 9 These potentials 
are phenomenologically introduced to model the interfacial 
interactions at the sample walls. The gradients of the surface 
potentials with respect to the thermodynamical coordinates 
qi are then interpreted as the surface forces governing 
boundary conditions at z = 0 and z = d. 

Interaction with externally applied fields is included in 
F. In the following, we will always refer to F as the total free
energy functional and to L ( q ,q' ,z) as the corresponding den
sity of free energy. The function L(q,q',z) is supposed to 
satisfy Legendre's sufficiency condition for minima: 

det >0. [ 
a2L ] 

aq,iaq,j 
(2) 

Relaxation to equilibrium may be described in terms of a 
dissipation functional that we assume having the form 

D(t) = ~ ..!.. [Rij al aqj]dZ. (3) 
Jo 2 at at 

The dissipation functional D(t) is supposed to have 
been evaluated along the actual path qi = qi(Z,t), followed 
by the system in its decay toward equilibrium. The constant 
matrix Rij is assumed to be positive definite, so that D(t);>O 
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and dissipation vanishes in steady states, where fluxes vanish 
as well. Unless otherwise specified, summation over repeat
ed indices is always intended. The factor! in Eq. (3) has 
been inserted for further convenience. This factor scales 
D(t) so that, in most practical cases, 2D(t) is the total power 
dissipated in the system during relaxation. 

The existence of the dissipation functional (3) guaran
tees that minima of F[ C] correspond to asymptotically sta
ble steady states of the system. Power balance requires, in 
fact, that the total free energy lost by the system in the unit 
time should equate the power dissipated by internal fluxes, 
viz., 

dF 

dt 
- 2D(t)..;;0. (4) 

In Eq. (4) the functional F[ C] must be evaluated along the 
real path q(z,t) followed by the system during relaxation. 
Now, let us suppose that the time-independent functions 
qi(Z) afford a local minimum value to the free-energy func
tional l and let Fbe the value of F taken along qi (z). Then, 
any other functions qi (z,t) will render the free energy larger 
than F, provided, of course, that qi(Z,t) is close enough (in 
some topological sense) to the reference steady state qi(Z). 
Then, we have F(t) - F>O and, from Eq. (16), 
d(F(t) - F)/dt = dF /dt..;;O. From this, we see thatthe func
tional (F - F> behaves as a Liapounov functional for the 
system, which guarantees the asymptotic stability of the ref
erence steady state qi (z). 

From the power balance equation (4), we may easily 
obtain the differential equation governing the decay to equi
librium (or to any other steady state of the system). Inser
tion of definitions (1) and (3) into the power balance equa
tion (4) yields, in fact, 

[[Rij ~: -Ei(q,q',q"'Z)](~~i)dZ 
+ [aL _ a

f d ] _ [aL _ afo] = 0 (5) 
aq'i aqi z=d aq'i aqi z=o ' 

with 

E.( ,,, z) =~(aL) _ aL 
, q,q,q , az aq'i aqi . (6) 

Since Eq. (5) must hold for arbitrary qi (z,t) at any fixed 
time t, the time evolution of the system is governed by the 
parabolic partial differential equations 

E ( ' '') R aqj 
i q,q,q ,z = ij Tt ' (7) 

supplemented with the boundary conditions 

aL afo atz= 0 -.=-., 
aq" aq' 

and 

aL afd 
-.=-., atz=d. (8) 
aq" aq' 

In view of condition (2), Eqs. (8) can be solved with respect 
to q'i, yielding the boundary conditions in the standard form 
q'i = g'O,d (q) at z = 0 and z = d, respectively [g' o(q) and 
g'd (q) are functions of the internal coordinates]. 
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Beside boundary conditions (8), steady states of the sys
tem obey the set of ordinary differential equations 

Ei(q,q',q") = o. (9) 

As shown by Eqs. (6), Eqs. (9) are the Euler-Lagrange 
equations associated with F[ C) and, therefore provide nec
essary (but in general not sufficient) conditions for afford
ing a minimum value to the total free-energy functional. 

Equations (7) are usually interpreted as the balance 
between the bulk thermodynamical forces on the left and the 
bulk dissipative forces on the right. The boundary conditions 
( 8 ), instead, express the balance between surface thermo
dynamical forces on the left and externally imposed surface 
constraints on the right. Notice that, in the present model, 
dissipation at. the surfaces is neglected. 

In the following, we will refer to a system obeying a set 
of evolution equations of the form (7), with boundary condi
tions (8), as to a simple (one-dimensional) dissipative sys
tem. Only simple dissipative systems will be considered in 
this paper. It should be noted, however, that many dissipa
tive systems of practical interest may be considered as sim
ple. They include heat conduction, chemical reactions in the 
presence of diffusion, reorientation in liquid crystals, optical 
bistability in inhomogeneous media, etc. 

III. THE NONLINEAR GINZBURG-LANDAU FUNCTION 
FOR SIMPLE CONTINUOUS SYSTEMS 

In this section we prove the existence of an NLGLF 
G(q) for simple systems by direct construction. It is obvious 
that the possibility of having an NLGLF for these systems is 
strongly related to the existence of the free-energy functional 
(1). In order to construct our NLGLF, we use Caratheo
dory's method of equivalent integrals. 10 Let z be an arbitrar
ily fixed point between 0 and d. Then, the (n + 1 )-dimen
sional space Rn + I formed by the coordinates qi and z is 
divided in two regions Go and Gd by the hyperplane 
z = z = const. Now, let So(q,z) and Sd (q,z) be'two func
tions defined in Go and Gd, respectively, obeying the bound
ary conditions 

So(q,O) =Io(q), 

( 10) 

for any q. 
Following Caratheodory, we want to see ifit is possible 

to choose So(q,z) and Sd (q,z) so that they also obey the 
differential inequalities 

dSo(q,q',z) - L(q,q',z)dz<;.O, 

dSd(q,q',Z) - L(q,q',z)dz<;.O, (11 ) 

for any given line elements (q,q' ,z) in Go and G d, respective
ly. How to construct explicitly the functions So and Sd will 
be shown in the next section. For the moment, let us suppose 
that such functions So(q,z) and Sd(q,Z) have been found. 
Then, if qi = gi(z) is an arbitrary curve C joining the hyper
planes z = 0 and z = din R n + I , we may integrate the first of 
Eqs. (11) along C between the points Po = (q(O),O) and 
P = (q = q(z),Z), obtaining 
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(Cl f L(q,q',z)dz>So(q,z) - So(q(O) ,0). (12a) 

Analogously, we can integrate the second ofEqs. (11) along 
C, between thepointsP(q,z) andPd = (q(d),d), obtaining 

(Cl Ld L(q,q',z)dz>Sd(q(d),d) - Sd (q,z). (12b) 

By adding Eqs. (12a) and (12b) together and considering 
also the boundary conditions ( 10), we see that the free-ener
gy functional (1) evaluated along the arbitrary curve C (of 
class C1 ) obeys the inequality 

F[C ]>So(q,z) - Sd (q,z), (13) 

for any fixed point z between 0 and d. We remark, however, 
that the coordinates qi depend on the curve C, since they are 
given by qi = gi(Z). 

It is now almost evident that an NLGLF for our system 
could be defined as 

(14) 

In fact, let Q*ibe a point where G(Q) has a minimum 
value G*. Then, inequality ( 13) shows that all curves C join
ing the hyperplanes z = 0 and z = d and intersecting the hy
perplane z = z in a point P other than P* = (Q* ,z) afford 
larger values to the free-energy integral than the set of curves 
passing through p* [if the minimum of G( Q) is local, Pmust 
be in a suitable neighborhood of p* on the hyperplane 
z = z]. Moreover, as will be shown in the next section by 
explicit construction, we can choose the functions So and Sd 
so that, among the last curves, there is one curve, C* say, for 
which the equality holds in Eq. (13). This curve affords, of 
course, a minimum value to the free-energy integral with 
respect all varied curves between z = 0 and z = d intersect
ing the hyperplane z = z in a neighborhood of P*. The curve 
C* must then necessarily obey all requirements imposed by 
the variational problem 8F = O. In particular, C* must obey 
the Euler-Lagrange equations (9) as well as the boundary 
conditions (8) so that C* represents a steady state of the 
system. Moreover, since C* affords a minimum value to F, 
this state is asymptotically stable. We have established, in 
this way, a correspondence between asymptotically stable 
states of the system and minima of the ordinary function 
G(Q). 

We may also make this correspondence more explicit. 
First, we fix our attention on a given point P = (Q,z) on the 
hyperplane z = z and consider the set of all curves passing 
through P. Among these curves there will be one curve, C 
say, that minimizes the functional F. Along C, equality holds 
in Eq. (13), i.e., F[C] = G(Q). Under a very general hy
pothesis (see Sec. VIII), this establishes a one-to-one corre
spondence between curves in Rn + I and values of the 
NLGLF G(Q). In general, the curve C corresponding to 
G( Q) does not represent a possible steady state of the system, 
since C minimizes F only with respect to all curve passing 
through P and not with respect all curves between z = 0 and 
z = d. Only the curves C* corresponding to points Q*i af
fording extremal values G* to G( Q), in fact, can be associat
ed to steady states of the system and, in particular, the curves 
corresponding to minima of G( Q) to steady states that are 
asymptotically stable. 
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The NLGLF G(Q) as defined in Eq. (14) has many 
remarkable properties: 

(i) G ( Q;a) is an ordinary function of the coordinate Q 
and of the external parameters a; 

(ii) the extremal points of G(Q;a) for fixed a corre
spond uniquely to the steady-state solutions ofEqs. (7), gov
erning the evolution of the system; 

(iii) the minima of G(Q;a) for fixed a correspond to 
stable steady states, other extremal points to unstable states. 

(iv) the difference of the G LF between two consecutive 
minima and maxima yields the amount of energy !!. that 
must be provided to the system for inducing a transition 
between the two stable states separated by the barrier !!.. 

This is shown in Fig. 1. All these properties of the 
NLGLF G(Q) will be proved in the next section. 

IV. PROPERTIES OF THE NONLINEAR GINZBURG
LANDAU FUNCTION 

The curve C for which equality holds in Eq. ( 13) can be 
obtained by adjusting its slope so to minimize the left-hand 
sides of Eqs. (11) at any point (q,z) of Rn + 1 • For the sake of 
brevity, let us denote with S(q,z) either of the functions 
So(q,z) or Sd (q,z) and with G the corresponding regions Go 
and G d of R n + 1 where these functions are defined, respec
tively. Then, inequalities (11) can be rewritten both as 
dS - L dz<O or, equivalently, 

as + q'i as _ L (q,q',z) <0. 
az aq' 

(15) 

The proper slope of the curve C is found by minimizing 
the left-hand side of Eq. (15) with respect to q,i for fixed 
(q,z). This yields the canonical relation 

i aL, as 
p =-a ' (q ,q,z) = a . , 

q' q'(q,z) 
(16) 

as well as Legendre's necessary conditions (2). 
In view of the last conditions, Eqs. (16) can be solved 

with respect to q'i, yielding 

(17) 

This is a set of ordinary differential equations whose 
solutions qi = qi(Z) yield the minimizing curves C in G. Ob
viously, since S represents anyone of the functions So or S d' 

we have two different sets of differential equations of the 
form (17) in each of the regions Go and G d, respectively. 
Evaluating the canonical relations ( 16) at z = ° and z = d 
and comparing with Eqs. (10), we see that all the solutions 
of Eqs. (17) obey also the boundary conditions (8). More 
precisely, through any point Po(qo,O) of the hyperplane 
z = ° in Rn + 1 passes one solution Co of Eqs. (17) [with 
S(q,z) replaced by So(q,z)] obeying the first of boundary 
conditions (8) at Po. Similarly, through any point Pd (qd,d) 
on the hyperplane z = d passes one solution Cd of Eqs. (17) 
[with S(q,z) replaced by Sd(q,Z)] obeying the second of 
boundary conditions (8) at Pd' Equations (17) define, 
therefore, two congruences Ko and Kd of solution curves in 
the regions Go and G d of R n + l' In the following, we will 
suppose that the congruences Ko and Kd cover their respec
tive regions Go and Gd simply, i.e., that one and only one 
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member of the congruences passes through any point of the 
regions. 

Since the regions Go and Gd are divided by the hyper
plane z = z, through any point P on this plane will pass one 
curve of Ko and one curve of K d, intersecting at P. In this 
way, we may put in one-to-one correspondence the points P 
of the hyperplane z = z with a couple of curves, namely, the 
members of Ko and Ko meeting at P (see Fig. 3). This corre
spondence will have a fundamental role in the present theo
ry, 

Up until now the function S(q,t) is completely arbi
trary. We can specify it by imposing that along the minimiz
ing curve C equality must hold in Eqs. (11). Then, inserting 
Eqs. (16) into Eqs. (11) (with the equality sign) yields 

as + q'i aL _ L = ° (18) 
az aq" 

or, equivalently, 

as - + H(VS,q,z) = 0, 
az 

(19) 

where VS = as laqi and H(p,q,z) is the Hamiltonian asso
ciated with L(q,q',z), expressed as a function of the canoni
cal coordinates and momenta. We see from Eq. (19) that 
S(q,z) (and hence both So andSd) are solutions of the Ham
ilton-Jacobi equation associated with H. The boundary con
ditions (10) may be considered as Cauchy data for Eq. (19), 
These data uniquely determine the functions So(q,z) and 
Sd (q,z). From Eq. (14), we see that the NLGLF is given by 
the difference of the two solutions of the Hamilton-Jacobi 
equation ( 19), having Cauchy data ( 10), evaluated at z = z. 
The NLGLF is, therefore, not unique, different choices of 
the point z yielding different NLGLF. If the free energy of 
the system also depends on a set of external parameters a as 
well, then So and Sd [and hence also G( Q)] will depend on 
the parameters a. Although not explicitly written, this de
pendence on the external parameters will be always intend
ed. 

Q) 
+' 
(II 

c: 

... 
o 
o 
o , 
0-

Once the appropriate solutions So(q,z) and Sd(q,Z) of 

o d 
Space 

FIG. 3. Only two curves of the families of extremals Ko and Kd intersect at 
the generic point P on the hyperplane z = z; C is an arbitrary curve between 
z = 0 and z = d passing through p, 
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the Hamilton-Jacobi equation are found, the associated con
gruences Ko and Kd can be determined by integrating Eqs. 
(17). 

The curves of the congruences Ko and Kd provide a par
tial solution to the problem of finding a minima to the free
energy functional F. In fact, let P( Q,z) be a fixed point on the 
hyperplanez = zandlet Co and Cd be the two membersofKo 
and Kd meeting at P. Let C = Co al Cd be the curve obtained 
by joining Co and Cd' Then, if C is an arbitrary curve 
between z = 0 and z = d passing through the fixed point P, 
we have, by construction, the fundamental inequality 

so that C = Co al Cd affords a minimum value to F with re
spect all varied curves between z = 0 and z = d, passing 
through the fixed point P. From this we can infer that each of 
the curves Co belonging to Ko and Cd belonging to Kd is an 
extremal curve of the functional F; i.e., they obey the Euler
Lagrange equations (9). This could also be proved by a di
rect calculation based on the Hamilton-Jacobi equation 
(Appendix B). 

Weare now in a position to prove the main properties 
(i)-(iv) of the GLF G( Q) defined by Eq. (14) [see also Eq. 
(20) J. Property (i) is evident by construction. In order to 
prove property (ii), let us denote with Q i = Q i* an extre
mum point of G(Q). Then, aG laQi = 0 at Q i = Q i* and, 
from definition ( 16) and Eqs. (19), we find that the canoni
cal momenta Pi = aL laq'i along the two extremal arcs Co 
and Cd coincide at the intersection point p* = (Q* ,z) on the 
hyperplane z = Z. In other words, for Q i = Q i*, the curve 
C = Co al Cd reduces to a curve C*, connecting the hyper
planes z = 0 and z = d and satisfying the Erdmann-Weier
strass condition that aL laq'i is continuous at the corner 
P* = (Q*,z). As is well known from the Hamilton-Jacobi 
theory of variational calculus, this implies that the whole 
curve C* is an extremal curve for the free-energy functional 
F. II Since, by construction, C* also satisfies the boundary 
conditions (8) at z = 0 and z = d, it represents a possible 
steady state of the system. Conversely, in order that a curve 
C = Co al Cd' made of two extremal arcs joining at P( Q,z) , 
may be an extremal curve for the functional F, the Erd
mann-Weierstrass condition must be met at the corner P. 
Then, Eqs. (16) and ( 19) imply aG I aQi = 0 at P, so that Qi 
is an extremum point of the GLF G(Q). We have therefore 
proved the property (ii) of the NLGLF G(Q). 

It should now be almost obvious that extremal points of 
G( Q) other than minima must not correspond to minima of 
the free-energy functional F. In fact, if Q i* is an extremal but 
nota minimum point ofG(Q), some curve C = Co al Cd [in
tersecting the hyperplane z = z at some point P other than 
P* (Q* ,z) J will exist for which F[C] = G( Q) 
< G(Q*) = F[ C*]. The steady-state curve C* thus cannot 
afford a minimum to the total free-energy F. We conclude 
that only minima of the GLF G(Q) may correspond to 
curves C*, minimizing the free-energy functional, which 
proves property (iii) of our NLG LF. Finally, property (iv) 
is easily deduced from Eq. (20) with Creplaced by C*. 
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v. CONSTRUCTION OF THE GINZBURG-LANDAU 
FUNCTION 

The GLF G(Q) defined in Eqs. (14) and (20) can be 
constructed by observing that, along each curve of the pre
viously defined congruences Ko and K d, we have equality in 
Eqs. (11) [and, hence, also in Eqs. (12a) and (12b) ], once 
the arbitrary curve C is substituted by a curve Co belonging 
to Ko or by a curve Cd belonging to K d, respectively. Then, 
integration ofEq. (12a) yields 

So(Q,z) =Io(qo(Q,z» + _ rz L dz, (21a) 
(c,,) Jo 

where Co is the member of Ko starting at the point 
Po = (qo,D) at z = O. In Eq. (21a), e denote the coordi
nates of the point P = (Q,z), where Co intersects the fixed 
hyperplane z = Z. In deriving Eq. (21a), the first of bound
ary conditions (8) has been used. Notice that in Eq. (21a), 
all quantities and, in particular, the initial coordinates qoi of 
the curve Cmust be expressed as functions of the coordinates 
Qi atz =z. 

Similarly, integration of Eq. (12b) yields 

Sd(Q,z)=h(qd(Q,Z»- _ idLdZ, (21b) 
(C,/l z 

where Cd is the member of Kd passing through the point 
Pd (qd,d) on the hyperplane z = d. All quantities and, in 
particular, the coordinates q~ must be expressed as functions 
ofthe coordinates e ofthe point P, where Cd intersect the 
hyperplane z = Z. Once the congruences Ko and Kd are giv
en, the functions So( Q,z) and Sd (Q,z) can be evaluated from 
Eqs. (21a) and (21b). As shown in these equations, the cal
culation involves the computation of the integral of 
L(q,q',z)dz along the members of Ko and K d, which can be 
easily carried out by standard numerical methods. 

The construction of the congruences Ko and Kd is just as 
easy. In fact, Ko and Kd consist of curves that (a) obey the 
Euler-Lagrange equations (9) associated with L(q,q',z) 
and (b) obey the boundary conditions (8) at z = 0 and 
z = d, respectively. The congruence Ko can therefore be ob
tained by integrating Hamilton's canonical equations 

, aH(p,q) 
Pi = - aqi 

'i aH(p,q) 
q = , 

api 

(22) 

with initial conditions qi(O) = q~ and Pi (0) = alo/aqi(qo). 
For any given value ofthe initial coordinates q~, we have an 
integral curve qi = qi(Z;qO) ofEqs. (22), i.e., a member Co of 
K o, the qo's being the N parameters of the congruence. As 
shown in Eq. (21a), in order to evaluate the function 
So( Q,z) , we must take as parameters of Ko the values 
Q i = qi(Z;qO) assumed by Co at z = Z. The switching to the 
new parameters e is possible only if the Jacobian determi-
nant 

J. (z) = a(ql,q2, ... ,qN) 
o a I 2 N (qo,qo, .. ·,qo) 

(23) 

does not vanish for O,;;;z,;;;z, i.e., if the congruence Ko given by 
qi = qi(Z;qO) covers the region Go of Rn + 1 simply. This con-
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dition is fundamental in our construction and, as it will be 
shown later, its failure is fatal for the stability of the system .. 

The congruence Kd can be constructed in an analogous 
way: The only difference is that Hamilton's equations must 
be integrated backward and the relevant Jacobian Jd (z) is 
between the coordinates g at z = z and the coordinates q~ at 
z = d. [For the particular case of fixed boundary conditions, 
the appropriate Jacobian is given by Eq. (25) below.] 

It is worth noting that the construction of the integral 
curves of Hamilton's equations belonging to Ko and Kd in
volves only conditions at one point (z = 0 or z = d) at once 
and, therefore, it can be carried out with simple and fast 
numerical techniques. 

The hyperplane z = z can be chosen arbitrarily, and we 
can exploit this fact to improve the accuracy of the numeri
cal routine. Although the optimal choice of z may depend 
strongly on the actual problem under study, a rule of thumb 
may be to take z so that the product of the Jacobians 
JO(z)Jd (z), evaluated at z = z, is as large as possible (in 
absolute value). If the lacobians are large, in fact, the inte
gration of Hamilton's equations is less stiff and the accuracy 
of the inversion routine needed to pass from the initial (or 
final) coordinates to the g is improved. 

For spatially centrosymmetric systems, the calculations 
may be simplified. In this case, in fact, symmetry requires 
fo ( q) = - fd (q) as well as the in variance of the free-energy 
density L(q,q',z) under the change z-+d - z. Then, if we 
choose z =!d and perform the variable change z -+ d - z 
in the integral in Eq. (2Ib), we obtain 
Sd(Qdd) = - So(Q,!d) and, hence, G(Q) = 2So(Q,!d). 
We see, therefore, that, in order to construct the GLF for 
symmetric systems, only the congruence Ko is needed. More
over, the choice z = ~d automatically maximizes the prod
uct Je/d' We used this simplification in working out the ex
ample of Sec. VIII. 

VI. THE CASE OF FIXED BOUNDARY CONDITIONS 

Our NLGLF was derived for systems obeying the time
independent boundary conditions (8). Although these con
ditions are quite general and are met by many physicochemi
cal systems, an important class of systems is apparently 
excluded: the systems having fixed internal coordinates 
qi(O) = q~, qi(d) = q~ atboundariesz = Oandz = d. In the 
case of chemical reactions, this corresponds to a fixed con
centration of reagents at the reservoir boundaries; in the case 
ofliquid crystals, this corresponds to strong anchoring at the 
walls. The case of fixed boundary conditions corresponds to 
infinitely large surface potentialsfo andfd and, therefore, it 
must be handled with care. Since the values of qi at boundar
ies are now fixed, the relevant free-energy functional is only 
SgL dz, the surface contribution (although infinite) being a 
constant. The congruences Ko and Kd must be formed by 
extremal curves satisfying the boundary conditions 
qi(O) = q~ and qi(d) = q~, respectively, with arbitrarily giv
en qo's and qd'S. These congruences can be obtained by inte
grating Hamilton's Eq. (22). with the above boundary con
ditions for the coordinates. by setting Pi (0) = PiO and 
Pied) =Pid. in the two cases. The 2Nmomentapo andpd 
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now play the role of parameters of the congruences Ko and 
K d , respectively. The construction of the NLGLF G(Q) 
now proceeds as in the previous section, with Eqs. (21 a) and 
(21 b) replaced by 

So(Q,z) = _ (Z L dz, 
(C,,)Jo 

Sd(Q.Z) = - _ (d L dz. 
(Cd)Jz 

and the Jacobian determinant replaced by 

lo(z) = a(ql,q2 .... ,qN) 

a(pJO'P20'· ... PNO) 

(24a) 

(24b) 

(25) 

We notice that, in the present case, the functions 
So(Q,z) and Sd (Q.z) can be expressed in terms of the well
known Hamilton's principal function W(q,zlqo,zo) 12 as 
So(Q,z) = W(Q.zlqo,O) andSd(Q,z) = - W(qd,dIQ,z). 

VII. THE CASE OF MULTIVALUED GINZBURG-LANDAU 
FUNCTION 

In deriving the NLGLF G( Q), we have supposed that 
the Jacobian determinants (23) and (24) [or (25)] do not 
vanish. If this conditions is not fulfilled, the curves of the 
congruences Ko and Kd do not cover the regions Go and Gd 
of Rn + 1 simply; i.e., they have an envelope (caustic) or a 
focus in Go and in G d, respectively. In this case, the functions 
SoC Q,z) and Sd (Q,z) and, hence, G( Q) are multivalued. 
This status of affairs is depicted in Fig. 4 for the example of 
Sec. VIII. It is worth nothing that, even in the pathological 
case of the presence of caustics, the construction of our 
NLGLF can be carried out without modification. The only 
difference will be that the final G( Q) will turn out to be 
multivalued.Now, it can be shown that Qvalues correspond
ing to a multivalued G( Q) cannot correspond to stable 
steady states of the system, even if they afford a local mini
mum to G( Q). This happens, for instance, for the unstable 
state Q = 0 in Fig. 5. The demonstration that a multivalued 

1,-----or-----,------.------.-----. 

ad=8 

. . . . . . . . . . . . . . 

............. 

-1~----~----~------~----~----~ o lid .5 

FIG. 4. The family of extremals Ko for the example in Sec. VIII, for ad = 8. 
The family has an envelope (caustic) in the region Go, corresponding to 
O<z<z = ~d. In this case, as shown in Fig. 5, the NLGLF G( Q;a) is multi
valued. 
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FIG. 5. The NLGLF G(Q;a) of the example in Sec. 8 for ad = 8 (> 21T). 
The state Q = 0 is unstable because G is multi valued at Q = O. The only 
stable states are those indicated by the arrows. 

G( Q) is incompatible with the stability of the system is long 
and requires a detailed analysis of Jacobi's equations for the 
second variation of the free-energy functional F. For this 
reason, it will be reported in Appendix A. 

VIII. A GINZBURG-LANDAU FUNCTION FOR THE 
"PARABOLIC" SINE-GORDON EQUATION 

As a nontrivial example that can be worked out analyti
cally, we will construct explicitly, in this section, the nonlin
ear Ginzburg-Landau function associated to the parabolic 
version of the sine-Gordon equation: 

aq aZq 
-a-+---::2+azsinqcosq=O. (26) at az-

This equation has been taken from the physics ofliquid crys
tals. 13 It describes the molecular reorientation induced by a 
constant magnetic field in a nematic liquid crystal in the 
twist geometry. The coordinate q is the director twist angle, 
the quantity a is Leslie's viscosity coefficient, and finally the 
parameter a is proportional to the intensity of the externally 
applied magnetic field. 

For the sake of simplicity, we assume the time-indepen
dent boundary conditions 14 

qj (O,t) = qj (d,t) = 0, (27) 

d being the sample thickness along the z axis. 
The steady-state solutions ofEq. (26) obey the pendu

lum equation 

q" +a2sinqcosq=O, (28) 

withq" = d 2qldz2 andO<,q<,!1T. The trivial solution q(z) =:0 
obeys boundary conditions (27) and corresponds to equilib
rium. 

The usual way to investigate the stability of the equilib
rium state is to write down the solution of Eq. (26) [with 
boundary conditions (27)] as a Fourier sum 
q(z,t) = :lncn (t) sin (n1Tzld) and then to substitute into 
Eq. (26). At this point, a small perturbation is assumed 
[Iq(z,t) I ~ 1] and the last term on the left in Eq. (26) is 
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expanded in a power series of q. Usually, only linear terms in 
q are retained in Eq. (3) and only the fundamental Fourier 
component of q(z,t) is considered. 15 Although this approxi
mated approach yields the right value for the critical value 
a c of the external parameter a where the state q = 0 be
comes unstable, it cannot be directly extended either to other 
(spatially dependent) steady states or to the cases where 
hard (i.e., first-order) transitions may occur. 

In order to construct the NLGLF in the present case, we 
first notice that the steady-state equation (28) [obtained by 
zeroing the time derivative in Eq. (26)] is the Euler-La
grange equation associated to the action integral 

i
d 1 F = - (q,2 _ a 2 sin2 q)dz. 

o 2 
(29) 

Then, our NLGLF can be constructed in the following steps. 

Step ( 1 ): Hamilton's equations associated with the free
energy integral (29), viz., 

, aH 
q = ap =P, 

, aH 2 • 
P = -- -a smqcosq, 

aq 

H = !pz + a 2 sin2 q, 

are solved with initial conditions q(O) = 0 [see Eqs. (27)] 
and p (0) = Po, obtaining 

. { ± m l12sn(azlm) 
sm[q(z;m)] = 112 _ I 

±sn(m azlm ) 

(O<,m<,l), 

(m> 1), 
(30) 

where sn(ulm) is the Jacobi elliptic sine function with pa
rameter m. 16 This solution depends parametrically on Po, 
since m is related to Po by m = (Po! a) 2. The upper and lower 
signs in Eq. (30) correspond to positive and negative values 
of Po, respectively. 

Equation (30) represents a one-parameter family of 
curves starting at the point q = 0, z = 0 in the (q,z) plane, m 
(or Po) being the parameter of the family. Each curve of the 
family is an extremal curve for the functional F, since it satis
fies the Euler-Lagrange equation (28). We notice, however, 
that the members of the family (30) do not correspond to 
steady states of the system, since they fail to meet the condi
tion q(d;m) = 0 at the boundary z = d. In the most general 
case, Hamilton's equations cannot be solved analytically and 
numerical integration is made necessary. We notice, how
ever, that we are always faced with a set of first-order total 
differential equations with one-end-point initial data, that 
can be solved with standard Runge-Kutta integration rou
tines. 

For further convenience, we denote with Q the value 
assumed by q(z;m) at the point z = ~d. Q is given by 

Q 
__ {±Sin-l[m1!2Sn(!ad1m)] (O<,m<,1), 

(31) 
± sin - I [sn(m J12!ad 1m - J)] (m> 1). 

As explained in Sec. VII, the choice z =!d is due to the 
symmetry ofEq. (28) and of the boundary conditions (27) 
with respect to the changez-+d - z. We notice that Eq. (31) 
defines a correspondence between the values of Q and the 
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curves of the family (30). In the most general case, this cor
respondence is not one-to-one, since two or more curves of 
the family (30) may be associated to the same Q value (see 
Sec. VIII). 

Step (2): The free-energy integral (29) is then evaluat
ed along each member of the family (30) from z = 0 to 

z = ~d. Again, the choice z = ~d for the integration upper 
limit is due to the particular symmetry of the problem. The 
result is an ordinary function F(m;a) of the parameter m of 
the family (30) and of the external parameter a. In the gen
eral case, the integration of the free energy must be per
formed numerically. In the present example, however, the 
integration can be carried out analytically, yielding 

[

2a[ EOad 1m) - !ad(2 - m)] 
F(m'a) = 

, 2a [m1!2E(!m1!2ad 1m - 1) - !adm] 

(O<m< 1), 

(m> 1), 
(32) 

where E(ulm) is the incomplete elliptic integral of the sec
ond kind. 

Step (3): The parameter m is eliminated between Eqs. 
(31) and (32), obtaining F as a function of Q and a: 
F = F( Q;a). Only positive values of Q can be retained in Eq. 
(31 ) since, in the present case, F( Q;a) is symmetric: F( Q;a) 
= F( - Q;a). Then, the function G( Q;a) = 2F( Q;a) is the 
NLGLF of our problem. 

The choice of the factor 2 in front of F guarantees that 
the numerical values G = Go corresponding to extremal 
points of G( Q;a), coincide with the values of the free-energy 
functional F, given by Eq. (29), evaluated along the corre
sponding steady states of the system. In this way, G(Q;a) 
fulfills also property (d) above. 

The NLGLF G( Q;a) is reported in Fig. 2 for different 
values of a. For ad <1T, G(Q;a) has only one minimum at 
Q = O. This minimum corresponds to the equilibrium state 
q=O, which is therefore stable. For 1T < ad < 21T, the equilib
rium state becomes unstable (local maximum of G) and two 
new stable states (denoted with the arrows) appear. These 
states are located symmetrically with respect to the equilibri
um state Q = O. The steady-state solutions ofEq. (26) corre
sponding to these new stable states are found immediately 
from the previously mentioned correspondence between Q 
values and curves of the family (30). One can easily verify 
that these solutions satisfy also to the second of boundary 
conditions (27). When a reaches the critical value 
a c = 1Tld, the stable and unstable states coalesce at Q = O. 
The corresponding critical G curve is also reported in Fig. 2. 
This critical curve has a minimum at Q = 0, indicating that 
the critical state is itself stable. The transition is henceforth 
soft (second order). 

In Fig. 5 is reported the NLGLF G( Q;a) for a value of 
ad larger than 21T. We notice that now the function G( Q;a) 
is multi valued. As will be proved in Appendix A, a multiva
lued NLGLF always corresponds to unstable states. The 
state Q = 0 is therefore unstable, despite the fact that it cor
responds to a local minimum of G. The only stable states are 
the ones denoted by the arrows in Fig. 5. 

We remark again that the NLGLF G(Q;a) has been 
constructed by retaining all nonlinear terms in Eq. (26) and, 
therefore, we may call it an exact NLGLF for the system. 
The curves of the family (30) corresponding to extremal 
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points of G( Q;a) are, in fact, exact steady-state solutions of 
Eq. (26), satisfying all of boundary conditions (27). 

IX. CONCLUSIONS 

We have proved by direct construction that a Ginz
burg-Landau function exists for a large class ofphysicoche
mical continuous ~ystems, depending on one spatial coordi
nate and time. Our construction leads to an exact NLGLF, 
in the sense that all nonlinear terms in the equations of mo
tion are retained, without approximations. A series expan
sion of G( Q) around some reference state Q is, therefore, 
optional. 

Although, in general, the evaluation of G( Q) may re
quire numerical integration, the integration problem is al
ways well posed, so that standard routines can be exploited. 
Moreover, the construction method, presented in this paper, 
does not break out when caustics or other pathological beha
viors are encountered in the fields of extremals used in the 
calculations. 

Having an exact NLGLF provides a global stability cri
terion, which gives all stable states at once by simply looking 
at the minima of an ordinary function. Furthermore, if the 
NLG LF is known (or calculated) as a function of an exter
nal parameter, transitions between steady states can be stud
ied in detail. The NLGLF, in fact, gives qualitative informa
tion about the character of the transition (soft or hard) as 
well as quantitative information about the critical points and 
the energy barriers between adjacent stable states. 
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APPENDIX A 

In this Appendix we show that the vanishing of the Jaco
bian (23) [or (25) ] and, hence, the occurrence of a multiva
lued G(Q), prevents the stability of the system, even if all 
other conditions [as Legendre's condition (2) or the state 
corresponding to a minimum of G( Q)] are satisfied. 

We consider here only the Jacobian Jo associated to the 
congruence Ko. A completely analogous proof can be done 
for Jd and the congruence Kd • 
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Since all curves qi = qi(Z;qO) of Ko are extremal curves 
of L(q,q',z), the N 2 functions 

. aqi 
7Jj = -. (z;%). (AI) 

aq!J 

obey the Jacobi equations 

~(an)_an=o 
dz a7Jji a7J; , 

(A2) 

(A3) 

Jacobi's equations (A2) are linear and homogeneous in 
7Ji , 7J,i, and TJH i. They are, in fact, the linearized version of the 
Euler-Lagrange equations (9) around the extremal Co of 
Ko, having parameters q&. It is almost obvious that if 7Ji and 
7J' i are both zero at a point z = z *, then also 7J . i and all higher 
derivatives of 7Ji vanish at z *, so that 7J == 0 in a finite neigh
borhood ofz*. 

Since all curves of Ko obey the first of boundary condi
tions (S), differentiating this condition with respect to tIo 
yields 

(A4) 

at z = O. Moreover, differentiating the identities 
qi(O;qO) = q& yields 

(AS) 

at z = O. The boundary conditions (A4) and (AS) at z = 0 
are to be added to the Jacobi equations (A2). The functions 
7J;(z) being linearly independent. any solution f of the Ja
cobi equations (A2), obeying the boundary conditions 
(A4), can be expressed as S i = ai7JJ, with nonzero coeffi
cients a1 (summation over repeated indices is intended). 

Now. let us suppose that the Jacobian Jo, given by Eq. 
(23). vanishes at some point z * in the interval [O,z]. Then, 
we can find numbers a i that are not zero so that the N func
tions S i, defined as 

Si(Z) = ai7JJ(z), (A6) 

are zero at z = z*. In view of the linearity of Jacobi's equa
tions (A2) as well as ofthe boundary conditions (A 4) and 
(AS), Si(Z) is also a solution of Eq. (A2), satisfying the 
boundary conditions (A4) andsi(O) = a i

• The vanishing of 
Jo at z = z* implies. therefore, the existence of a solution of 
the Jacobi equation (A2), satisfying the boundary condi
tions (A4) and vanishing atz = z*. 

On the other hand, if it is known that a nonzero solution 
S i(Z) of the Jacobi equation exists obeying the boundary 
conditions (A4) and vanishing at z = z*, we may pose 
S i = ai7J; and this expression vanishes at z = z*, implying 
Jo=Oatz=z*. 

At this point. we need only to prove that the existence of 
a solution S i(Z) of Jacobi's equation, obeying the boundary 
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conditions (A4) and vanishing at some point z* in the inter
val [O,z], implies the instability of the systems. 

Consider a steady state of the system. represented by the 
curve C: qi = qi(Z) between z = 0 and z = d. Consider also 
the second variation of the total free-energy functional F 
around the reference curve C: 

where 7Ji (z) denotes a small nonzero perturbation of the 
extremal C. Then, a necessary condition for the curve C to 
correspond to a stable state is that C affords a minimum to F, 
which implies 8F = 0 and also 82 F;pO. 

A partial integration in Eq. (A7) yields 

( a 2L 'i) 'i] i} 
- aq"aq'i 7J 7J 7J z=d 

ld[d(an) an] i - - -- - - 7J dz. 
o dz a7J'i a7Ji 

(AS) 

This equation shows that the Jacobi equations (A2) are 
also the Euler-Lagrange equations for the second variation 
of F. They provide, therefore. a necessary condition to 7Ji for 
affording a minimum to 82F. 

At this point, following Bliss, 17 we take as perturbation 

(A9) 

We notice that 7J i
, given by Eq. (A9), is made of two 

solutions of Jacobi's equations connected at the comer point 
z = z*. Moreover, by construction. 7Ji (as S i) satisfies the 
boundary condition (A4). 

Inserting Eq. (A9) into Eq. (AS), we find 82F= 0 
along 7Ji. The last term in Eq. (AS). in fact, vanishes because 
7Ji is made up of solutions of Jacobi's equations, the second 

.. * 
term vanishes since 7J' and 7J" are zero at z = d> z , and, 
finally. the first term is zero by virtue of boundary conditions 
(A4). 

Now, let us suppose that the reference extremal C af
fords a minimum to the free-energy functional F. Then, as a 
matter of necessity, {j2F;pO so that the curve 7J i

, given by Eq. 
(A9), should correspond to a minimum of 82F. But, if this 
were the case, 7J' should also satisfy the Erdmann-Weier
strass conditions at the comer z = z*; i.e., we should have 
anla7J'i (7J,7J',z) continuous at z = z*. From Eq. (A2) we 
get 

an _ ( a2
L ) 'i ( a2

L ) i (AW) 
a7J1i - aq" aq'i 7J + aq,j aqi 7J. 

Then, since 7J' vanishes at z = z*, we find 
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( 
aZL )17,j=O (All) 

aq,iaq,j 

at z = z* and~ by virtue of Legendre's conditions (2), also, 
17,i = O. But the vanishing of both 17i and 17,i at the same point 
z = z* implies 17i=.O in a neighborhood of z*, contrary to 
what was stated in Eq. (A9). The occurrence of this contra
diction proves that our starting hypothesis, namely, that the 
reference extremal C affords a minimum to F, cannot be 
true. The steady state corresponding to C is therefore unsta
ble. Since the construction of the curve (A9) depends cru
cially on the existence of a solution 5 i of the Jacobi equations 
obeying conditions (A4), which, in tum, is obtained under 
the condition of the vanishing of the Jacobian determinant 
Jo, we have proved our theorem. 

APPENDIXB 

Let C be a curve belonging either to Ko or K d • Then, 
along C, the canonical relation (16) holds, withS(q,z) obey
ing the Hamilton-Jacobi equation ( 19). Taking the z deriva
tive ofEq. (16) along C, we obtain 

- +qJ (B1) d (aL) azs ,i azs 
dz aq'i - aqi az aqj aqi . 

Insertion of the Hamilton-Jacobi equation (19) into 
Eq. (Bl) yields 

!!.- (aL) = _ aH(VS~q,z) + q'j ~. (B2) 
dz aq" aq' aq' aq' 
The q derivative of H in this equation is made by keeping 

z constant. We have, therefore, the chain rule 

aH(VS,q,z) = (aH) + (aH) (ajZS i)' (B3) 
aq' aq' p,z apj q,z aq aq 

Now, as is well known, the definition itself of H, viz., 
H = Piq,i - L, implies the following identities (Ref. 10, p. 
117) : 

(
aH) ,i - =q 
api q,z 

(B4) 

and 

(~~)p,z =. - (~~it,z' (B5) 

Then, insertion ofEq. (B4) into Eq. (B3) yields 

aH(VS,q,z) = (aH) + q,j( azs .) (B6) 
aq' aq' p,z aql aq' 

and insertion ofEq. (B6) into Eq. (B2) yields 

! (:~) = - (~~tz (B7) 

or, in virtue of the identity (B5), 
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(B8) 

Relation (B8) explicitly shows that along C the Euler
Lagrange equations are fulfilled. 
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For a given, in general, singular Lagrangian containing higher-order time derivatives, a 
dynamically equivalent Lagrangian with only first-order time derivatives is constructed. A 
Hamiltonian structure for this first-order Lagrangian is then found with the use of the Dirac 
theory of constraints. It is shown that in the case of a nonsingular higher-order Lagrangian, the 
Ostrogradsky dynamics is derived in this way. Further, it is shown that ambiguities 
characteristic of higher-order Lagrangian systems do not appear when using this construction. 
In particular, it is shown that the addition of a total time derivative term to the higher-order 
Lagrangian can only induce a time-independent canonical transformation, even in the case of a 
singular Lagrangian. 

I. INTRODUCTION 

A Hamiltonian formalism for Lagrangians with higher
order time derivatives was first given by Ostrogradskyl and 
later independently by Borneas.2 Since then, many general 
aspects of the formalism have been studied, for example, the 
extension of Poisson brackets,3 Noether's theorem,4 and 
Hamilton-Jacobi theory5 to systems with higher-order La
grangians. Recently, a dynamical formalism for systems 
with singular6 higher-order Lagrangians has been pro
posed.7 Some serious ambiguities have been shown to arise 
due to the freedom one has in choosing the higher-order 
Lagrangian for a given physical system. This results in ob
taining different quantum results for systems that are classi
cally identical. 8 

The approach we present here is completely different. 
For a given Nth-order Lagrangian (N refers to the highest 
time derivative in the Lagrangian), we construct a dynami
cally equivalent first-order Lagrangian. This construction 
can always be realized. Starting with this first-order Lagran
gian, a Hamiltonian formalism is derived. In this derivation, 
a modified version of Dirac's theory9 for construction of 
Hamiltonians for constrained systems is used. This is neces
sary because our first-order Lagrangians are always singu
lar. However, the extra constraints, which are an unavoid
able consequence of the construction, tum out to produce 
the Poisson brackets used in the Ostrogradsky formalism. 3 

This paper is a part of a larger project, \0 which aims to 
present a consistent approach to systems with holonomic 
and nonholonomic constraints, by treating their Lagrange 
multipliers as independent variables and then reducing them 
out together with their canonical momenta by the proper use 
of the Dirac brackets. 9 Here we present only that part of the 
picture sufficient for dealing with Lagrangians of a higher 
order. 

In Sec. II, we present the dynamics of singular first
order Lagrangian systems in the form it will be used in this 
paper. The method we use to derive the constraints of the 
system is slightly different from the one used by Dirac9 and, 
to the best of our knowledge, original. This way of obtaining 

constraints is crucial for the results of Sec. V, where we deal 
with the question of the uniqueness of our formalism. In 
order to make the discussion self contained, we also define 
Dirac brackets9 at the end of this section. 

In Sec. III, we present the construction of the first-order 
Lagrangian for a given Nth-order one, and we show directly 
the equivalence of the Euler-Lagrange equations of motion 
for these two systems. 

In Sec. IV, we study the Hamiltonian obtained from our 
first-order Lagrangian, using a variation (Sec. II) of the 
Dirac method9 for constructing the dynamics of singular 
first-order Lagrangians (the original Dirac method could be 
used as well, giving the same results). It turns out that the 
well-known Ostrogradsky canonical momenta and the 
Hamiltonian are derived this way, and the Poisson brackets 
used in the Ostrogradsky formalism are the Dirac brackets9 

of our first-order theory. 
In Sec. V, we study the uniqueness of the formalism. It is 

well known that if we decide to use higher-order Lagran
gians, we face the problem of having different Lagrangians, 
often of a different order in time, which give equivalent clas
sical equations of motion, but appear to produce different 
Hamiltonian systems, and consequently appear to produce 
different quantum results. For example the problem posted 
by Hayes and Jankowski, 8 in which the addition of complete 
time derivative term in the form [ - (m/2)(d /dt) (.xx)] to 
the usual Lagrangian of a harmonic oscillator, apparently 
produces inequivalent quantum results while leaving the 
classical solutions unchanged. Two ways of dealing with this 
ambiguity have been proposed. One by Hayes, II which used 
the equations of motion to change the form of the Hamilto
nian (however, we still have no criteria to choose the Hamil
tonian obtained this way over the one obtained in the first 
attempt, other than our previous knowledge of the proper
ties of the harmonic oscillator). The other way was given by 
Ryan,12 who proposed the method of reducing the Lagran
gian to the lowest possible order. This method, although self
consistent still gives no answer to the question of why we 
have to use these reduced Lagrangians, why one Lagrangian 
appears to be "better" then the other. 
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In Sec. V, we give the solution to this problem, showing 
directly that despite which Nth-order Lagrangian we choose 
among the available ones, if we use our construction of the 
first-order Lagrangian and the Dirac method of dealing with 
constraints, the coordinates and momenta remaining in the 
Hamiltonian formalism, the form of the Hamiltonian itself 
and the dynamical brackets of the formalism (the Dirac's 
brackets) will remain unchanged, or will differ at most by a 
time-independent canonical transformation. 

It should be pointed out here, that some results concern
ing the ambiguity problem were discussed in the recent pa
per by Saito et al.7 In particular the Hayes-Jankowski prob
lem could be solved within the scope of their paper. Please 
see Sec. VI for a short discussion of their important paper. 

Also in Sec. VI, we briefly discuss advantages of our 
approach, and we list some other possible applications of the 
methods we use in this paper. 

In this paper, we assume everywhere that we are dealing 
with so called singular Nth-order Lagrangians. 6 In the case 
of nonsingular Nth-order Lagrangian, we can still proceed in 
the same way (with possible simplification of some steps). 

It may be worth mentioning that if our construction is 
used for a first-order Lagrangian, the Lagrangian remains 
unchanged. 

II. PRELIMINARIE5-CONSTRAINED DYNAMICS 

The problem of constructing the dynamics of a system 
with a singular Lagrangian was first seriously studied by 
Dirac9 and there now exists an extensive literature on the 
subject. 13,14 The method we present in this section, although 
equivalent to the original Dirac method, uses Euler-La
grange equations rather than the Hamiltonian to obtain the 
secondary constraints. The Hamiltonian is defined at the 
end of the process. Because this way of obtaining constraints 
is necessary for the considerations of Sec. V, and a descrip
tion of it in this form does not exist in the literature, we 
describe it in some detail. 

The summation convention will be used throughout this 
section. The range of indices i andj will be from 1 to n. 

Assume we have a system described by coordinates 
q = (ql , ... ,qn ) and a time-independent, first-order, singular 
Lagrangian: 

L = L(q,q). (2.1 ) 

Let us define the vector qX in the coordinate space by 

qX:= (O, ... ,O,qx + 1 ,qx + 2, ... ,qn), 

where X can be O, ... ,n (the upper indices will describe the 
vectors, while the lower ones the components). Note qO = q, 
and we will often write q for ~ . 

If we define the canonical momenta in the usual way as 

aL 
Pi =--;:-, 

uqi 
(2.2a) 

then the Euler-Lagrange equations of motion can be written 
as 

Pi = aL. (2.2b) 
aqi 

The first step in looking for the constraints of the system is to 
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solve equations (2.2a) fortheq's (the velocities). Thesingu
larity of the Lagrangian means that the Hessian matrix 

a2L 
Wij=~' (2.3) 

uqi uqj 

is singular, and has rank R(1), O<;R(l) <no This implies 
that Eqs. (2.2a) can only be solved for R ( 1 ) of the velocities 
and that there exist [n - R ( 1 )] independent relations 
among the q's and p's. These relations are called primary 
constraints and they are direct consequences of the defini
tions of momenta in the singular case. [AU algebraic rela
tions among q's and p's, which are consequences of Eqs. 
(2.2) are called constraints, those which are consequence of 
only equations (2.2a) are primary, aU others are second
ary.] Without loss of generality, we can assume that Eqs. 
(2.2a) can be solved for the first R (l) of the velocities. 
Equations (2.2) can then be written as 

Pi = ~L (q,p,qR(I), (2.4a) 
uqi 

qa =f~(q,p,qR(I», l<;a<;R(1), (2.4b) 

aL 
'Pa(q,p) =Pa --a:(q,p) =0, R(l) <a<;n, (2.4c) 

qa 

where <Pa are primary constraints. The consequence of the 
existence of the constraints (2.4c) is that their time deriva
tives have to be equal to zero. This condition along with the 
use ofEqs. (2.4a) and (2.4b) gives [n - R ( 1 ) ] equations in 
the form 

d'Pa (q,p,qR(I» =0, R(l) <a<;n. 
dt 

(2.5) 

The second step is to solve equations (2.5) for the velocities. 
Similarly, as in the previous step, if the matrix 

M!o' = a(d;.oldt) , R(l) <a,a'<;n (2.6) 
qo· 

is of rank R(2) -R(1), R(1)<;R(2)<;n, then equations 
(2.6) can be solved for R(2) - R( 1) velocities, and there 
may exist a number of independent relations among the q's 
and p's. Some of these relations can be dependent on the 
prior constraints. Those which are not, are secondary con
straints. Equations (2.4) can be now written as 

. aL ( 'R(2» Pi = -;- q,p,q , 
uqi 

qa =f~ (q,p,qR(2», 1<;a<;R(2), 

<Po (q,p) =0, R(1)<a<;n, 

<Pb, (q,p) = 0, 

(2.7a) 

(2.7b) 

(2.7c) 

(2.7d) 

where <Po are the primary, and 'Pb, are the secondary con
straints obtained in this step of the process. 

Now, just as we did for primary constraints, we have to 
study the consequences of time derivatives of secondary con
straints (2.7d) being zero. This process can give some new 
expressions for q's, as well as new constraints (all of them 
would be secondary). This has to be repeated as long as we 
obtain new constraints [the number of steps will be finite, 
because we cannot have more than 2n independent con
straints in the phase space (q,p) ]. After the final step, which 
we call k th, we will obtain 
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pj = aaL (q,p,qR(k», 
qj 

qa =f! (q,p,qR(k», l<a<R(k), 

lPa (q,p) = 0, R(1) <a<n, 

lPb(q,P) = 0, 

(2.8a) 

(2.8b) 

(2.8c) 

(2.8d) 

where lPa denotes primary constraints, and rpb denotes all 
secondary constraints obtained in the process. The nonzero 
components of qR(k) (unsolved velocities) are free in the 
formalism [they can be set equal to arbitrary functions of 
time and still the constraints (2.8c), (2.8d) will be satisfied 
and Eqs. (2.8a), (2.8b) will have solutions]. The different 
solutions obtained for differently fixed qR(k) time depend
ence have to be physically equivalent, which means that we 
deal with a theory with gauge (e.g., Ref. 14). The arbitrari
ness can be removed by imposing a gauge. This means we 
impose new constraints 

Ge(q,p) =0, l<c<n-R(k), (2.9) 

which have the property that their consequence 

dGe (q,p,qR(k» = 0, 
dt 

(2.10) 

can be solved for all velocities in qR(k) (for example 
Ge = qR(k) + e + conste )· So, finally, we will obtain the fol
lowing system of first-order equations which are equivalent 
(in the fixed gauge) to the Euler-Lagrange equations (2.2) 
and are solved for all qj,Pi: 

· aL ( ) (2.11a) Pi=Y- q,p, 
qj 

qj =/;(q,p), (2.11b) 

lPa (q,p) = 0, (2.11c) 

lPb (q,p) = 0, (2.11d) 

Ge(q,p) =0. (2.11e) 

Now, we can define a Hamiltonian H(q,p). In order to 
do this let us first define 

Ho = [Pjqj -L(q,q)] Iq,,=f:. O<a<R(I) , (2.12) 

where the p;'s are defined by Eqs. (2.2b), andf~ is taken 
from Eqs. (2.4b). It can be shown (e.g., Ref. 13) that H 0 

defined this way does not depend onqa' R(1) <a<n [veloc
ities unsolved for in the definitions of momenta (2.2a) ]. The 
Hamiltonian can be defined as 

(2.13 ) 

where Aa are Lagrange multipliers, and lPa are the primary 
constraints. 

It can be shown (e.g., Ref. 13) that Hamilton's equa
tions 

· aH qj =-;-, 
cJPj 

· aH 
pj= --a' qj 

rpa (q,p) = 0, 

(2.14a) 

(2.14b) 

(2.14c) 

are equivalent to the Euler-Lagrange equations (2.2) of the 
singular Lagrangian (2.1). Consequently, they are also 
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equivalent to Eqs. (2.11) (in the fixed gauge). 
Because of the existence ofEqs. (2.14a) and (2.14b), we 

can write Hamilton's equations in the form: 

F = {F,H}, (2.14d) 

where { , } is the usual Poisson bracket. 
The Hamiltonian (2.13) is not exactly in a form conven

ient to use in this paper, so let us rewrite it as 

H=Ho + AalPa + AblPb + AeGe, (2.15) 

where Ab and Ae are equal to zero. 
Now we can make H more convenient to use. It can be 

easily proven that if in any expression B(q,p) we use con
straints to replace something, then the result is the same 
expression plus some linear combination of constraints. Dif
ferent equations that give qj can differ only by the con
straints (otherwise they would not give the same time evolu
tion of qj)' So if instead of qj given by Eqs. (2.4b), we use in 
the H 0 in the definition of the Hamiltonian (2.15) qi = /; 
given by Eq. (2.11b), this will only change the Lagrange 
multipliers there. So the Hamiltonian can be written as 

H = [Pjqj - L ] I q,=/; + AalPa + Abrpb + AeGe, 
(2.16 ) 

where/; is taken from Eq. (2.11b). [It is interesting to notice 
that we obtained the Hamiltonian in the extended form,9.13 
which nevertheless is the same function of q's and p's as the 
Hamiltonian we begin with, given by Eqs. (2.13).] Equation 
(2.16) is the form of the Hamiltonian we will use most often 
in this paper. 

Please note that, similarly, if we use any constraint or 
gauge in H, we can compensate for it by redefining the La
grange multipliers, and still obtain the same Hamiltonian. 

The Lagrange multipliers in Eq. (2.16) can be estab
lished at the end of the process by the consistency condi
tions. ls 

Let us now define the Dirac brackets.9 Assume we have 
some set of constraints Xu, u = 1, ... ,U (not necessarily all 
constraints in the theory), and the constraints matrix de
fined as 

Xuw = {Xu,Xw}' (2.17) 

is invertible. ({,} is the usual Poisson bracket.) We can 
define the Dirac brackets with respect to constraints set Xu 
as 

(2.18 ) 

where Cuw is the matrix inverse to Xuw' 
The Dirac bracket has all general properties of the Pois

son bracket, and also satisfies 

(2.19) 

(2.20) 

where lPk denotes all constraints and gauges in the formal
ism, and Fis an arbitrary function of q's and p's. 

From Eq. (2.19) we conclude that Dirac bracket can be 
used instead of Poisson bracket in the Hamilton's equations 
of motion: 

(2.21 ) 

From Eq. (2.20), we conclude that if we decide to use the 
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Dirac brackets defined with respect to constraints X w' in
stead of Poisson ones, we can use the constraints X w freely in 
the Hamiltonian, and we do not have to bother about their 
Lagrange multipliers anymore. 

At the end of this section, we want to make a technical 
remark that expends upon the example given by Dirac.9 If in 
the formalism we have a constraints of the form 

XO)W = Pw = 0, w = 1, ... ,U, 

X(2)w = qw - gw (qU,pu) = 0, w = 1, ... ,U, 

where gw are some functions, 

(2.22a) 

(2.22b) 

qU = (O, ... ,O,qu+ I , ... ,qn ),pu = (O, ... ,O,Pu+ I , ... ,Pn)' 
the Dirac bracket calculated for these constraints gives 

and 
then 

{qd,Pe} X = Ode' d,e = U + 1, ... ,n. (2.23 ) 

Also, the qw' Pw' w = 1, ... , U, can be completely eliminated 
from the Hamiltonian H by the use of constraints (2.22). 
This means that qw and Pw are auxiliary variables without 
dynamics of their own, and Eqs. (2.22) can be looked at as 
merely their definition in terms of the "real" variables q d and 
Pd, d = U + 1, ... ,n. 

III. THE FIRST-ORDER LAGRANGIAN EQUIVALENT TO 
A GIVEN NTH-ORDER LAGRANGIAN 

In this section, we present, for a given Nth-order La
grangian, a method of construction of a first-order one. Then 
we show the equivalence oftheir Euler-Lagrange equations 
of motion. 

The summation convention will be used throughout this 
section. The range of indices are 

iJ = 1, ... ,n, k = O, ... ,N - 2, m = 1, ... ,N - 2. 

Assume we have the system described by the coordi
nates q = (ql , ... ,qn) and the Nth-order Lagrangian, 

(
N) (N-I) (N-2) (I») 

L =!e q, q , q , ... , q,q , (3.1 ) 

where 
(S) dS 
q=-q. 

dtS 

Then, the usual procedure of the calculus of variations (e.g., 
Ref. 16) gives the Euler-Lagrange equations of motion in 
the form 

~ (_ly~(aL)=o. 
£.. dtS (s) 
s~o aqi 

(3.2) 

We will now show that the same system can be described 
by a first-order Lagrangian of the form (a variation of this 
form could also be used 17 ) 

L' = !e (liN - I,O,qN - I.O,qN - 2.0,qN - 3,O, ... ,ql,O,qO.0) 

+f.Lki(qki -qk+I,i)' (3.3) 

We use the notation which is a natural generalization of the 
notation used in Sec. II, for the Nth-order case, 

ij = (qN- 1,1 , .. ·,qN-I,n, .. ·,qOI , .. ·,qOn); 

ijY'X = (O, ... ,O,qy.X+ 1, ... ,qy,n,O, ... ,O), 
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Y = O, ... ,N - 1, X = O, ... ,n; qki = :t qki' 

The coordinates qOi in Eq. (3.3) are the same that appear as 
qi in Eq. (3.1 ),qk+ I,i andf.Lki k = O, ... ,N - 2 are some other 
coordinates (their interpretation will be given later). It is 
crucial that we treat all q's and f.L'S on the same footing, as 
independent coordinates. 

In Eq. (3.3), ie, by definition, is obtained from!e in 
(N) 

Eq. (3.1) bysubstitutingqN_ \,i in the place of qi' andqYi in 

(Y) 

the place of qi . 

Following the standard procedure for the first-order La
grangians, we obtain Euler-Lagrange equations for the La
grangian (3.3) in the form 

(3.4a) 

(3.4b) 

a!e _ f.LN _ 2,i - dd (a~!e ) = 0, 
aqN-I,i t qN-I,i 

(3.4c) 

(3.4d) 

We can eliminate,u's and i/k;'s from Eqs. (3.4) and rewrite it 
as 

(k+ I) 
qk+ I,i = qOi , 

(no summation over k). 

(3.5a) 

(3.5b) 

(3.5c) 

Equations (3.5a) with the help of Eqs. (3.5b) areequiv
alent to the Euler-Lagrange equations (3.2) obtained from 
the Nth-order Lagrangian (3.1). Equations (3.5b) give the 
interpretation of q/i 1= 1, ... ,N - 1. These equations show 
that q/i is equal on the solution to the Ith time derivative of 
qOi' while still being an independent coordinate. 

Equations (3.5c) contain no dynamics on their own. 
They just express f.L'S as some functions of other variables. As 
we will see in the next section, these equations will become 
constraints in the phase space, and taking the proper Dirac 
bracket will eliminate f.L'S and their canonical momenta com
pletely from the Hamiltonian formalism. 

For the purpose of the identification, we will call La
grangian (3.3) the equivalent first-order Lagrangian 
(EFL). 
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IV. A HAMILTONIAN FORMALISM FOR THE 
EQUIVALENT FIRST-ORDER LAGRANGIAN 

In this section, we will derive a Hamiltonian formalism 
for the first-order Lagrangian (3.3), using the procedure 
described in Sec. II, and we will compare it with the Ostro
gradsky results for the Nth-order Lagrangian (3.1). 

We assume here the general case of, what is called in the 
literature, singular Nth-order Lagrangian. 6 In the nonsingu
lar case, the same procedure can still be used, with some 
steps trivialized or absent. 

The summation convention will be used through this 
section. The range of indices will be: 

ij = 1, ... ,n, k = O, ... ,N - 2, m = 1, ... ,N - 2, 

s = O, ... ,N - 1, r = 1, ... ,N - 1. 

We will use the notation 

q = (qN-I,1 , .. ·,qN-I,n, .. ·,qOI , .. ·,qon)' 

P = (PN - 1,1 ,,,,,PN - I,n ,,,,,POI '''''POn), 

qY,X = (O, ... ,O,qy,X + I , ... ,qy,n ,0 •... ,0). 

where Y = O, ... ,N - 1, X = O, ... ,n. 
Let us now consider an Hamiltonian structure of the 

first-order Lagrangian (3.3). The Euler-Lagrange equa
tions written in terms of canonical momenta are [see Eqs. 
(2.2) ] 

· aSR 
Pri = a - /-lr- I,i' 

qri 

· JSR 
POi =-;--, 

uqOi 

Pl'k' = qki - qk+ 1,0 

JL' JSR 
PN-I,i = J' = J' , 

qN-!,i qN-I,i 
aL' 

Pki = -;-:-- = /-lki' 
uqki 

aL' 
PI'" = -;-:-- = O. 

U/-l ki 

( 4.1a) 

( 4.1b) 

(4.1c) 

( 4.1d) 

( 4.1e) 

( 4.10 

[Equations (4.1d)-(4.10 are the usual definitions of ca
nonical momenta.] Equations (4.1 e) are primary con
straints. The time derivative of them with the help of Eqs. 
(4.1a) gives 

· JSR 
/-lmi = a - /-lm - I,i' 

qmi 

· aSR 
/-lOi =-J ' 

qOi 
which are not constraints. 

(4.2a) 

(4.2b) 

Equations (4.10 are primary constraints. The time de
rivative of it with the help of Eqs. (4.1c) gives 

qki = qk+ I,i' (4.3 ) 

which are not constraints. 
If the restricted Hessian matrix defined as 

w~ = a2
SR 

lj J' J' , qN-I,i qN-IJ 

has the rank R, then we can solve Eqs. (4.1d) for R of the 
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velocities qN _ I,i' and there exists n - R relations among q's 
andp's (see Sec. II). So we obtain 

· /1 (--;'N-IR) 0 R (44) qN-I,a = N-I,a q,p.q " <;a<;, . a 

f/Ja (q,P) = 0, R <a<;n, (4.4b) 

and Eqs. (4.4b) are primary constraints. Using Eqs. (4.3) 
and (4.4) we can write Eqs. (4.1) as 

· JSR(--;'N_IR) 
Pri = a q,p,q , - Pr- 1,0 

qri 

· _ JSR (- - ;'N-I,R) POi - -;-- q,p,q , 
uqOi 

qki = qk+ I,i' 
· _/1 (- - ;'N-I,R) qN-I,a - N-I,a q,p,q , 

f/Ja (q.P) = 0, R <a<;n, 

Pki = /-lki' 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

(4.5e) 

( 4.50 

Pl'k' = O. (4.5g) 

Continuing with the method described in Sec. II, we can find 
constraints secondary to constraints (4.5e): 

f/Jb(q.P) = 0, 

and fix a gauge 

Gc(q,P) = O. 

Then, all qN _ I,i can be expressed as 

qN-I,i =/N-I,i(q,P)· 

(4.6) 

(4.7) 

(4.8) 

The specific form of the secondary constraints and gauge 
will depend on the specific form of the given Lagrangian. 
Please note thatto find Eqs. (4.6)-( 4.8), we only have to use 
Eqs. (4.5a)-(4.5e). 

A Hamiltonian is defined as in (2.16) by 

H = [PSiqSi +Pl'k,P,ki - SR -/-lki(qki -qk+l,i)]A 

+ Aaf/Ja + Abf/Jb + AcGc 

+ AkiPl'k' + A ki (Pki - /-lki)' (4.9) 

By writing A in the formula, we denote the fact that inside of 
the brackets we use equations (4.2), (4.3), and (4.8) to ex
press time derivatives of the coordinates. 

We can now use constraints (4.50 and (4.5g) to define 
Dirac brackets. According to the reniark at the end of Sec. 
II, we will obtain 

{qSi,Ptj}D =8s/Jij' s,t=O, ... ,N-1. (4.10) 
If we use the Dirac brackets (4.10) in the dynamics, we can 
eliminate /-l'S and PI"s completely from the Hamiltonian 
( 4. 9) obtaining 

H =PN-l,JN-I,i +Pkiqk+!,i - SRlih,=qk+l" 
qN~ l,i=!N-l.i 

(4.11 ) 

It is now interesting to compare our results with the Ostro
gradsky method I of constructing a Hamiltonian formalism. 
Let us do this for a nonsingular6 Nth-order Lagrangian. In 
our formalism, this means that R = n in formula (4.4) and 
that the constraints f/Ja,f/Jb' and Gc are absent. It is easy to see 
that, in this case, the Hamiltonian (4.11) is exactly equal to 
the Hamiltonian given by Ostrogradsky. The Dirac brackets 
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we obtained in Eq. (4.10) are exactly the Poisson brackets 
used in the Ostrogradsky formalism. 3 From Eqs. (4.la), 
(4.ld), and (4.le), we can also obtain 

aX' 
PN~I.i= O. , 

qN~I,i 

( 4.12a) 

aX' . 
Pki = a - Pk+ I,i' 

qk+l,i 
(4.12b) 

Equations (4.12b) are equations of motion, not the defini
tions of canonical momenta as in Ostrogradsky formalism. 
We can conclude that our EFL construction together with 
the Dirac constraints theory provides us with a derivation of 
the Ostrogradsky formalism. 18 

The more general, nonsingular case is included in a nat
ural way in our first-order formalism, so our construction 
provides us with the generalization of the Ostrogradsky for
malism to the singular case. In this case, we would use all 
constraints and gauges to define Dirac brackets. 14 It is inter
esting to notice that, in the singular case, Eqs. (4.12) (Ostro
gradsky definitions of canonical momenta) still hold. 

V. UNIQUENESS OF THE DYNAMICAL STRUCTURE 

In contrast to the usual situation of. using first-order 
Lagrangians, when we decide to use the higher-order ones, 
we have much more freedom in choosing among different 
Lagrangians with classically equivalent equations of motion. 
In particular, it is possible to treat a given Lagrangian as 
being of a different order in time, or to add the complete time 
derivative term to it. In this section, we want to show that 
despite this fact, the Hamiltonian structure we obtain is al
ways the same (up to a canonical transformation). More 
exactly, we will show that no matter how we change the 
Lagrangian, the coordinates and momenta remaining in the 
Hamiltonian formalism, the form of the Hamiltonian itself 
and the Dirac brackets of the theory will remain unchanged, 
or will only differ by time-independent canonical transfor
mation. We assume the general case of singular Nth-order 
Lagrangian. 6 In the nonsingular case, the same proof is still 
valid, with some steps trivialized or absent, 

The summation convention will be used through this 
section. The range of indices will be: 

iJ = I, .. "n, k = O, ... ,N - 2, m = 1, ... ,N - 2, 

s = O, ... ,N - I, r = I, ... ,N - 1. 

As in Sec.IV, we will use the notation 

q = (qN~ 1.1 ,· .. ,qN ~ l,n, .. ·,qOI , .. ·,qon)' 

jJ = (p N ~ I, I , ... ,p N ~ l,n '''',POI ""'POn ), 

qY,X = (O, ... ,O,qy,x+ 1, ... ,qY,n'O, ... ,O), 

Y = O, ... ,N - I, X = O, ... ,n. 

A. Changing the order of the Lagrangian 

The first problem we encounter is how to choose the 
order of the Lagrangian. Let us consider what will happen in 
a case when a Lagrangian is given as the Nth-order in time, 
but we insist in treating it as being of some higher order. In 
this case, our construction will give, instead of the Lagran
gian (3.3), the first-order Lagrangian in the form 
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L " - (P(-N,O -N~ 1,0 -0,0) (. ) -.z. q,q , ... ,q + J-lui qui - qu + I,i . 

(S.l ) 

where u = O, ... ,M, M> N - 2. 
The Euler-Lagrange equations expressed in terms of ca

nonical momenta (2.2) will then have the form 

Pui = - J-lu ~ I,i' U = N + I, ... ,M + 1, 

· aX' 
Pui =a-J-lu~I,i' 

qui 
· aX' 

POi =--, 
aqOi 

where 

u= I, ... ,N, 

u=O, ... ,M, 

aL" 
PM+I,i=a' =0, 

qM+I,i 

aL" 
Pui = ~ = J-lui' 

qui 
u=O, ... ,M, 

(S.2a) 

(S.2b) 

(S.2c) 

(S.2d) 

(S.2e) 

( S.2f) 

aL" 
P = - = 0, u = O, ... ,M. (S.2g) 

I'-ui aj.tui 

Equations (S.2g) and (S.2f) are primary constraints. The 
time derivative of it with the help of Eqs. (S.2a)-(S.2d) 
gives 

qui = qu + I,i' U = O, ... ,M, 

/.lUi = - J-lu ~ I,i' U = N + I, ... ,M, 

. aX' 
J-lOi =-a ' 

qOi 

which are not constraints. 

u = l, ... ,N, 

(S.3 ) 

(S.4a) 

(S.4b) 

(S.4c) 

Equations (S.2e) are primary constraints. The time de
rivative of it with the help of Eq. (S.2a) will give the set of 
secondary constraints 

a ui = 0, u = N, ... ,M, 

Pui = 0, U = N, ... ,M. 

( S.Sa) 

(S.5b) 

The time derivative of constraints (S.Sb) for u = N with the 
help ofEqs. (S.2b) and (S.2f) will give 

aX' 
PN~I,i =-a ' 

qNi 
(S.6) 

which are secondary constraints. Because Eqs. (S.6) have 
the same functional form as Eq. (4.1d), we can solve them 
for q Ni in similar way and obtain [see Eqs. (4.4)] 

q Na = 11 ~ I,a (q,jJ,qN,R), O<a<R, 

f/Ja (q,jJ) = 0, R <a<n, 

(S.7a) 

(S.7b) 

which are secondary constraints equivalent to constraints 
(S.6). 

Using Eqs. (S.3) and (S.7a), we can also write the 
expression for q N ~ I,i: 

· II (--:'N~IR) ° R (S8) qN~ I,a = N~ l,a q,p,q " <a<. . 

Using this last equation, we can write some of the equa-
tions that we have already obtained, in the form: 
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· a!£'(--:"N-IR) 
Pri = a q,p,q . - Pr- I,i' 

qri 

· a!£'(--:"N-IR) 
POi = -a q,p,q " 

qOi 

qki = qk + I,;' 

· II (- - :"N-I R) qN-I,a = N-I,a q,p,q " 

fPa (q,P) = 0, R <a<,n. 

(S.9a) 

(S.9b) 

(S.9c) 

(S.9d) 

(S.ge) 

It is easy to notice that Eqs. (S.9) are identical to Eqs. 
(4.Sa)-(4.Se), which were used to find secondary con
straints (4.6), the gauge (4.7) and the expression (4.8). We 
can do exactly the same operations this time and obtain 

fPb (q,P) = 0, 

Gc(q,P) = 0, 

qN-I,i =IN-I,i(q,P), 

(S.lO) 

(S.11 ) 

(S.12) 

exactly in the same form as in Sec. IV [we are able to fix the 
gauge before considering other equations, because the 
Euler-Lagrange equations of motion are equivalent for the 

Lagrangians (3.3) and (S.1), so the same velocities can be 
fixed as the same functions of time, and the same gauges can 
be imposed]. 

Equations (S.12) togetherwithEqs. (S.3) will give 

qNi =IN-I,i(q,P), (S.13) 

which are secondary constraints [actually it is a kind of mix
ture of constraints and gauge, some of them are equivalent to 
constraints (S.7a) in the fixed gauge]. Taking many times 
its time derivative, with the help of Eqs. (S,3), (S.12), 
(S.9a), and (S.9b), we obtain secondary constraints 

qui =lu-I,i(q,P), u = N + 1, ... ,M + 1, (S.14) 

and, in the last step, the expressions 

qM+ I,i =IM+ l,i(q,P), (S.lS) 

which are not constraints. This finishes the process of ob
taining the constraints of the system. 

We can now write the Hamiltonian [see (2.16)] in the 
form 

H = (Mi I Puiqui + f Pl'jtui -!£' - f ftui (qui - qu + I'i») I iJM+ 1.I=fM+ \.1 

u=o u=o u=O qN-I.i=JN-l.i 

qui = qu + I,; U = D •...• N - 2.N •...• M 

M 

+A :PM+ I,i + I A ~iPUi 
u=N 

M M M+I 
+ I A~iPl'ul +A~i(PSi -ftsi) + I A~iftUi + I A~i{qUi -lu-l,i(q,P)} + AafPa + Ab9?b +AcGc· 

u=o u=N u=N 
(S.16) 

The constraints (S.2f), (S.2g), (S.5), (S.2e), (S.12), and 
( S .13) can be used to define the Dirac brackets (2.18). Ac
cording to the remark at the end of Sec. II, we obtain 

{qs;,Plj}D = ljstljij' s,t = O, ... ,N - 1, ( S.17) 

which is exactly the formula (4.10) obtained in Sec. IV. Ifwe 
use the constraints in the Hamiltonian (S.16) we obtain 

H = PN-I,JN-l,i + Pkiqk+ l,i -!£' I ilkl=qk+ I.i 

qN- L;=fN_I,; 

+ Aa9?a + Ab9?b +AcGc, (S.18) 

which is exactly the Hamiltonian (4.11 ). So the dynamics of 
the Lagrangians (3.3) and (S.l) are identical. 

B. Leaving more derivatives in .!.t' 

Another change we can make in choosing the Lagran
gian, is to leave not only the time derivative of qN - 1,0 in !£', 
but some other derivatives too. We can use the Lagrangian 

L'" = !£" CqN - I,O,qN - I,O,qN - 2,O,qN - 2,0 

X qN - 3,0,qN - 3,O, ... ,qO,OqO,0) 

(S.19) 

instead of Lagrangian (3.3), as long as 
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(S.20) 

where.!.t' is that from definition (3.3). 
Euler-Lagrange equations for the Lagrangian L III are 

. a!£" 
Pri = a - ftr- I,i' 

qri 

. a.!.t" 
POi=--' 

aqoi 

Pl'kl = qki - qk + I,i' 

aL III a!£" 
PN 1'= ----

-,1 a' a" qN-l,i qN-I,i 

aL'" a!£" 
Pki = -a' = -a' + ftki' 

qki qki 

aL III 
Pl'kl =-a' =0. 

'J.tki 

(S.21a) 

(S.21b) 

(S.21c) 

(S.21d) 

(S.21e) 

(S.21f) 

Using qki = qk + I,i' which comes as a consequence of Eqs. 
(S.21f), (S.21c), and (S.21e), (S.20a), and the fact that 
from Eq. (S.20), we have 

(S.22a) 
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a!i'" a!i" 
--=--, 
aqOi aqOi 

a!i'" a!i" 
PN - li =. =. , 

. aqN_I.i aqN-I.i 

Eqs. (S.21d) can be written [see (2.4)] as 

· II (--:'N-IR) 0 R qN-I.a = N-I.a q,p,q " 0;;;;; a 0;;;;; , 

f{Ja (g,P) = 0, R < a 0;;;;; n, 

(S.22b) 

(S.22c) 

(S.22c') 

(S.22c" ) 

where Eqs. (S.22c'), (S.22c") are of the same form as Eqs. 
(4.4). 

Now we can write (S.21) as 

· a!i"(--:'N_IR) 
Pri = a q,p,q . - Pr- I.;' 

qri 

· a!i"(--:'N_IR) POi = -;-- q,p,q " 
uqOi 

qki = qk+ I.;' 
· II (- - :'N-IR) qN-I.a = N-I.a q,p,q " 

f{Ja (g,P) = 0, R < a 0;;;;; n, 

a!i'" 
Pki = ~ - Ilki' 

uqki 

(S.23a) 

(S.23b) 

(S.23c) 

(S.23d) 

(S.23e) 

(S.23f) 

P/-'k' = O. (S.23g) 

Equations (S.23a)-(S.23e) are identical to Eqs. (4.Sa)
( 4. Se). So we can obtain constraints, gauge, and expression 
for qN _ I.i in exactly the same form as we did in Sec. IV: 

f{Jb(g,P) =0, (S.24a) 

Gc (g,P) = 0, (S.24b) 

qN-I.i =IN-I.i(g,P)· (S.24c) 

[We are able to fix the gauge before considering other equa
tions, because the Euler-Lagrange equations of motion are 
equivalent for the Lagrangians (3.3) and (S.1), so the same 
velocities can be fixed as the same arbitrary functions of 
time, and the same gauges can be fixed.] 

After the use ofEqs. (S.24c) and (S.23c), the (S.23f) 
becomes a secondary constraint. 

The Hamiltonian is defined as in (2.16) by 

H'" (p' . '!i'" = N-I.iqN-I,i +Pkiqki +P/-,,,Ilki-

-Ilki(qki - qk+ l,i»qN_l.,=fN_ 1.1 +liaf{Ja 

( 
a!i'" ) 

+ Ii ki hi - aqki - Ilki . (S.2S) 

We can use constraints (S.23f) and (S.23g) to calculate 
the Dirac brackets. According to the remark at the end of 
Sec.Il, we will obtain 

(S.26) 

which is exactly Eq. (4.10). If we use the constraints and Eq. 
(S.20) in the Hamiltonian (S.2S), we will obtain 

2123 

H'" = PN-I,fN-I.i + Pkiqk+ I.i -!i" liik'=Qk+ I.' 

QN-I.;=!N-I.i 

(S.27) 
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which is exactly the Hamiltonian (4.11). So, we have ob
tained the dynamics identical to the one introduced in Sec. 
IV. 

C. Adding a (d/dt)F term to the Lagrangian 

It is a well-known fact, in the first-order formalism, that 
we can add a complete time derivative to the Lagrangian, 
and it does not change the dynamics of the system. We now 
want to show that this is true, in general, for the Lagrangian 
of N th order in time (even in the singular case). Let us as
sume we have the Lagrangian 

(

N) (N-\) (I») 
L =!i" q, q , ... , q ,q , 

and we add a time derivative term obtaining 

(
N) (N-I) (I») d 

Ladd =!i" q, q , ... , q ,q + dt F, 

(S.28) 

(S.29) 

where Fis a function of q and its time derivatives of arbitrary 
order. 

Using the first-order formalism (Secs. III, IV, V A, and 
V B), we employ, instead of the Lagrangian (S.28), the La
grangian 

L' = !i" (qN - I.O,qN - \,o, ... ,qo.o) 

+ L Ilui(qui-qu+\,i)' (S.30) 
u=O ..... M 

Similarly, instead of the Lagrangian (S.29), we can use 

L ~dd = L ' + _ L qui :F, 
u-O ..... M qUI 

(S.31 ) 

where M was taken big enough so that F can be expressed 
without using time derivatives. From now on let us use the 
unified variables xp , for denoting all q's and a's. Then, we 
have 

L ' (. ) L'(' ) . aF add X,X = X,X + Xp --. 
axp 

(S.32) 

Let us consider L ' first. Canonical momenta are given by 

aL' 
Pp=-.-· 

axp 
(S.33 ) 

Equation (S.33), if not solvable for all xp , will give primary 
constraints [see (2.4) ] 

aL' 
f{Ja =Pa --a' =0. (S.34) 

Xa 

The Hamiltonian is equal [here we use Eq. (2.14) as defini
tion, because it is more convenient] : 

H' =Ppxp -!i" +liaf{Ja. (S.3S) 

The other Lagrangian will give 

, aL~dd aF 
Pp =-.-=Pp +--, 

axp axp 
(S.36) 

which will give primary constraints 

, _, aF aL _ -0 
f{Ja -Pa --a --a' -f{Ja - , 

Xa Xa 
(S.37) 

and the Hamiltonian 
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Hadd = P~Xp - L ~dd + Aaf{Ja = PpXp - L' + Aaf{Ja = H, 

(5.38 ) 

so the Hamiltonians are equal. The change of variables from 
(xp,pp) to (xp,p~) is canonical because 

{xp,p~.} = {XP,pfJ' - JF} = {xp,pp'} = 5pp., 
Jxp ' 

(5.39) 

where { , } denotes the Poisson brackets with respect to 
(xp,pp ). So, adding the complete time derivative to the La
grangian can only induce a canonical transformation in the 
phase space. 

VI. FINAL REMARKS 

In this paper, we have shown that it is always possible, 
for a given Lagrangian of Nth-order in time, to construct a 
first-order Lagrangian with equivalent equations of motion, 
and that by the use of the Dirac theory of constraints we can 
find a Hamiltonian structure for this Lagrangian. There are 
advantages to our approach. One is the fact that the theory of 
higher-order Lagrangians can easily be incorporated in the 
traditional formalism, and thus we do not have to construct 
a new one. Once our Lagrangian is constructed, we can em
ploy all well-known methods of investigating the usual, first
order systems (e.g., Noether theorem, Hamilton-Jacobi 
method, canonical transformations, and so on). We were 
also able to show, using this first-order formalism, that the 
ambiguities, usually connected with higher-order Lagran
gians, do not appear in our approach. 

We would like to say now a few words about an impor
tant paper by Saito et al., 7 which contains a version of "Ha
miltonization" of singular higher-order Lagrangians. We 
would like to briefly discuss differences and similarities 
between their approach and ours. This discussion is neces
sary to show that our work is not just an independent proof 
of their results, but a different, self consistent approach to 
the problem. We will restrict our comments to Sec. II and 
the parts of Sec. I in their paper, which concern the construc
tion of Hamiltonian formalism. 

The first important result we want to discuss, is the 
structure of constraints proposed in their paper. In the Os
trogradsky formalism, if for an sand i, the definition of a 
canonical momentum 

(s - I) _ JL . (s) ( 1 N 1) 
P" ---p. s= '''., - , 

(s) I 

Jqi 

(N+ k) 

does not contain q k>O, then it is a constraint. Such and 

only such constraints are considered by Saito et al. as being 
"contained in the Ostrogradsky formalism." However, the 
Ostrogradsky formalism can contain a variety of other con
straints. For example, let us consider the Lagrangian 

(3) (2)(2) 

L = !(X I )2 + XI X2 ' 

(s) 

where Xi = d sx,.Idt s. 

(6.1 ) 

The Ostrogradsky transformation will produce, among 
the others, the canonical momenta 
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(3) 

p~O) = -XI' 

SO we obtain the constraint 

(6.2a) 

(6.2b) 

(6.3 ) 
(3) 

despite the fact, that both definitions (6.2) contain XI' 
(s) (s) 

In other words, any equation containing only qi and Pi 

s = O,,,.,N - 1 which can be obtained from the Ostro
gradsky definition of momenta is a constraint resulting from 
the Ostrogradsky transformation, and has to appear in the 
formalism. Constraint (6.3) according to the definition of 
Saito et al. is not "contained in the Ostrogradsky transfor
mation." This is not only a question of terminology, because 
for the consistency of their formalism, it is necessary for 
them to prove that all constraints of this kind will be ob
tained as secondary to the ones they consider as primary. 
However they fail to show this for constraints other than the 
ones they call "contained in the Ostrogradsky formalism." 
Their proof is tailored to a specific form of the constraints 
and does not seem to be easily adjustable to the possible 
variety of all constraints produced by the Ostrogradsky for
malism. It is worth noting that in our method, thanks to the 
first-order formalism we use, we avoid the problem com
pletely. 

Also, the proof given by Saito et al. for the very strong 
claim that adding a complete time derivative term to the 
higher-order nonsingular Lagrangian has no physical effect 
does not justify the conclusion. They only show that the 
Hamiltonian will remain unchanged, the proper number of 
variables will be eliminated by constraints and the Euler
Lagrange equations of the new system will be equivalent. 
However, this may be not enough for the formalisms to be 
equivalent. Also, their counting of constraints, which is cru
cial for the proof, is inaccurate. For example, consider the 
Lagrangian 

1 [(1)]2 (3) 
L=- X + X, 

2 
(6.4 ) 

which is obtained from the usual Lagrangian of a free, one 
dimensional particle, by the addition of the total time deriva

(3) 

tive term X • Using the method proposed by Saito et al., we 

obtain four second-class9 constraints, instead of two second
class constraints and one first-class9 constraint as predicted 
by these authors in their proof. It is worth noting that in our 
paper we show explicitly that adding a complete time deriva
tive to the higher-order Lagrangian can produce at most a 
canonical transformation of the formalism, even in the more 
general case of a singular Lagrangian. 

Despite the criticism, we think that the paper by Saito et 
al. is a very important one, and we fully agree with the gen
eral idea, that singular higher-order Lagrangian systems 
should be treated by the use of a combination of Ostro
gradsky transformation and Dirac formalism. However, we 
also think that such a system should be treated as a first
order one, in the way we presented here. 

It may be interesting to say a few words about the appli-
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cability of the methods we employed here, for some prob
lems which are outside the scope of this paper. It is easy to 
notice that in this paper we look at the Nth-order Lagrangian 
as on a first-order system with nonholonomic constraints in 
the form qki = qk + (,i imposed on it. These constraints be
come a natural part of the formalism (they become equa
tions of motion) , when we add them to the Lagrangian and 
treat their Lagrange multipliers as independent coordinates. 
The Dirac theory is then used to obtain a Hamiltonian for
malism, The same approach can be used for other systems 
with different holonomic or nonholonomic constraints im
posed. Also, it can be used to construct a Lagrangian and a 
Hamiltonian for a given system of differential and algebraic 
equations, when the usual Lagrangian is not known. In this 
case, a higher-order Lagrangian can be defined as a linear 
combination of the equations, multiplied by Lagrange multi
pliers, which are then treated as independent coordinates 
(later we can reduce the order of the Lagrangian as shown in 
this paper). However, in this method not all Lagrange multi
pliers will be reduced out by the Dirac method, so the ob
tained system describes an embedding of the original dynam
ics into that of a larger dynamical system. 

The method we present in this paper can be also used in 
the case of higher-order Lagrangian systems with infinite 
number of degrees of freedom. In this case, we introduce 
independent coordinates and Lagrange multipliers not for 
time derivatives only, but for other higher-order derivatives 
as well. 

Note added in proof' (1) Lagrangians similar to (3.3) 
were used by B. Kupershmide9 in Hamilton-Cartan formal
ism of classical field theory. (2) The idea mentioned in Sec. 
VI, of constructing the Lagrangian for a given differential 
equation, by multiplying the equation by a Lagrange multi
plier, and then treating the multiplier as independent vari
able, was first given by Bateman,zo However, the Dirac theo
ry of constraints was not known at the time, so he was not 
able to derive a Hamiltonian from his Lagrangian, at least 
not in the general case. 
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The Lagrangian and Hamiltonian many-time equations are derived for a finite-dimensional 
system with an arbitray number of primary and secondary first-class constraints. Assuming 
that all the secondary constraints are generators of gauge transformations, the general form of 
the Lagrangian gauge algebra is given. 

I. INTRODUCTION 

In two recent papers 1,2 the general structure of singular 
Lagrangians and of their associated phase-space (Dirac
Bergmann theory of Hamiltonian constraints) and velocity
space descriptions have been studied in the finite-dimension
al case by using the second Noether theorem. In Ref. 1 and 
then in Ref. 3 it has been pointed out that in the case of only 
first-class constraints (only true gauge transformations at 
the Lagrangian level) one can reformulate the phase space 
Hamilton-Dirac equations by means of the so-called 
"many-time approach".4 In it the arbitrary Dirac multipli
ers are replaced with an equal number of independent 
"times" and the canonical variables are thought as functions 
of the ordinary time (when a nonvanishing canonical Ham
iltonian exists) and of these times. Then one considers a sys
tem of as many pairs of Hamilton equations as the total num
ber of times: one pair has the canonical Hamiltonian as 
Hamiltonian, while the Hamiltonians of the other pairs are 
either the first-class constraints themselves, if they satisfy an 
Abelian Poisson algebra, or one of their Abelianized forms. 
When the original constraints satisfy a nonabelian Lie-Pois
son algbra it is possible to write the many-time Hamilton 
equations in a form that uses the original constraints as 
Hamiltonians, if one uses the left-invariant vector fields dual 
of the Maurer-Cartan one-forms on the group manifold as
sociated to the Lie-Poisson algebra. In the definition of the 
physical system under consideration, there must be con
tained the information of which is the Lie group whose Lie 
algebra is realized as the Lie-Poisson algebra of the first
class constraints. The integrability conditions of the many
time Hamilton equations are just the statement that the con
straints are first-class and that the canonical Hamiltonian is 
a first-class quantity (a Dirac observable). 

What was not clarified in the previous papers is the La
grangian counterpart of the many-time Hamilton equations. 
That is, which are the equations to be added to the original 
Euler-Lagrange equations and which are the integrability 
conditions for the resulting set of equations. A partial an
swer to these problems is already contained in the general
ized Lie equations of Batalin and Vilkovisky5 and in the hy
pothesis of existence and closure of the gauge algebra of the 
gauge transformations.5

,6 

In this paper we shall clarify this matter following the 
treatment of Refs. 1 and 2. 

In Sec. II the previous works are reviewed, while in Sec. 
III the Hamiltonian many-time equations are analyzed. In 

Sec. IV we study the Lagrangian gauge algebra and its conse
quences. In Sec. V, the resulting Lagrangian many-time 
equations are studied. After the Conclusions (Sec. VI), an 
Appendix contains some commutators of vector fields. 

II. GENERALITIES 

Let us consider a system described by the coordinates qi, 
i = I, ... ,N, and by a singular Lagrangian L(q,q). Let the 
Hessian matrix Aij = a 2L laqi aqj have n null eigenvalues 
with associated null eigenvectors ASO(q,q), A = l, ... ,n, 
Aij AS b = 0. Let the Lagrangian be quasiinvariant under 
the following n sets of gauge transformations: 

JA (j) (j) dj~(t) 
8Aqi= L E A(t)ASju_j(q,q), E A(t) = ., (1) 

OJ dt J 

8AL = 8AqiL i +.!!.... (aL. 8Aqi)=.!!....FAq,q,~(t» 
dt aq' dt 

J A (j) 

Fa(q,q,~(t» = L E A(t)AFJrj(q,q)· (2) 
o j 

Here ~ (t) are n arbitrary functions of time and J A are n 
integers that can be identified with the method of Ref. 2. The 
second Noether theorem1

,2 implies the existence of the fol
lowing n Noether identities: 

dGA(q,q,~(t» 

dt 

GAq,q,~(t» = aL 8Aqi - FA 
aq' 

Here, 

JA (j) 

= L E A(t)AGJrj(q,q)· 
o j 

Li = aL _.!!.... aL = - (Aij j - ai)=,=O 
aqi dt aqi 

are the Euler-Lagrange equations 

( 
aL a 2L. j) 

a i = aqi - aqi aqj q 

(3) 

and ='= means evaluated on their solutions. One has for every 
A AGO(q,q)=O and AGJrj (q,q)=,=O.J=O,I, ... ,JA -1. 
Since the AGJA-j(q,q) are projectable to phase space, one 
gets the following situation (Pi = aL I aqi): for every A to 
the identically vanishing A Go there corresponds a primary 
constraint 
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- - ( . - (aL) ) ¢A(q,P)=A¢O(q,P)-ZO AGO(q,q)=¢A q'aq =0 

and then one has the secondary, tertiary ... , constraints 
AGJrj(q,q) = A¢Jrj(q,p)-zO. Moreover, one has a¢AI 

api = AS~' 
In Refs. 1 and 2 the theory was developed by choosing 

an orthonormal set of null eigenvectors AS~(q,q): In gen
eral, this can be done only locally and has the consequence 
that the corresponding functional form of the primary [¢ A 

with AS~(q,q) = a¢A(q,p)lap;] and secondary (A¢Jrj) 
constraints implies that they satisfy (locally in phase space) 
an abelian Poisson algebra (C ¢Jrj'B¢Jrk} = 0). Let us 
assume that there exist a unique global (in general not ortho
normal) form Ah (q,q) of the null eigenvectors, such that 
the associated constraints A4>J

A 
_j (q,p) satisfy the following 

phase-space gauge algebra: 

{A4>Jr j'B¢Jr k} 

(4) 

One has a true Lie algebra when the structure functions 
C"s are constants and a quasi-Lie algebra when the Batalin's 
conditions7 are satisfied. Equation (4) will be taken as defin
ing the global gauge algebra of the system and the equations 

A 4> J
A 

_ j -z 0 will globally define the final constraint manifold 
Y F of phase space (Y is the constraint manifold defined only 
by the primary constraints 4> A ). Every other choice of the 
null eigenvectors will generate the same number of in de pen
dent constrainls: these new constraints A ¢ J A _ j will be func
tions of the A ¢ J A _ /s, the equations A ¢ J A _ j -z 0 will define 
only a local domain of YF (except when A¢Jrj 
= AKJ

A 
-jA¢J

A 
_j with the functions AKJA _j never vanish-

ing near Y) and the counterpart ofEq. (4) will have different 
structure functions. Behind this freedom there is the theory 
offunctions groups.8 In particular, if one chooses an ortho
normal basis of A 5 ~ one gets a possible local Abelianization 
of the ¢'s (and again the demonstration of the existence of 
local abelianization can be formulated in terms of functions 
group8 at least in the finite-dimensional case and is connect
ed to the BRS approach9

). 

When a canonical Hamiltonian He = Piqi - L exists, 
the Dirac Hamiltonian has the following form: 

HD = He + III A(t)4>A' (5) 
A 

where the IlA (t)'s are the arbitrary Dirac multipliers de
scribing the gauge freedom associated to the primary con
straints. As shown in Refs. 1 and 2, one has 11 A (t) =gA (q,q), 
where the gA 's are a special functional form of the n velocity 
functions not projectable to phase space, due to the nonin
vertibility of the equations Pi = aL laqi when det(Aij) = O. 

Equation (4) only defines the structure functions of a 
real gauge algebra, when the singular Lagrangian L is such 
that the following equation holds: 

JA-l 
- - F A- JA-j A 

He = He + I I d (q,P)A¢Jrj' (6) 
A 0 j 

This means that all the secondary first-class constraints 
A ¢J

A 
_j,j=j:.JA , are generators of phase-space gauge transfor-
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mations, so that the Lagrangian gauge transformations are 
recovered in the following form: 

JA (j) A 

OAqi = L E A(t)AS~rj(q,q) 
o j 

JA (j) A 

= I E A(t){qi'A¢Jrj}lp=aLlaq 
o j 

= {qi,GA}lp=aLlaq = 0Aqilp=aL/aq. (7) 

Equation (6) has to be added as a requirement on L: In 
the general case, Dirac lO was not able to deduce it and as
sumed that all the secondary first-class constraints had to be 
added by hand to H D with new arbitrary multipliers. Actu-

II AdJA-j( .) Ad- JA - j ( )1 &:. f a y, q,q = . q,p p=aL/aq are lunctlOns 0 

qi,qi which remain undetermined from the Euler-Lagrange 

equations, because their solutions imply that these Ad JA 
- j 

are functions of the arbitrary velocity functions 
gA(q,q) =11 A(t). 

Moreover, in Eq. (6) the final canonical Hamiltonian 
H ~ is a first-class quantity: 10 

- F A Jc 
- (elJ _ h) A 

{H e'A¢Jrj} = I I COlA IJrj) (q,P)e¢Jc-h' (8) 
e 0 h 

The extended Dirac Hamiltonian HE can be obtained 
-J . 

from Eqs. (5) and (6) by replacing the Ad r J (q,p) 

with arbitrary mUltipliers All Jrj(t). In this way, one gets 
a generalization of the gauge transformations, whose 
Lagrangian counterpart is to replace Eqs. ( 1 ) 

J (j) A 

(oAqi = l:/~=o E A(t)AS jA _j (q,q» with the following ones: 

JA 

{)Aqi = I A'T/j(t)At~rj(q,q), (9) 
o j 

with the A'T/j(t) independent arbitrary functions of t. 
As shown in Ref. 2 this implies that the quasiinvariance 

of Eqs. (2) is replaced by a weak quasiinvariance (quasiin
variance modulo the Euler-Lagrange equations and their 
consequences independent from the accelerations; this is the 
generic case when second-class constraints are presentl,2): 

- d (JA 
A . • ) oL =- L 'T/J(t)AFJrj(q,q) 

dt 0 j 

JA-l 
- L e'T/H1(t) -Ai/(t»AGJrj(q,q) 

o j 

(j) 

Equations (2) are recovered when A'T/j(t) = E A(t). 

(10) 

Another piece of information, which will be crucial for 
what follows, is given by the transformation properties 1,2 of 
the Euler-Lagrange equations under the gauge transforma
tions of Eqs. (2): 

0ALi =Ji(OAq) 
k A 

aDAq d (aGA . . .) = ---Lk -- --+R .. DAqJ+A .. DAqJ =0 
aqi dt aqi IJ IJ ' 

(11 ) 

Luea Lusanna 2127 



                                                                                                                                    

where the Noether identities, Eqs. (3), have been used. In 
Eqs. (11), Rij is given by 

(12) 

and J; (Dq) = 0 are the Jacobi equations, II obtained from the 
second variation of the action S = S dt L and which vanish, 
when restricted to the extremals (solution of L; =0), if 
Dq;IL~O are deviations between two neighboring extremals 
(i.e., they are Jacobi fields). Therefore, the infinitesimal 
gauge transformations D A q; are Jacobi fields, as they should 
be by their definition itself, only when L is such that the 
following conditions are satisfied: 

aGA . . --. + RijDAql + AijDA1=0. (13) 
aq' 

While Eqs. (4), (6), and (8) plus the knowledge of the 
phase-space higher-order structure functions (see Ref. 9) 
include all the information about the phase-space gauge al
gebra, Eqs. (13) are a prerequisite for the existence of the 
Lagrangian gauge algebra, which will be discussed in Sec. 
IV. 

Coming back to phase space, the Hamilton-Dirac equa
tions read 

JA-I 

+ I I A{jJrj(q,P)(A'A¢Jr )' (14) 
A 0 j 

while the extended ones are 

dA(q,p) . {Ali } 
dt ' E 

JA 

z{A,li~ + I I AA Jrj(t) (A'A ¢Jrj}' 
A 0 j 

(15) 

Here, A A 0 (t) = A A (t) and A (q,p) is a function on phase 
space. 

Either Eqs. (14) or (15) cannot be solved without fix
ing the arbitrary multipliers A'S: This is a pregauge fixing, in 
the sense that only the restricted class of gauge-fixing con
straints whose time constancy implies just these A 's are al
lowed, when one wishes to evaluate the Dirac brackets to get 
the symplectic structure of the reduced phase space. Instead, 
in the next section the many-time Hamilton equations will be 
introduced, avoiding this pregauge-fixing condition. 

III. MANY-TIME HAMILTON EQUATIONS 

Following Refs. 1 and 3 the many-time Hamilton equa
tions will now be reviewed using the extended Hamilton
Dirac equations as a starting point. 

When the structure functions ofEqs. (4) and (8) vanish 
(Abelian case), besides the ordinary time t = 7, one intro

duces as many times A7JA 
- j as first-class constraints by 

means of the equations dA7JA-j=AAJA-j(7)d7. The co
ordinates q; (t) ,p; (t) are now considered as functions of all 
the times: qi=qi(7,A7JA-j), Pi =Pi(7,A7JA -j) (using the 
same symbols for the functions for the sake of simplicity) 
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and standard Poisson brackets among them are defined at 
equal value of all the times. Equation (15) is then replaced 
by the following system of coupled many-time Hamilton 
equations: 

aA (q,p) - - - r;; X ~ = { . ,li~, 
a7 . {A,H~=X cA , X - {. 1 } 

A JA-j - 'A'f'JA-j' 
(16) 

Their integrability conditions are just Eqs. (4) and (8): 

C¢JA -j'B¢Jn- k} = {li~'A¢Jr) = O. 

The final constraint manifold YF is (oliated with leaves, 
called gauge orbits. The vector fields AX J A _ j' restricted to 

YF' are tangent to the gauge orbits, while the vector field X ~ 
connects the gauge orbits among themselves. The gauge or
bits may be connected, simply connected, union of discon
nected parts and so on: all these global topological properties 
must be assumed as given. Indeed they are hidden, at the 
Lagrangian level, in the global structure of the configuration 
space (of which the qi are local coordinates) and in the glo
bal properties of the gauge transformations under which the 
singular Lagrangian is quasiinvariant. Once these properties 
are known, one can face the problem of reconstructing the 
gauge orbits from the knowledge of the gauge algebra of Eq. 

(4), which, in terms of the vector fields AXJA _j' becomes 

[AXJA -j'BXJn- k] 
Jc 

_ .. (CIJc - h) A - - II C(AIJA-j)(BIJn-k) (q,p)cXJc-h' (17) 
c 0 h 

In the Abelian case, when the gauge orbits are connect
ed, simply connected the second halfofEqs. (16) are just the 
Lie equations of the Abelian Lie algebra: given a set of initial 
data on YF' their integration allows to reconstruct the gauge 
orbit through that point. The gauge orbit turns out to be 
diffeomorphic to the group manifold of the corresponding 
Abelian covering Lie group, acting as a transformation 
group on YF' 

When the structure functions of Eqs. (4) and (8) are 
constant, they are the structure constants of a Lie algebra g 
[actually from Eq. (17) they are defined with a minus sign]. 
The gauge orbits are diffeomorphic to the group manifold of 
the corresponding covering Lie group G minus the part gen
erated by li~. Let us consider3 the Maurer-Cartan left-in
variant one-forms {fa = A % ( 7 C )dr and their dualleft-invar
iant vector fields Ya = B ~ (r) (a lar'» on the group 
manifold of G. Here, ~ is a set of coordinates on the group 
manifold, with the index a running over all the values 
(AIJA -j), A=I, ... ,n;j=O,I, ... ,JA and 70 =t; A%B~ 
= D~ is implied by i Ya {f b = D~. If E is the identity in G, with 

coordinates ~ = 0, we have YalE = ea, where ea are the gen-
erators of g, and ~ IE = ea

, with ea the generators of the 
dual g* of g (g and g* are identified with TEG and TEG *, 
respectively). We have 

[Ya,Yb ] = - C~b Yc, 

d{fa = !C%c{fb I\{fc, 
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aA d aA d 
A e __ b _ A e __ a = CC Ad (20) 

a aT" b aT" ab c· 

Both Eq. (18) and (19) are called Maurer-Cartan equa
tions. 

To assign the Dirac multipliers A a (t) is equivalent to 
assign some set of functions -rAe rO = t), i.e., a one-parameter 
subgroup, and the connection is given by 

A aCt) = A ~(rc(t» drb(t) 
dt 

::::}A a(t)dt = ~ al rc = r'(I)' (21) 

In the Abelian case one recovers d~ = Aa (t)dt. 

The many-time Hamilton equations are now 

Y~(q,p)=r!.?!~ = ~o}::::} aA(q,p) . B~(r){A'~b} (22) 
YaA(q,p) ={A,<Pa} a~ 

and their integrability conditions are just Eqs. (4), (8), and 
( 18). Again these equations are Lie equations and the sec
ond set allows the reconstruction of the gauge orbits. 

In the generic case of structure functions satisfying the 
conditions for generating a Batalin quasigroup,7 one recov
ers Eqs. (22) with B ~ (r,q,p) and Eq. (20) (and therefore 
the integrability conditions) are only satisfied when Eqs. 
( 22) are restricted to r F' 

In the actual calculations the closed form of the B ~ (rC
) 

may be either not known or complicated. The only way to 
use Eqs. (22) is to find an Abelianization ¢a of the ~a 's and 
to use Eqs. (16). In general, this cannot be done globally on 
Y F and one has to find different Abelianizations to cover all 
YF' In the Abelianized procedure one locally find Abeliani
zation factors B ~ (q,p) such that 

(23) 

i.e., on the solutions of the Hamilton equations locally the 
B ~ (q,p) become the B ~ ( r). When reparametrization in
variance (Hc =0) is present, the abelianization is the only 
possible approach at present: see the application to the 
Nambu string in Ref. 12. 

IV. LAGRANGIAN GAUGE ALGEBRA 

In this section, the Lagrangian counterpart of the vector 
field AXJA _ j will be considered and the gauge algebra ofEq. 
( 4) will be reformulated. 

Since, in general, the Noether gauge transformations 
{j A qi depend not only on the qi but also on the velocities i/ , 
the gauge transformations of the velocities, {j AI/ = (d / 
dt) {j A qi , depend on the accelerations. As said in Refs. 1 and 
2 this implies the necessity of formulating the theory in the 

(\) (2) 

infinite jet bundle with local coordinates {t,qi, q i, q i , ... }. 

Its points are the equivalence classes [{t,ci (t)}] of all the 
curves {t,ci

, (t)}, which at the time t pass through the point 
{qi} and have there a point of tangency of infinite order: 
dkC~ (t)/dtk = dkC~ (t)ldtk for every k. This implies 

(k) (k+ 1) 

(d q i - q i dt) [{t,ci(t)} 1 = O. The vector fields X A, gener-

ating the gauge transformations, have to be expressed as 
Lie-Backlund vector fields: 
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00 dk{jAqi a 
X A = 2> --k- (k)' 

o dt aq i 

(0) (l) 

q i = qi, q i = ii. (24) 

A Lie-Backlund transformation 13 is a tangent transfor
mation of infinite order preserving the tangency of infinite 
order of two curves. Only when {jAqi = {jAqi(q) we have an 
ordinary point transformation extended to the derivatives of 
arbitrary order and the space {t,qi,q'} closes upon itself un
der these transformations. 

Before studying the XA , let us consider the Lie-Back
lund vector fields associated to the generalized gauge trans
formations of Eq. (9) (in what follows we will replace ~i 
with f) 

(25) 

(26) 

A relevant vector field is A Xo 2 : 

_ . a 00 (k) (k - 2) a 
AXO,2 = AS~ -a"i + L k hAS ~ (k)' 

q 3 a q I 

Indeed it is the generator of dynamical symmetries of 
the Euler-Lagrange equations, which are not Noether sym
metries of the Lagrangian: 

AXo,2Li =0, (27) 

In terms of the vector fields AX J A _ j,h we get 

JA 00 (k+j) 
XA = X A I . ti) = Lj L k E A(t)AXJrj,k 

A'1J(t) = E A(t) 0 0 

00 (h) JA 

+ L h tACt) LjAXJrj,h-j 
JA + 1 0 

00 (h) 

= L h E A(t)AXh , 

o 
h 

Lj AXJA-j,h-j' h<JA, 
o 

AXh = J
A 

Lj AXJA-j,h-j' h>JA· 
o 

We shall be interested in the following AXh: 
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(30) 

with 

(31) 

because only they act on the subspace {qi,qi,qi} needed for the Euler-Lagrange equations. The vector fields ZA play an 
important role in the velocity space approach, I where they are connected to extra gauge freedoms of that formalism, and 
project to zero in phase space [ZA -A5~Aij(a/apj) =0]. 

The following notation will be used to indicate the vector fields ofEqs. (30), when truncated to their action on the {qi ,qi} 
and {qi ,qi ,qi} subspaces, respectively: 

Z - X T , - XT , _ f:i a A - A JA+ I - A 0.1 - A!o 0 aqi' 

T X T, X-T, T' /:i a A J =A O-=A J-O=A J +A!oJ -., A A' A A aq' 

- - . . ". a 
ATJr 1= AXi' = AX~_I.O + AX~,I = AT~r I + (2A5~A + A5~r I) aqi' 

- - - ...... a 
A TJA -j = AX!' = AX~ -j,O + AX~ -j+ 1,1 + AX ~ -j+ 2,2 = A T~A -j + (A5~A-j+ 2 + 2A5~A -j+ I + A5~A -j) aqi' 

- - .'. a 
Z~ = AX~ + I = AXl.'l + AXf.~ = ZA + (A'l + 2A5~) ali' 

X- T, - 5i a . 2 J A 02 - A 0 -, J = "'" A . aqi 
(33) 

2130 J. Math. Phys., Vol. 31, No.9, September 1990 Luca Lusanna 2130 



                                                                                                                                    

When Eq. (13) holds Eqs. (32) are projectable to phase 
space as shown in Ref. 1. Indeed from Eqs. (28) and (7) one 
has (remembering that Z A --+ 0) 

JA (h) a a 
x~, = L h E A(t)AXr' = 0Aqi-. + oA'-

D aq' aq' 

aGA a I (a
2
L aGA .. ) a ~---- + -----+A .. o ql -

api aqi pail aqj apj U A api 

so that 

AT;A-j~AXJA-j ={-'A~JA-)' j=O,I, .. ·,JA 

ZA~' (35) 

With Eqs. (32), Eq. (11) may be rewritten as 
oALi = XALi =Ji (OAq) =0 so that we get from them 

A TJA _ jLi =0, j = O,I, .. ·,JA 

Z~Li=O, AX6.~Li=O, (36) 

where the last equation is Eq. (27). Equations (33) carry, at 
the Lagrangian level, the same information ofEq. (8), i.e., 
that the time evolution is compatible with the gauge trans
formations, at least for infinitesimal deplacements of both 
kinds. As it is clear from Eq. (11), Eq. (13), considered as 
the consistency relations for the definition of the infinitesi
mal gauge transformations, lie behind Eqs. (33). 

For the commutator of two Lie-Backlund vector field of 
Eq. (24) we gee3 

[
X X ] _ ~ dko[A.B ]qi a 

A' B - £.. k d k (k) , (37) 
D t a' q' 

O[A.B ]qi = X~'(OBqi) - X ~'(OAqi) 

-0 k aoBq -0 k aoAqi 
- Aq aqk Bq aqk 

+ 0 'k aoBqi _ 0 'k aoAqi 
Aq aqk Bq aqk ' 

where use has been made of the following result: 

(38) 

(39) 

By using the Noether identities of Eqs. (2), it has been 
shown in Ref. 1 that we get 

(40) 

with 

(41) 

One gets the new Noether identities 
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dG[A,B] 

dt 

(42) 

where G[A,B ] projects in phase space to {O A ,0 B}' Therefore, 
the phase-space gauge algebra hypothesis, Eqs. (4), implies 
that O[A.B ]qi must be an infinitesimal gauge transformation. 
This implies Ji (O[A.B ]qi) =0 and in Ref. 1 it is shown that 
this is the condition for getting a quasiinvariance of Lunder 
the transformations O[D.[A.B IJqi. 

Equation (38) shows that, when the infinitesimal gauge 
transformations are velocity dependent, O[A.B ]qi depends 
upon the accelerations. Therefore, it may be decomposed in 
a part that depends only on qi, qi and a part proportional to 
the Euler-Lagrange equations L i . The qi ,il dependent part 
must moreover be proportional to a certain subset of the 
c5 j,_ w (q,q), so that we have a generalized infinitesimal 
gauge transformation in accord with Eq. (40) and the dis
cussion following them. Therefore, we get 

O[A.B ]qi 

x c5 j,- w (q,q) 

+ UYA,B ] (q,q)Lj (43) 

so that, when the gauge transformations are velocity depen
dent, we have what is called an "open gauge algebra." 14 The 
structure functions of Eq. (43) projects on phase space to 
the structure functions of Eq. (4). 

We can now state which are the most general conditions 
on L for the existence of an open Lagrangian gauge algebra, 
when we restrict ourselves to the relevant (qi ,qi qi) sub
space. The Lagrangian must be quasiinvariant under as 
many sets of gauge transformations 0 A qi as null eigenvalues 
of its Hessian matrix, and the functions A5jrj(q,q) must 
be such that the vector fields of Eqs. (33) satisfy the follow
ing algebra: 

XcTJ,_w + LD~AIJA-j)(BIJ8-k) (q,q) 
c 

(44) 

where the vector field UtA IJ A _ j)( B IJ B _ j) vanishes by using 
Li =0 and its time derivatives. By using the results of the 
Appendix truncated to the (qi ,il4) subspace, the remain
ing part of the algebra must be 

[ATJrj>Z~] = LD~(AIJrj)B(q,q)Z; 
c 
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+ IE~(AIJrj)B(q,q)eX6.~ 
e 

[Z~,Z~] = ID~AB(q,q)Z; 
e 

+ IE~AB(q,q)eX6.~ + U3AB , 
e 

[Z ~ 'BX 6.~] = IE ~AB (q,q) eX 6.~ + U4AB , 
e 

(45) 

with all the U's satisfying U=,=O. 
When restricted to the (qi ,qi ) subspace, Eqs. (44) and 

(45) become 

[ T' T' ] A JA-j'B JB-k 
Jc 

~ ~ C (clJc - w) ( .) T' 
- £..£..w (AIJA-j)(BIJB-k) q,q c J,.-w 

c 0 

+ I D (A IJrj)(BIJy- k) (q,q)Ze 
e 

(46) 

[A T~rj,ZB] = ID ~(A IJrj)B (q,q)Zc 
c 

[ZA,ZB] = ID~AB(q,q)Ze + UiAB' 
e 

While the first of Eqs. (46) projects to Eq. (17) in phase 
space, the other two project to zero. Ths explains why there 
can be no term in c TJ

c 
_ w in the first of Eqs. (45). The terms 

in Zc in the first of Eqs. (46) is a slight generalization of the 
known open gauge algebras, which cannot be excluded a 

priori. While the A T ~ A _ j are the vector fields generating the 
Noether transformations of Eqs. (1) under which L is qua
siinvariant and the A TJ

A 
_ j and Z ~ 'A X 6.~ are the generators 

of the dynamical symmetries of the Euler-Lagrange equa
tions, see Eqs. (36), ZA is not the generator of a Noether 
gauge transformation. From Eqs. (32), (28), (24), and the 
Noether identities (2), we get 

. J A (j) 

AT~AL='AFJA' OAqi = Ij E A(t)AT~A_jqi, 
o 

AT~A-jL='AFJA-j + AFJA-j+I' j= 1, ... ,JA, (47) 

ZAL='AFO' 

so that ZAL=.O only when A Fo='O' Instead, in the velocity 
space l the counterparts of the ZA are generators of extra 
gauge transformations of that first-order formalism, in 
which there is no room for the dynamical symmetries of the 
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Euler-Lagrange equations generated by the AX 6.~, see Eqs. 
(27) and (36). While at the Lagrangian level AX6.~ is re
sponsible for the arbitrariness of the accelerations in the di
rections of the null eigenvectors of the Hessian matrix, the 
velocity space counterpart of ZA is responsible for an analo
gous arbitrariness. 

Both in the phase space and Lagrangian formalism the 
commutator of any order of the gauge transformations must 
again be a gauge transformation and the iterations of Eqs. 
(4) and (43), respectively, must be consistent among them
selves. This is necessary to reconstruct perturbatively the 
gauge part of the trajectories (i.e., the gauge orbits) in large: 
according to the Frobenius theorem, the vector fields 
AXJA _ j and A TJA _ j (plus Z ~ and AX 6.2) must form an in
volutive distribution (in the Lagrangian case with an open 
gauge algebra this is true modulo Li =,=0). 

The final piece of information about the gauge algebra 
are the higher-order structure functions, which exist when 
the structure functions C and C are not constant. In the 
phase-space approach they are evaluated starting from the 
Jacobi identity for the Poisson brackets of the constraints as 
shown in Ref. 9. In the Lagrangian formalism there are al
ready the extra structure functions UYA.B l(q,q) ofEq. (43). 
Then, as shown in Ref. 6, one again begins the research of the 
higher structure functions from the Jacobi identity for the 
commutator of three A T~A _j' following a pattern similar to 
the one of phase space. 

v. LAGRANGIAN MANY-TIME EQUATIONS 

From Eqs. (28) and (39) we get 

0= [XA> :t] 
= ~(t) [AXO' :t] 

(48) 

For the vector fields of Eqs. (33), this implies by using 
Eqs. (30), (33), and (26) that, 

X-=X X-=T [ 
d ]T' [_ _ d ]T' 

A I'dt A JA-I,O + A JA,I'dt A JA' 

= A TJ
A 

_ j + I' j = 2, .. ·,JA , (49) 
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= [AXO.I + AX I.2 + J~2k AXJA-k.JA+I-k' :t]T' 

=ATO' 

= [AXO.2 + J~I kA XJr k.JA+2-k' :JT' 

=Z~, 

[ 
d]T' -T, 

AXJA + 3' dt = AX o.z· 

The restriction of Eqs. (49) to the subspace (qi ,i/) is 

[ 
d ]T' ATJ ,- =0 

A dt 

[ATJrl' :r1 T
, =AT~ =AT~A' 

[ATJrj, :r1 T
, =AT~_j+1 =AT~A':"j+I' j=2,· .. ,JA, 

(50) 

[Z~, :tr=AT~'=ATb, 

[ 
- T, d ]T' _ ,T, _ Z 

AXOZ'- -ZA - A' . dt 

To study the Lagrangian many-time equations, let us 
begin as in phase space with the abelian case, which now 
means the vanishing of the structure functions C in Eqs. 
( 44 ). If the functions qi ( t) are considered as functions 
qi(t, A./A -j) (for the sake of simplicity we use the same sym
bol for the new functions) with as many extra "times" A./ A - j 

as vector fields A TJ
r 

j [we are working in the (qi, ii, ii) 
subspace], the equations of motion are 

Li~O, 

A = l, ... ,n, 
j = O,I, .. ·,JA , 

(51) 

where the second set are the Lagrangian many-time equa
tions. Now i/ and ii are interpreted as (a / at) qi and (a 2/ 
at 2 )qi, respectively. 

Equations (51) are integrable due to Eqs. (44) and 
(36) by using Li ~ 0, i.e., they are integrable on the solu
tions of the ordinary Euler-Lagrange equations. 

Equations (49) and (50) are used to check that Eqs. 
( 51 ) , defined in terms of the vector fields A TJ A _ j' are consis
tent 

a2qi a . T i 
--....!.--. - =- A J -jq 
aArJA-Jat at A 

(52) 
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a (T 'i T i) = at A JA-jq - A JA-j+ Iq 

= A TJA-ii - 2A TJA - j+ Ii/ + A TJA _j+ 2qi 

= Atjrj + 2Agjrj+ I + ASjrj+2 

where Eqs. (30) have been used. 
When the structure functions C of Eqs. (44), are the 

structure constants of a Lie algebra, by using the vector 
fields Ya of Eqs. (18) (with the value a = 0 excluded) we 
have the following set of integrable equations: 

Li ~O, 

Yaqi ~ Taqi~ aqi ~ B ~ (.,.c) Tbqi. 
a~ 

(53) 

In the generic case of structure functions C in Eqs. (44), 
one could translate at the Lagrangian level the conditions for 
the Batalin quasigroup and obtain Eqs. (53), but with a 
B~ =B~(.,.c,q,q). 

Actually, as in phase space, one looks for an Abelianiza
tion (with respectto the structurefunctions C) ofEqs. (44), 
i.e., for new vector fields t = R ~ (q, q) Tb ~ B ~ Tb which 
allow the local use of Eqs. (51). Since the Abelianization 
procedure amounts to make a local choice for the gauge vari
ables, we rediscover the generalized Lie equations of Bata
lin-Vilkovisky5 as an Abelianization of the many-time La
grangian equations. 

VI. CONCLUSIONS 

We have developed the general structure of the many
time Lagrangian and Hamiltonian equations for a finite-di
mensional system with an arbitrary number of first-class 
constraints, when all the possible existing secondary con
straints are generators of gauge transformations. This re
quires the existence of a gauge algebra, which, in general, is 
open at the Lagrangian level. 

When second-class constraints are present, nothing 
changes of the previous considerations. Indeed the second
class constraints ¢k::::;O are preserved in time by construc
tion, and from Eqs. (22) we get that Ya¢k ~ {¢k> ~a};::::O 
due to the definition of first-class constraints. Therefore, the 
second-class constraints are preserved also in the extra 
"times" ~. 

We have also shown the existence of the vector field Z ~ 
and A-XO•2 , connected to dynamical symmetries of the Euler
Lagrange equations. Both of them are not present in the 
phase space approach, while in the velocity space one th~re 
are extra gauge freedoms generated by vector fields ZA' 
which are the counterpart of the Z ~, but which introduce 
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the same kind of arbitrariness which the AXO,2 introduce at 
the Lagrangian level. 

APPENDIX: SOME COMMUTATORS 

By taking into account that ASj.-j = ASj.-j(q,q), we 
get the following expressions for the commutator of two vec
tor fields AXJA _ j,k: 

[A TJA -j'B TJB - k] 

Then we get 

- - - - - - T, = [AXJA -j,O + AXJA -j+ 1,1 + AXJA -j+ 2,2'BXJ8 - k,O + BXJB - k+ 1,1 + BXJn - k + 2,2] -
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a ~i 
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Starting with a density that is conserved for a dynamical system when dissipation is ignored, a 
local conservation law is derived for which the total flux (integrated over the spatial domain) 
is unique. When dissipation is incorporated, the conservation law becomes a balance law. The 
contribution due to dissipation in this balance law is split in a unique way in a part that is 
proportional to the density and in a divergence e~pression that adds to the original 
(conservative) flux density; the total additional flux is uniquely defined. It is shown that these 
total fluxes appear in the expression for the centro velocity, i.e., in the velocity of the center of 
gravity ofthe density, which shows that this velocity can be defined in a unique way (in 
contrast to a local velocity). Applications to the Korteweg-de Vries-Burgers equations and to 
the incompressible Navier-Stokes equations are given. 

I. INTRODUCTION 

This paper is concerned with some basic observations 
about balance laws for continuous systems and some conse
quences. Although the methods and results are rather 
straightforward, we are not aware of any direct treatment of 
these matters in the literature. 

The starting point is a distinguished density E of a cer
tain continuous system, an expression in the state variable 
and its derivatives. The system is assumed to be "dissipative" 
in the sense that the integrated quantity (E) (where ( ) 
denotes integration over the fixed spatial domain) will not be 
conserved during the evolution. However, it is assumed that 
the dissipation can be recognized explicitly, and that when it 
is ignored, (E) is a constant of the motion of the resulting 
"conservative" system. Although this is not essential for the 
following, it is helpful to think of E as an energylike quantity. 

The aim of this paper is to investigate in which way the 
"dissipation" can be understood in its effect on E. In Sec. II it 
is shown that when dissipation is ignored and (E) is con
served, E satisfies a local conservation law for which the 
total flux (F) can be uniquely defined (the flux itself is 
unique only in the class of curl-free functions). In the pres
ence of dissipation, E satisfies a local balance law. In Sec. III 
it is shown that the contribution of dissipation can be split in 
a unique way in a part that is proportional to E, with the 
dissipation rate of (E) as factor of proportionality, and in a 
part that changes the original flux density F of E with a 
certain amount e, for which (e) is unique. In Sec. IV the 
resulting formulation of the balance law is interpreted as a 
conservation law for a modified energy density that depends 
explicitly on time. Moreover, it is shown that the additional 
flux due to dissipation will also appear in the expression for 
the centro velocity of E, i.e., the velocity of its center of 
gravity. Then, as in the nondissipative case, this centro ve
locity equals the energy-flux velocity, but now the flux con
sists of the sum of the flux of the nondissipative system and 
the flux due to dissipation. Since in general the total flux (e) 
due to dissipation does not vanish, the resulting expression 

for the centro velocity is different in the conservative and in 
the dissipative case. In Sec. V some examples from fluid dy
namics are considered; I-D wave equations like the 
Korteweg-de Vries-Burgers equation, and the inviscid Na
vier-Stokes equations. The final section contains some con
clusions and remarks. 

It may be stressed that the results in this paper are quite 
general and applicable to nonlinear equations. Most results 
in the literature about propagation velocity are for linear 
equations, and then often deal with harmonic waves and re
late the velocity to the group or phase velocity. For the ener
gy-flux velocity see Refs. 1-8 for systems without dissipa
tion, and Refs. 9 and 10 for systems with dissipation. For the 
centro velocity in systems without dissipation see Refs. 11 
and 12, the latter in particular also for nonlinear equations, 
and for dissipative systems see Refs. 13 and 14. 

II. UNIQUENESS OF THE TOTAL FLUX IN LOCAL 
CONSERVATION LAWS 

Let the state of a system be described by some vector 
function u(x,t), where x belongs to a spatial domain nClRn

• 

The domain n is assumed to be given here, possibly the 
whole space. The boundary of n is denoted by an, and the 
normal to the boundary by n. It is assumed, without loss of 
generality that the evolution is described by an evolution 
equation (generally a partial differential equation) that is of 
first order in time. All densities to be considered below are 
then expressions in u and its spatial derivatives. 

To motivate the following, assume that the evolution 
equation for u can be thought of to consist of a conservative 
part Kl and a part that may account for dissipation (or pro
duction) K2 • To recognize the effect of dissipation in the 
following, a parameter v is introduced and the equation for u 
is written as 

(2.1a) 

Unfortunately, both notions of "conservative" and "dissipa-
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tive" are difficult to define in general. What is meant here is 
that Eq. (2.1a) with v = 0, 

a,u = KJ (u), (2.1b) 

has some conserved density E, while E is generally not con
served for (2.1a) when v#O. In this section we consider the 
conservative case before dealing with the dissipative equa
tion in the next section. 

To be more specific, let Ebe this density and assume that 
it is positive definite in the following sense: 

(E(u»= L E(u»O, if u#O. 

Here, E will be referred to as the energy density and (E) as 
the total energy. The statement that E is a conserved density 
of (2.1 b) is defined to mean that the total energy is con
served: 

a, (E(u» = o. (2.2) 

The first result states that then E satisfies a local conserva
tion law. 

Proposition 2.1: For the density Esatisfying (2.2), there 
is a local conservation law of the form 

a,E(u) + div F(u) = 0, (2.3 ) 

for some flux density F that can be chosen to satisfy the 
boundary condition 

F(u)'n = 0, on an. (2.4) 

With this boundary condition, the flux is unique, possibly up 
to the addition of a function f satisfying 

div f = 0, in nand f·n = 0 on an. (2.5) 

For all F satisfying the boundary condition (2.4) the total 
flux is uniquely defined and is given by 

(F) = (x·a,E), (2.6) 

where a,E is calculated for solutions of (2.1b). 
Before proving this result, some remarks are in order. 
Remark 2.1: Concerning uniqueness it can be said that F 

satisfying Eqs. (2.3) and (2.4) is unique up to elements from 
the kernel of the divergence operation satisfying the homo
geneous boundary conditions. Since any function can be 
written as the sum of a solenoidal function and some gradi
ent function, F could be made unique by requiring 
curl F = O. The actual construction ofF will be performed in 
this way in the proof below. Note that if n = 1, the only 
function that satisfies (2.5) is the zero function, so that F is 
unique then. If n = 2, for any scalar function tP that is con
stant on an, the function f = ( - tPy,tPx) satisfies (2.5). In 
the same way, if n = 3, any function f = curl a, with 
curla·n = 0 on an, satisfies (2.5). 

Remark 2.2: If one just starts with a local conservation 
law like (2.3), say 

a,E(u) + div F*(u) = 0, (2.7) 

for some flux density F*, then upon integrating over the do
main n and using Gauss' theorem, one obtains 

a,(E(u» + r F*(u)'n = o. 
Jan 

(2.8) 

Conservation of total energy, i.e., (2.2), is recovered if 
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fan F* (u)'n = O. Note, however, that unless the flux density 
F* satisfies the pointwise condition (2.4), the total flux (F*) 
will differ in general from that given by (2.6) [see formula 
(2.10) below]. 

Remark 2.3: In order to specify the phrase in (2.6), 
suppose that E is differentiable and let DuE(u) denote its 
Frechet derivative. That is, for any function v, and E real, 

DuE(u)'v = !!....E(u + 0) I ' 
dE E~O 

or, equivalently, a first-order Taylor expansion reads 

E(u + 0) = E(u) + EDuE(u)'v + O(~). 
Then a,E(u) in (2.6) can be written like 
a,E(u) = DuE(u)·a,u, and inserting the evolution equation 
(2.1b), we obtain 

a,E(u) = DuE(u)'KJ (u). (2.9) 

This is the expression that is meant in (2.6). 
Proof of Proposition 2.1: The proof of this proposition 

uses the following standard result from potential theory. 
Lemma: For a given function g on n, consider the fol

lowing Poisson equation for a scalar function e satisfying 
homogeneous Neumann boundary conditions: 

- v2e = g(x), in nand ve·n = 0 on an. 

This problem has a solution e if and only if 
(g) = fn g dx = 0, and this solution e is uniquely deter
mined up to an additive constant. 

Using this lemma, the proof of the proposition is imme
diate: Take for the function g the expression a,E(u), i.e., 
DuE(u)'KJ (u) according to (2.9). Because of the require
ment (2.2), the solvability condition is satisfied and a solu
tion e is obtained. Then define F to be F = - ve. Since e is 
defined uniquely up to a constant, F is uniquely defined from 
e and satisfies curl F = O. Moreover, the boundary condi
tions for e imply that F'n = O. The uniqueness up to func
tions fthat satisfy (2.5) is clear. The expression for the total 
flux follows easily from the following formula that is ob
tained by applying Gauss' theorem: 

r xdivF=- rF + r x(F'n). 
Jn Jn Jan 

(2.10) 

This completes the proof of the proposition. 

III. UNIQUE DECOMPOSITION OF THE BALANCE LAW 

In this section we will take a density E and flux F that 
satisfy (2.3) if u evolves according to (2.1b). Then if u 
evolves according to (2.1 a), the density E will satisfy an 
expression like 

a,E(u) + div F(u) = - vS(u), (3.1) 

where S is some scalar density due to the addition of the term 
vK2 (u) to the equation. (It can be interpreted as a "loss" or 
"production" term, but no sign restrictions will be imposed 
here.) Using the Frechet derivative as in Remark 2.4, S(u) 
reads 

S(u) = - DuE(u)'K2 (u). 

We will refer to (3.1) as a local balance law for E. The aim is 
now to rewrite (3.1) in such a way that the contribution 
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from S that is responsible for a direct decrease (or increase) 
in E is separated from the contribution that adds to the flux 
F. To that end, we start with the global expression corre
sponding to (3.1). Integrating (3.1) over n one obtains 

a,(E(u» = -v(S(u». (3.2) 

Introducing the instantaneous dissipation rate a as the time
dependent functional 

a(u) = (S(u»/(E(u», (3.3) 

(3.2) can be written like 

a,(E(u» = - va(u)(E(u». 

The definition of a implies that 

(S- aE) =0, 

which makes it possible to split S in the desired way. 

(3.4) 

(3.5 ) 

Proposition 3.1: The density S can be decomposed like 

S = aE + dive, (3.6) 

where e (u) is a loss flux density that can be chosen to satisfy 
the boundary condition 

e·n = 0, on an. (3.7) 

Just as in proposition 2.1, e is unique up to the addition of a 
function fthat satisfies (2.5); the total loss flux is unique and 
given by 

(e) = (x·(S-aE». (3.8) 

Proof' This proposition follows in the same way as prop
osition 2.1: 

e = - V (), where () satisfies - V2() = S - aE, in n 
and V().n = 0 on an. 

Substitution of (3.6) into (3.1) leads to the following 
proposition. 

Proposition 3.2: The balance law (3.1) can be formulat
ed as, 

a,E(u) + div[F(u) + v0(u)] = - va(u)E(u), 
(3.9) 

with 

[F(u) + v0(u) ]·n = 0, on an, (3.10) 

where F, e, and a are defined as before, and where the total 
flux (F(u) + v0(u» is uniquely defined. 

This result shows in an explicit way that the "loss den
sity" S is split in a part that takes account for the change in 
(E) according to (3.4) and a part that is added to the flux F 
of the conservative system. 

IV. INTERPRETATION AND CONSEQUENCE FOR THE 
CENTRO VELOCITY 

The dissipation rate a as it appears in the balance law 
(3.9) acts like a uniform damping factor for E. This can be 
seen quite clearly in the following way. Introduce the primi
tive of a that will be a functional p that depends on the 
complete evolution of u from the initial time up to time t: 

P( u,t): = So' a(u(s»ds. (4.1) 

Multiplying (3.9) by evf3 the result can be written like a local 
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conservation law for a density E * that depends explicitly on 
time: 

a,E*(u) +divG*(u) =0, 

where 

(4.2) 

E* = evf3E, and G* = evf3 [F + v0]. (4.3) 

[To see this, note that a(u) is afunctional ofu, so the t~ 
evf3 is at each t just a number, not a function of x, and can be 
interchanged with the divergence operation.] Since G* satis
fies the boundary condition G*·n = 0 on an, according to 
(3.10), it follows that E* is really a conserved density: 

a,(E*(u» = O. (4.4) 

An important consequence of the decomposition (3.9) 
concerns the centro velocity of the density E. This is defined 
as the velocity V of the center of gravity of E: 

V = a,x, where «x - X)E) = O. (4.5) 

To calculate V, start with 

0= a,«x - X)E) = «x - X)a,E) - V(E). 

Then substitute the expression (3.9) for a,E. Write 
G = [F + v0] and apply (3.10) to see that Gon = 0 on an. 
Consequently, the boundary integral in the following partial 
integration vanishes [cf. (2.10)]: 

f (x-X)divG= - f G+ f (x-X)Gon. (4.6) In In Jan 
Using all these properties we may deduce that 

«x - X)a,E) = «x - X){ - div[F + v0] - vaE}) 

= (F + v0) - va«x - X)E) 

= (F+v0). 

Thus it follows that 

V = (F + v0) = (F) + v (e) . 
(E) (E) (E) 

(4.7) 

This expression for V shows that, just as in the case when 
there is no dissipation (v = 0), the expression for the centro 
velocity is the energy-flux velocity, but now the total flux 
incorporates a term (e) due to dissipation. 

The expression (4.7) with v = 0; 

V = (F)/(E), (4.8) 

differs from (4.7) since (e):;;of 0 in general. Only when the 
dissipation is uniform, i.e., when 

S(u) = a(u)E(u), (4.9) 

for some functional a, e vanishes identically and (4.7) and 
( 4. 8) coincide. 

In the literature it is customary to take ( 4. 8) as the ener
gy velocity even when dissipation is present (see Refs. 9 and 
10). 

V. EXAMPLES FROM FLUID DYNAMICS 

Consider as a first example the Korteweg-de Vries 
(KdV) equation to which some dissipation is added. This 
equation for a scalar function u (x,t) of one space variable x 

reads 

(5.1 ) 

E. van Groesen and F. Mainardi 2138 



                                                                                                                                    

For the equation with v = 0, a conserved density is E = !u2 

so that 

atE + axF= 0, with F= !u! - uUxx - 2u3
• (5.2) 

In this case of one-space dimension, let n be the whole real 
line. Functions u are considered that vanish, together with 
all their derivatives sufficiently fast at infinity. Then the flux 
density Fas given in (5.2) satisfies the pointwise boundary 
condition (2.4), and so this flux density is unique, according 
to Remark 2.1. With this F the centro velocity is given by 
(4.8). Uniform damping is encountered for e.g., 

D(u) = !a(u)u, with some functional a. (5.3) 

Then the loss-density S in the balance law (3.1) reads 
S(u) = !a(u) u2 = a(u)E(u), so a is the dissipation rate. 
A simple example is the case a(u) = a, with a a constant. 

The Korteweg-de Vries-Burgers equation is of the form 
(5.1) with the viscous dissipation given by 

D(u) = - Uxx ' (5.4) 

Then the loss density in (1) is S( u) = - uu xx' Since 
(S(u» = ( - uUxx ) = (u!), the dissipation rate becomes 

a(u) = 2(ux 2)/(u2). (5.5) 

Therefore, sinceS(u) = - uUxx = aE + aJJ, Omustsatis
fy the equation 

axo= - uUxx - (u!)/(u2)·U2
• (5.6) 

The total flux (0 ), of interest for the centro velocity can be 
written as 

(5.7) 

From this expression, which follows from an integration by 
parts of its right-hand side upon use of the boundary condi
tions on 0, it is seen that (0 ) does not vanish in general since 
arbitrary solutions will not be symmetric. This shows the 
necessity of the additional term in (4.7) compared to (4.8). 
See also the remarks in the next section. 

In Ref. 14 the result (4.7) is related to an expression 
derived by Vainshtein, and the velocity is investigated in 
great detail for linear wave equations. 

As another example we consider the incompressible Na
vier-Stokes equations. Incompressible fluid flow is described 
by a velocity field v satisfying div v = 0, and pressure p by 

atv + (v·V)v + Vp = vV2v, (5.8) 

or, equivalently, 

atv + (curl v) xv + V[p + !lvI2] = vV2v, 

where v is the kinematic viscosity. For the kinetic energy 
density E = !lvl2 the balance law reads 

atE + div[ (p + E)v] = vv·V2v. (5.9) 

The flux F = (p + E) v satisfies the pointwise no-flux condi
tion whenever the velocity field satisfies v·n = ° on an. 
From (5.9) it follows that 

at(E) = - va(E), with a = 2«IVvn/(lvn). 
(5.10) 

For inviscid fluids the centro velocity of E is given by the 
expression 
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VE = «p+E)v)/(E). (5.11 ) 

For viscous fluids an additional flux (9) has to be added; it 
is the three-dimensional analog of the viscous contribution 
in the KdV -Burgers equation. 

For plane flows there is another interesting density: the 
enstrophy density. Expressed in terms of the component w of 
the vorticity vector curl v perpendicular to the plane, it is 
given by W = !w2

, and it is conserved for inviscid fluids. In 
terms of w Eq. (5.8) takes the form known as the vorticity 
balance equation, 

atw + v·Vw = vV2w, (5.12) 

and the local balance law for W is easily shown to be 

at W + div[ Wv] = vwV2w. (5.13) 

For the total enstrophy we thus obtain 

at(W) = - vy(W), with Y= 2(IVwI 2 )/(w2
) 

(5.14) 

and the centro velocity for W for inviscid fluids is given by 

Vw=(Wv)/(W), (5.15) 

while for viscous fluids an additional term should be added. 
In general the dissipation rate a (v) of the energy den

sity will not coincide with the dissipation rate y(v) of the 
enstrophy density (They coincide only for so-called planar 
Taylor vortices, see Ref. 15). This fact shows that viscosity 
acts different on different densities. This selective dissipation 
is well known and is responsible for the self-organization 
process in Navier-Stokes equations (see Ref. 15). 

VI. CONCLUDING REMARKS 

The motivation for and results of this paper can be ex
plained by starting with some balance law for a certain con
tinuous system. If E is a specified density that has a clear 
physical meaning (the energy, say), a balance law for E is of 
the form (3.1): 

atE(u) + div F(u) = - vS(u). 

This relation does not define For S in a unique way. In fact, 
even if S is the result of adding dissipation to the the govern
ing equation (symbolized by the factor v), so that E satisfies 
the local conservation law (2.3), 

atE(u) + div F(u) = 0, 

when dissipation is ignored, the flux density F is not unique
ly defined since any function curl a can be added to F with
out changing (2.3). This nonuniqueness is quite cumber
some if one looks for a physical meaning of the flux F or 
quantities expressed in F. A particular example is the local 
energy velocity. Upon integrating (2.3) over arbitrary sub
domains, it is quite natural to define a local energy velocity 
VE by 

E·vE = F. 

However, the velocity defined in this way clearly changes 
when a nonvanishing function curl a is added to F. The same 
problem is encountered if dissipation is present. 

This paper shows that this problem can be partly solved 
if it is known that, provided dissipation is ignored, the total 
energy (E ) is conserved. Then, although F is not unique, the 
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total flux (F) can be uniquely defined by taking pointwise 
no-flux boundary conditions for F (the conservation of (E ) 
implies that the integration over the boundary of the flux 
component normal to the boundary vanishes). In the partic
ular case of one-dimensional problems, the scalar function F 
is defined uniquely. 

The uniqueness of (F) turns out to be of vital impor
tance if one considers instead of the local energy velocity, an 
averagedlike velocity. In particular, in conservative systems, 
the velocity of the center of gravity-the centro velocity-of 
the energy is shown to be the energy-flux velocity (4.8), i.e., 
the quotient of (F) and (E), and is therefore uniquely de
fined. The same has been shown to be true if dissipation is 
added to the equations. Then the contribution S has been 
split into a part proportional to E and a divergence term. In 
the centro velocity appears the integrated expression of this 
divergence term; this term has also been chosen in a unique 
way, leading to a unique expression for the centro velocity. 

Concerning the use of the centro velocity as a physical 
quantity to measure propagation speed, the following re
marks are in order. First of all, by its definition, the centro 
velocity has some physical meaning. It will be clear, how
ever, that when dissipation is the dominating feature, and 
not just acts as a perturbation of a conserved system, this 
concept, although well defined, will have little practical im
portance. 

On the other hand, the centro velocity can be defined for 
(highly) nonlinear equations, and for all kind of solutions 
(provided the boundary conditions are satisfied). This is dif
ferent for two other velocity concepts that are often used, the 
group and phase velocity, which are only well suited for lin
ear (or weakly nonlinear) equations and for (quasi)mon
ochromatic solutions. 

A final remark is about the effect of dissipation on the 
centro velocity, i.e., about the contribution of the term (9) 
in (4.7); 

V = (F + v9) = (F) v (9) 
(E) (E) + (E)' 

In a somewhat different way, this has been investigated for 
equations like the uniformly damped KdV, and the KdV
Burgers equation (5.1) in a recent paper.16 To summarize 
these results here, it must first be noted that the KdV equa
tion itself (so with v = 0) has a family of travelling waves 
(cnoidal waves) that can be parameterized with the total 
energy e= (E) = qu2

) and propagate with a certain veloc
ity A = A(e) depending on e. We denote such a wave by 
U(e;x - At). Taking such a waveform with a specific value 
of e as an initial condition for the dissipative KdV equation, 
the resulting decaying evolution was written like 

U(x,t) = U(e(t); x - <,h(t)), (6.1 ) 

for some functions e(t) and <,h(t), so as if the evolution fol
lows an adiabatic path along the family of travelling waves. 
Equations for the functions e(t) and <,h(t) were derived. The 
equation for e in lowest order of v turns out to be an ordinary 
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differential equation for e itself, and can be solved (numeri
cally for the KdV-Burgers equation; for the uniformly 
damped case, e decreases exponentially). In the same order, 
the position of the wave <,h(t) follows from the equation 

J,<,h(t) = A(e(t)), (6.2) 

which can be integrated once e(t) has been determined. Nu
merical calculations of these equations, and a comparison 
with numerical calculations of the initial value problem of 
the continuous dissipative KdV equation itself showed that 
these simple, lowest-order equations are in fact very accu
rate. This holds true even when highly nonlinear effects are 
dominant initially, and up to rather large values of v. 

Of relevance for the present paper is particularly the 
expression (6.2) that depicts the instantaneous propagation 
speed of the decaying wave as the speed of the exact travel
ling wave to which it is compared at that time. Since for a 
function U given by (6.1) the energy-flux velocity equals the 
propagation speed ..1,( e) : 

(F)/(E) = A(e), 

for U = U(e;x - <,h), any value of <,h, (6.3) 

these results show that the contribution (0) is negligible in 
this case. Another way to see this is to note that the cnoidal 
wave U(e;x - <,h) is an even function about x = <,h. This 
causes the expression in (5.6) to be even, and therefore the 
total flux (0) given by (5.7) to be zero. Of course, the actual 
solution will not be even, but the numerical calculations 
show that the uneveness has only small effect on the propa
gation speed. 
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A layer-stripping algorithm suggested by Yagle and Levy for solving a multidimensional 
inverse scattering problem is analyzed. It is shown that the unfiltered version ofthe algorithm 
is unstable; for the filtered version, it is proven that the reconstruction depends continuously 
on the data. 

I. INTRODUCTION 

In this paper we consider a two-dimensional inverse 
scattering problem for 

[V2 - a; - V(x,z)]P(x,z,t) = 0. (1.1) 

Here, the potential V is assumed to have compact support 
contained in the half-space z> 0, which we refer to as the 
downward direction. We also assume that V is smooth and 
that V2 - V has no bound states. 1 

We perform the following experiment. We send in the 
plane wave 8(t - z) and measure on the plane z = ° the 
quantities P(x,O,t) and azP(x,O,t). From this information 
we want to reconstruct V(x,z). 

In 1986, Yagle and Levy2 proposed a layer-stripping 
algorithm for solving the corresponding three-dimensional 
inverse scattering problem. This algorithm, which is dis
cussed in Sec. II, is reminiscent of the procedure one would 
use to solve a boundary value problem for a hyperbolic equa
tion, a problem that is well known3 to be ill-posed in the 
sense that the solution does not depend continuously on the 
data. This similarity suggests that the Yagle-Levy algorithm 
is unstable. The present paper confirms this diagnosis by 
exhibiting data, which, when run through the layer-strip
ping algorithm, gives arbitrarily wild results at the very first 
step. 

Yagle and Levy themselves sensed this difficulty with 
the algorithm, and suggested a remedy. This remedy in
volves filtering, namely, introducing a cutoff in the Fourier 
domain. This paper shows that this remedy does indeed re
sult in an algorithm that is stable in a specific norm. 

II. THE YAGLE-LEVY METHOD 

The Yagle-Levy idea is to write (1.1) as 

(az +at)(az -at)p= [V-a~]p. (2.1) 

Thus the differential operator of ( 1.1 ) is decomposed into an 
upgoing part az + at' a downgoing part az - at' and a later
al part a ~. We define 

Q(x,z,t) = (az - at)p(x,z,t). (2.2) 

Becauseourincidentwaveis8(t - z) and Vis assumed to be 
smooth, P and Q have the form 

P(x,z,t) = 8(t - z) + p(x,z,t)H(t - z), 

Q(x,z,t) = q(x,z,t)H(t - z), 

(2.3a) 

(2.3b) 

where H is the Heaviside function that is one for positive 

arguments and zero for negative arguments. The coefficients 
p and q then satisfy 

(az +at)p=q, 

(az -at)q= (V-a~)p, 

V(x,z) = - 2q(x,z,t = z). 

(2.4a) 

(2.4b) 

(2.4c) 

Roughly, the Yagle-Levy reconstruction method is to 
discretize the z and t derivatives and recursively solve (2.4 ), 
beginning with p(x,O,t) and q(x,O,t) and recovering Vat 
each step from (2.4c). 

Yagle and Levy recognized that this procedure is likely 
to be unstable because of the second-order lateral derivative 
in (2.4b). Their remedy involves working in the (trans
verse) Fourier domain. In particular, we define the x-Four
ier transform 

jJ(k,z,t) = (217") -1 J: 00 e-ikxp(x,z,t)dx, 

"'-
with similar definitions for q and V. Then (2.4) transforms 
into 

(az + at )jJ(k,z,t) = q(k,z,t) , (2.5a) 

(az - at )q(k,z,t) 

= k 2jJ(k,z,t) + J V(k - h,z)jJ(h,z,t)dh, (2.5b) 

"'-
V(k,z) = - 2q(k,z,t = z). (2.5c) 

A finite difference approximation of (2.5) yields 

jJ(k,z + t:.,t + t:.) = jJ(k,z,t) + t:.q(k,z,t), (2.6a) 

q(k,z + t:.,t - t:.) = q(k,z,t) + t:.k 2jJ(k,z,t) 

+ t:. J V(k - h,z)jJ(h,z,t)dh, 

(2.6b) 

(2.6c) 

Recall that we are givenjJ(k,O,t) and q(k,O,t) for all k and t. 
From (2.6c) we first find V(k,O) for all k. We then use 
(2.6a) and (2.6b) tocomputejJ(k,t:.,t) andq(k,t:.,t) forallk 
and t. We obtain V{k,t:.) from (2.6c); then we repeat the 

"'-
process to obtain jJ, q, and V for z = 2t:., etc. 

A difficulty arises because of the factor k 2 on the right 
side of (2.6b): At each step in the algorithm, the lateral high-
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frequency components grow. In order to regularize the prob
lem, Yagle and Levy suggested replacing the multiplier k 2 in 
(2.5b) by 

HL (k) = {k 2, for Ik I <L, 
0, for Ik I;;;.L. 

(2.7) 

This filter prevents the algorithm (2.6) from amplifying the 
lateral high frequencies. In the next section, we will see the 
effect it has on stability of the algorithm. 

III. STABILITY ANALYSIS OF THE YAGLE-LEVY 
METHOD 

A. Instability example 

In this section we show that the inversion method based 
on (2.5) without a filter such as (2.7) is indeed unstable. We 
do this by considering the example with data 

p(x,O,t) = n - I exp(inx), 

q(x,O,t) = 0. 

In the Fourier domain, these data are 

p(k,O,t) = n - 1c5(n - k) 

q(k,O,t) = 0. 

( 3.1a) 

(3.lb) 

(3.2a) 

(3.2b) 

The first step of the algorithm (2.6) applied to (3.2) 
first yields V(k,O) = ° and then 

p(k,z = a,t + a) = n - 1c5(n - k), (3.3a) 

q(k,z = a,t - a) = ak 2 n -1c5(n - k), 

V{k,z = a) = - 2k2 an -I c5(n - k). 

(3.3b) 

(3.3c) 

Taking the inverse Fourier transform of (3.3c), we find 

V(x,z = a) = - 2 an - I I:", eikxk 2c5(n - k) dk 

= - 2 an exp(inx). (3.4 ) 

Thus we see that by taking n large, we can obtain at the very 
first step a reconstruction V(x,a) that is as large as we 
please. For large n, however, the data (3.1) become arbitrar
ily close to zero in the sup norm. A reconstruction corre
sponding to p = q = 0, on the other hand, is identically zero. 
Thus we have exhibited two sets of data, namely, (3.1) and 
p = q = 0, that in the sup norm are arbitrarily close but 
which give reconstructions that diverge by as much as we 
please. 

B. The same example with the filtered method 

The instability exhibited in Sec. III A is due, as Yagle 
and Levy suggest, to the factor of k 2 in (2.6b). If we replace 
this k 2 by H L defined by (2.7), then we obtain at the first 
step 
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q(k,z = a,t + a) = !!..HL n - 1c5(n - k), (3.5a) 

V(k,z = a) = - 2aHL n -1c5(n - k). 

The inverse Fourier transform of (3.5b) is 
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(3.5b) 

VL(x,z= a) 

= - 2an -I I~ L e- kXk2c5(n - k) dk 

= _ 2 an _1{n2 exp(inx) , if - L<on<oL, 
0, otherwise. 

(3.6) 

We see that the magnitude of VL (x,a) can be no larger than 
2aL. 

C. Continuous dependence result for filtered method 

Here we assume that we start with two sets of data, 
namely, {PI ,ql } and {P2 ,q2}' When fed into the filtered al
gorithm (2.6), they lead to reconstructions VI and V2 • If the 
data sets are close in some norm, are the reconstructions also 
close? The ans",er is yes if we measure closeness of the data 
in the following norm: 

Ilflll,,,, = sup 11f(' ,f) III' 
1>0 

(3.7) 

where II-III denotes the usual L I norm. 
For the continuous dependence result, we need the fol

lowing lemma concerning the possible growth of the recon
struction with depth. 

Lemma: Suppose the data satisfy IIP(' ,0,') III.", <oM and 
IIq(' ,0,') III,,,, <oM. Then the filtered reconstruction satisfies 

IIP(' ,na,.) Ik", <I; (a,L 2,M), 

IIq(· ,na,.) Ik", <I~ (a,L 2,M), 
A-

II V(· ,na) III <02f~ (a,L 2,M), 

(3.8a) 

(3.8b) 

(3.8c) 

where f; and f~ are polynomials in a, L 2, and M. These 
polynomials can be determined recursively by the following 
algorithm: 

f! =M(1 + a), 

f! =M + aL 2 M + 2M 2a, 

f;+ I =f; + af~, 
f n + I =fn + !!..L 2fn + 2al'n fn 

q q p '.I q p' 

(3.9a) 

(3.9b) 

(3.lOa) 

(3. lOb) 

Proof We proceed by induction. The zeroth step is to 
obtain V(x,O) from the data: 

V(k,O) = - 2q(k,0,O). (3.11) 

The first step is 

p(k,a,t + a) = p(k,O,t) + aq(k,O,t), (3.12a) 

q(k,a,t - a) = q(k,O,t) + !!..HLP(k,O,t) (3.12b) 

+ a I V(k - h,O)p(h,O,t)dh, 

A-

V(k,a) = - 2q(k,a,a). (3.12c) 

We easily estimate (3.12a) in the L I_L '" norm: 

(3.13a) 

To estimate (3.12b), we bound the second term on the 
right side by 

sup a JL k 21P(k,O,t) Idk<oaL 2 M. 
1>0 -L 
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In the third term on the right side of (3.12b), we use (3.11) 
and Young's inequality,4 

sup all- 2q( ·,O,O)*p( ',O,t) II I <.2M 2a. 
1>0 

Thus we estimate (3.12b) by 

IIq( ·,a,. )111,,,, <.M + t:.L 2 M + 2M 2a. 

From (3.12c) and (3.13b) we have 

IIV(·,a)1I1 <.2(2aM2 +M(1 + aL 2». 

The (n + 1)st step of the algorithm is 

(3.l3b) 

(3.l3c) 

p(k,(n + l)a,t + a) = p(k,na,t) + aq(k,na,t), 
(3.14a) 

q(k,(n + 1)a,t - a) = q(k,na,t) + AHL p(k,na,t) 

+ a f V(k - h,na)p(h,na,t)dh, 

(3.14b) 
A 

V(k,(n + l)a) = - 2xq(k,(n + 1)a,(n + l)a). 

(3.14c) 

If we use the same procedure for estimating the 
(n + 1) st step as we did for the first step, we see that the 
results of the Lemma follow immediately. Q.E.D. 

Corollary 1: If, as previously, the data satisfy 
IIPIII.", <.M, and IIqlll,,,, <.M, then the filtered reconstruction 
V satisfies 

II V( . ,na) II 00 <.2J; (a,L 2,M). (3.15) 

Proof We merely take the inverse Fourier transform of 
V: 

11V(',na)lIoo = s~p I f eikXV(k,na)dk 1<.IIV(',na)III' 

Q.E.D. (3.16) 

Theorem: Suppose the data satisfy 

IlPi (. ,0,.) 111,00 <.M and IIqi (. ,0,.) 111,00 <.M, 

for i = 1,2. 

Then 

II (PI - P2 )(. ,na,.) 111,00 

<.g;,P (a,L 2,M) II (PI - P2) (. ,0,') III,,,, 

+ g;,q (a,L 2,M) II (ql - q2)(' ,0,.) 111.00' (3.17a) 

II (ql - q2)(' ,na,.) 111,00 

<.g;,p (a,L 2,M) II (PI - P2) (. ,0,') 111.00 

g!,p = 1, 

g!,q = a, 
g!,p = a(L 2 + 2M), 

g!,q = 1 + 2 aM, 

(3,18a) 

(3.18b) 

(3.19a) 

(3.19b) 

g;.: I = FJ;,.P + ag;,p, (3.20a) 

FJ;,.: I = FJ;"q + ag;,q, ( 3. 20b ) 

g;.: I = g;,P + t:.L 2 g;,P + 2aJ; g;,p + 2aJ; FJ;"p, 
(3.21a) 

g;,: I = g;,q + aL 2g;.q + 2aJ; g;,q + 2aJ; g;,q' 
(3.21b) 

Proof The proof is similar to that of the Lemma. At step 
zero we have 

A A 

II(VI - V2)(',0)1I00 <.211(ql -q2)(·,0,.)III,oo' (3.22) 

Atthe first step, we write out (3.12) for {PI ,ql }and {P2,Q2} 
and subtract. From the resulting equation for PI - P2, we 
have 

II (PI - P2)(' ,a,.) 111,00 <.11 (PI - pz)(' ,0,) 111,00 

+ all(ql - q2) (',0, )111.00' 
(3.23a) 

In the equation for ql - q2' we add and subtract the term 
A 

V2 *PI' The estimate that results is 

lI(ql -q2)(',a,)III,oo 

<.1I(ql -q2)(·,0,.)III,oo 

+ t:.L 211 (PI - P2 ) (-,0,. ) 111,00 

+2aMII(ql -q2)(',0,)III,oo 

+2aMII(PI -P2)(-'0,)III,oo' (3.23b) 

Naturally, VI - V2 is bounded by twice the right-hand side 
of (3.23b), which we simplify to 

lI(ql -q2)(',a,)III,oo 

<.(1 +2aM)II(ql -q2)(·,0,)1I1.00 

+ a(L 2 + 2M) II (PI - P2)( ',0,. )111,,,,. 

At the n + 1st step, we have 

II(PI -p2)(',(n+ 1)a,.)III,oo 

<.11 (PI - P2 )(. ,na,.) 111,00 

+ all(ql - q2)( ·,na,. )111,00' 

lI(ql -q2)(',(n+ 1)a,.)III,oo 

(3.24) 

(3.25a) 

+ g;,q (a,L 2,M) II (ql - q2)( ',0,' )111,,,,' (3.17b) <.1I(ql -Q2)(·,na,.)III,oo 

A A 

II(VI - V2)(',na)1I1 

<.2g;.p (a,L 2,M) II (PI - pz ) ( . ,0, . ) 111,00 

+ 2g;,q (a,L 2,M) II (ql - Q2)(' ,0,.) 111,00' (3.17c) 

where the g's are polynomials in a, L 2, and M that can be 
determined recursively from the J's of the Lemma by the 
following algorithm: 
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+ t:.L 211 (PI - P2 )(. ,na,) 111,00 

+ 2 aJ;(a,L 2,M)II(ql - Q2) (·,na,· )111,00 

+ 2 aJ;(a,L 2,M) II (PI - pz) (·,na,· )111,00 .(3.25b) 

From (3.25) the results of the Theorem follow. Q.E.D. 
Corollary 2: If the data satisfy the hypotheses of the 

Theorem, then 
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II(VI - V2 )(·,na)IL" 
<,2g;.p II (PI - P2 ) (. ,0,') 111.", 

+ 2g~.q II (ql - q2)(' ,0,.) Ik",· (3.26) 

Proof We merely Fourier transform (3.17c), as in the 
proof of Corollary 1. 

Remark: Although the example in Sec. III A does not 
satisfy the hypotheses of the Theorem, it can be easily modi
fied so that it does. In particular, the data 

° {n-Iexpunx), for Ixl<a, 
p(x, ,I) = 

0, for Ixl;;;'a, 

q(x,O,I) = 0, 

( 3.27a) 

(3.27b) 

when Fourier transformed, have finite L I_L '" norms. Again 
the computations for the first step of algorithm (2.6) can be 
carried out analytically and the result is a reconstruction 
that grows with n. 

IV. REFORMULATION OF THE INVERSE PROBLEM 

One might wonder whether the data p(x,O,t) and 
q(x,O,I) can be specified arbitrarily: perhaps they must satis
fy consistency conditions. The following reformulation of 
the inverse problem suggests that they can be specified arbi
trarily. 

We recombine Eqs. (2.4) to read 

(V2 
- a;)p(x,z,l) 

= [ - 2(az + at )p(x,z,1 = z)]p(x,z,I). 

Thus the inverse problem is recast as a nonlinear, nonlocal 
partial differential equation. The boundary data we specify 
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are p(x,O,I) and q(x,O,t) = (az + at )p(X,O,I). Since 
atP(x,O,I) can be found from p(x,O,I), we could instead 
specify p(x,O,t) and azp(x,o,t). 

The study of equations such as (4.1) might be a profit
able approach to understanding inverse problems. For ex
ample, perhaps a local existence and uniqueness theorem 
could be obtained by Cauchy-Kovalevsky techniques. This 
we leave for future work. 
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The fermionic extensions of the KdV equation are derived from the zero curvature condition 
associated with the superalgebra OSp(211). This derivation clarifies why there are only two 
such extensions possible and why only one of them is supersymmetric. A Lenard type of 
derivation of these equations is also presented. 

I. INTRODUCTION 

The classical integrable models l
-

7 have been studied 
quite intensively in the past. These consist of both lattice as 
well as continuum models with the right number of con
served quantities in involution (for continuum models, there 
is an infinite number of them) to determine the flow exactly. 
Each of the conserved quantities can be thought of as a Ham
iltonian generating its own flow and all these flows would 
commute. In other words, with every integrable system is 
associated a hierarchy of equations that are also integrable. 

Although much is known about the classical integrable 
models, the study of the quantum systems is relatively new 
and has already led to interesting areas of research such as 
quantum algebras and quantum groups.8-10 More recently, 
there has also been a lot of interest in the integrable models 
from the point of view of conformal field theories and string 
theories. For example, it is observed II that the dynamical 
variable of the Korteweg-de Vries (KdV) equation can be 
appropriately related to a stress tensor so that the second 
Poisson bracket structure associated with this system coin
cides with the Virasoro algebra. From the string theory point 
of view, it is, of course, the supersymmetric theories that are 
more interesting, and these are associated with the graded 
Virasoro algebra. A natural question, therefore, is whether 
there exist fermionic extensions of the KdV equation that are 
also integrable. This question has already been studied l2

-
22 

in some detail and it appears that there are two fermionic 
extensions of the KdV equation associated with the graded 
Virasoro algebra, one of which is manifestly supersymmetric 
whereas the other is not. This is indeed quite surprising. 

To understand this in more detail, we have chosen to 
analyze the problem from a different point of view. Let us 
note that the continuum integrable models can be obtained 
from the zero curvature condition associated with some Lie 
algebra. Thus, for example, the KdV equation can be ob
tained from the zero curvature condition7

,23,z4 associated 
with the Lie algebra ofSL(2,R), whieh is a subalgebra of the 
Virasoro algebra. To obtain the fermionic extensions of the 
KdV equation, it is, therefore, natural to study the zero cur
vature condition associated with the simplest grading of the 
SL(2,R) algebra, namely, the OSp(211) algebra. Our analy
sis shows that every equation in the KdV hierarchy can be 
independently supersymmetrized and may have a hierarchy 
of its own. The lowest fermionic equation in such a hierarchy 
will be supersymmetric, but the higher ones need not be, 
This explains why there are two fermionic extensions of the 

KdV equation. In particular, it points out that the nonsuper
symmetric extension of the KdV equation is really the sec
ond equation in the hierarchy of the chiral superparticle 
equation. 

This paper is organized as follows. In Sec. II, we briefly 
review the zero curvature formulation of the KdV equation 
based on the Lie algebra SL(2,R). In Sec. III, we study the 
zero curvature condition associated with the superalgebra 
OSp (211 ) and show how the two fermionic extensions of the 
KdVequation [(super KdV) equations] can be obtained 
from it. We also clarify various properties of these equations. 
In Sec. IV, we present a Lenard type of derivation of these 
equations with some concluding comments in Sec. V. 

II. THE ZERO CURVATURE FORMULATION OF THE KdV 
EQUATION 

In this section, we recapitulate very briefly how the 
KdV equation is obtained from the zero curvature condi
tion7,23,z4 associated with the Lie algebra SL(2,R). Let us 
recall that the SL(2,R) algebra consists of three generators 
Ta , a = 1,2,3, satisfying 

[Ta,Tb] = if~b Te, 

where 

I~J = - Ilz = 2, 

liz = -/~I =/~I = -/f3 = -1, 

(2.1) 

(2.2) 

with all other structure constants vanishing. (One can iden
tify the Ta's with the generators of the Virasoro algebra as 
TI = L o, T2 = L 1 , T3 = L _ l') 

Let us next assume that Ap (x) define (1 + 1 )-dimen
sional gauge fields belonging to this algebra. The zero curva
ture condition (also known as the Cartan-Maurer equation) 
in this case can be written as 

F~v = apA ~ - avA; - l~eA!A ~ = 0, a = 1,2,3, 
(2.3) 

where J-l,V = 0,1 and the structure constants, I~c> are the 
ones defined in Eq. (2.2). Let us also note here that 

a a ao =- and al =-, (2.4) at ax 
Furthermore, let us choose 

(2.5 ) 

The parameter A. is known as the spectral parameter and is 
associated with the eigenvalues of a linear problem. 
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With this choice ofthe variables, it is clear that the equa
tions for a = 3 and a = 1 lead, respectively, to the following 
constraint equations: 

A~ =A~,,, -2.,fTA~, 

(2.6) 

In Eq. (2.6) and in what follows, a variable with a subscript 
x or t merely represents a derivative with respect to that 
variable. The dynamical equation is now obtained from 
a = 2 and with the constraints in Eq. (2.6), it takes the form 

A L =!A ~.""" - 2A iA ~," - A i,,,A 6 - UA 6,,,. (2.7) 

If we now identify the dynamical variable of the KdV equa
tion with Ai, namely, if 

Ai = u(x,t), 

and define 
A~ =A(A.,u), 

then Eq. (2.7) takes the form 

1 
Ut = -A""" - 2uA" - u"A - UA" 

2 

(2.8) 

(2.9) 

=~(~- 2(~U + U~))A -U~A. 
2 ax3 ax ax ax 

(2.10) 

Since the variable u(x,t) is independent of the spectral pa
rameter A., we can make a power series expansion 

n 

A(A.,u) = 2 L (4A.)n- jAj (u), (2.11 ) 
j=O 

with 
Ao =!. 

Substituting this expansion into Eq. (2.10), we obtain 

(~ - 2(~ u + u ~)) Aj = ~ Aj+ I' 
ax3 ax ax ax 

j = 0, 1,2, ... ,n - 1 (2.12) 

and 

Ut = (~-2(~U+ U~))An. 
ax3 ax ax 

(2.13 ) 

We recognize Eq. (2.12) to be identical to the recursion 
relation between the conserved quantities of the KdV equa
tion. Thus we can identify 

Aj=~~/~u, (2.14) 

where the H/s define the conserved quantities (Hamilto
nians) of the KdV equation. It then follows that Eq. (2.13) 
defines the nth equation of the KdV hierarchy. In particular, 
note that if we choose 

A(A.,u) = (4A. - 2u), 

then Eq. (2.10) would give 

ut = - u,,"" + 6uu", 

(2.15) 

(2.16 ) 

which is the KdV equation.25 Let us note here that the sim
plest way we can obtain just the nth equation in the hierar
chy is by setting A. = 0 in Eq. (2.10) and identifying appro
priately 

A =An =~HJ~u. (2.17) 
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Let us also note that if we had chosen 

A : = 2.,fT, A i = A ~ = - iv, 

A ~ = - 8.,fT (A. - !V2), (2.18 ) 

where v(x,t) is the dynamical variable, then from Eq. (2.3) 
we would have obtained 

(2.19) 

This is nothing other than the modified KdV (MKdV) 
equation, and is related to the KdV equation through the 
Riccati relation 

(2.20) 

Thus the MKdV equation can also be obtained from the zero 
curvature condition associated with the SL(2,R) algebra. 

III. THE ZERO CURVATURE FORMULATION OF THE 
sKdV EQUATIONS 

Let us now study the zero curvature condition associat
ed with the superalgebra OSp (211 ). This algebra is obtained 
through a grading ofthe SL(2,R) algebra. Therefore, in ad
dition to the three generators ofSL(2,R), we also have two 
fermionic generators Ta, a = 4,5, such that the algebra 
takes the form 

[TQ,Tb] = if~b Te, 

[TQ,Ta ] = if~a Tp, (3.1) 

[Ta,Tp] + =/~pTa' 

where a,b,c = 1,2,3 and a,{3 = 4,5. Here + denotes the an
ticommutator and l~b'S are the structure constants defined 
in Eq. (2.2) while 

1~4 = - I!I =1;1 = - I~s = -!, 
1;5 = - 1~2 = 1~3 = - 1~4 = 1, 

I!s =/~ =/~s = 2. 

(3.2) 

(Note here that the additional fermionic generators can be 
identified with those of the superconformal algebra as 
T4 = G 1/2 and Ts = G _ 112 .) The zero curvature condition, 
in the present case, would take the form 

F~v = afLA ~ - avA ~ - I~KA ~A ~ = 0, (3.3) 

where I = {a,a} takes values 1,2, ... ,5 and/~K are the struc
ture constants of the OSp(211) algebra. Note again that 
Ji, v = 0,1 and A ~ and A ~ are fermionic in nature. 

Let us next choose 

A: = 2.,fT, A ~ = - 1, Ai = o. (3.4 ) 

Once again A. is the spectral parameter, as we will see in Sec. 
IV. Note that this set of conditions is consistent with Eq. 
(2.5) in that when the fermionic variables are set to zero, this 
set reduces to the earlier set for the pure bosonic theory. 
With this choice of the gauge fields, it is clear that the equa
tions for 1= 3,1, and 5 lead, respectively, to the following 
constraints: 

A b = A L - 2.,fT A 6, 
A~ =!A6,xx -.,[TAL -A6Ai +AgA~, (3.5) 

A ~ = A g,,, - .,fT A g - A ~A i. 
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Note that when the fermionic variables are set to zero, these 
equations reduce to those ofEq. (2.6). The bosonic and the 
fermionic dynamical equations are now obtained from the 
1= 2 and 1= 4 components ofEq. (3.3) to be 

A 2 _143 2A 3 A2 A2 A 3 UA 3 
I,t - 'Y' o,xxx - O,X I - I,x 0 - o,x 

If we now identify 

A ~ = u(x,t), A ~ = i(J(x,t), 

A~ = A (A,u,(J), Ag = - (i/2)a(A,u,(J), (3.7) 

where u and (J are the bosonic and the fermionic dynamical 
variables, respectively, then Eq. (3.6) gives 

u, =~(~-2(~U+U~))A -U aA 
2 ax3 ax ax ax 

3 aa 1 + 2 ax (J + 2 a(Jx, (3.8) 

A. = -~a +~ua-~A A._AA. +.i. a . 
'f" 2 xx 2 2 x'f' 'f'x 2 

Furthermore, since u and (J are independent of the spectral 
parameter A, we can make the power series expansions of the 
form 

n 

A(A,U,(J) = 2 I (4A)n- jAj (u,(J), 
j~O 

n 

a(A,u,(J) = 2 I (4A)n- jGj (u,(J), 
j~O 

with 

Ao =-i, Go =0. 

Substituting these into Eq. (3.8), we obtain 

and 

aA~; I = (::3 _ 2(! u + u !)) Aj 

aGo + 3 __ J (J + Gj.p, 
ax 

( 
a 2 ) aAn 

A. = _ --u G -3-A.-2A "'. 'f't ax2 n ax 'f' n'f' 

(3.9) 

(3.10) 

( 3.11) 

Thus we see once again a hierarchial structure, with Eqs. 
(3.10) defining some form of recursion relations, with Eqs. 
(3.11) giving the nth equation ofthe hierarchy. 

Let us next start with the zeroth order equation 

A (0) = 2A0 = 1, a(O) = 2Go = O. (3.12) 

The dynamical equations are easily obtained from Eq. (3.8) 
or (3.11) to be 
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",(0) __ '" 
'Yt - 'f'x· (3.13 ) 

These equations represent the superchiral waves or the 
chiral superparticles and are obviously the supersymmetri
zation of the lowest order equation in the KdV hierarchy. 
The supersymmetry transformations under which Eq. 
(3.13) is invariant are given by 

8u = €(Jx' 8(J = €u, (3.14) 

where € is a constant anticommuting parameter. 
We can now construct A I and G I from the recursion 

relations Eq. (3.10) and they turn out to be 

(3.15 ) 

Thus, the next equation in the hierarchy is obtained from Eq. 
(3.11) to be 

u~l) = - Uxxx + 6uux + 12(Jxx(J, 

(J~I) = - 4¢Jxxx + 6u(Jx + 3ux(J. (3.16) 

We readily recognize this to be one of the fermionic exten
sions of the KdV equation 12 (with the scaling (J-->!(J). This 
equation, however, is no longer invariant under the super
symmetry transformations of Eq. (3.14) even though the 
lower member of the hierarchy is. Similarly, we can con
struct 

A2 = - Uxx + 3u2 + 12(Jx(J, 

( 3.17) 

so that the next equation in the hierarchy would be [from 
Eq. (3.11)] 

- 120uxifJx(J - 120u(JxxifJ 

+ 40(Jxxx(Jx + 6O(Jxxxx(J, (3.18 ) 

(J~2) = - 16(Jxxxxx + 4Ou(Jxxx + 60ux(Jxx + 50uxx (Jx 

- 30u2(Jx - 30uux(J + 15uxxx (J, 

and so on. Once again this equation does not possess the 
supersymmetry ofEq. (3.14). 

Let us now analyze the Poisson bracket structures of 
this hierarchy. The lowest order equation, (3.13), is Hamil
tonian with 

and 

{U(X),U(Y)}I = ~ 8(x - Y), 
ax 

{u(x),(J(Y)}1 = 0, 

{(J(x),(J(y)h = - 8(x - y). 

( 3.19) 

(3.20) 

It can be seen readily that the second equation of the hierar
chy, namely, Eq. (3.16), is Hamiltonian with 

H (I) = f dX( u3 + + u; + 12u(Jx(J - 8(JxxxifJ) (3.21) 

and the Poisson bracket relations of Eq. (3.20). It is also 
Hamiltonian with the Poisson bracket relations 

{u(x),u(y)h = (~- 2(~ u + u ~)) 8(x - y), 
ax3 ax ax 

A. Das and S. Roy 2147 



                                                                                                                                    

{u(x),¢(y)h = - (! ¢(x) + 2¢(x) !) D(X - y), 

{¢(x),u(y)h = - (2 ! ¢(x) + ¢(x) !) D(X - y), 

{¢(x),¢(y)h = 4(::2 -U(X») D(X - y), 
(3.22) 

and H (0) playing the role of the Hamiltonian. This brings 
out the bi-Hamiltonian structure of the system. 

Let us next understand the lack of supersymmetry for 
the higher equations of the hierarchy in some detail. If we go 
back to Eq. (3.8), we note that except for the manifestly ..1-
dependent terms, these equations are invariant under the 
supersymmetry transformations 

DU = E¢x' D¢ = EU, DA = - Ea, Da = - EAx' 
(3.23) 

It is the manifestly A-dependent terms that, however, give 
rise to the recursion relations. Thus we conclude that the 
recursion relations in these hierarchies break supersym
metry and, consequently, the higher order equations in a 
hierarchy will not be supersymmetric. This explains why one 
of the fermionic extensions of the KdV equation is not mani
festly supersymmetric. 

Let us note, however, that every equation in the KdV 
hierarchy can be independently supersymmetrized. Let us 
recall that any equation in the hierarchy can be obtained by 
setting A = ° and choosing the dynamical variables A and a 
appropriately. If ..1= 0, the dynamical equations take the 
form 

U = - - - 2 - U + U - A + - a A. + - aA. 1 (a 3 ( a a )) 3 1 
, 2 ax3 ax ax 2 x 'I' 2 'I' x' 

1 1 3 A. = __ a + - ua - - A A. - AA. . 
'1'1 2 xx 2 2 x 'I' 'I'x 

(3.24 ) 

As we have noted earlier, these equations are invariant under 
the transformations of equation ( 3.22). Thus with appropri
ate choices for A and a, we can supersymmetrize every equa
tion of the KdV hierarchy independently. As an example, let 
us choose [consistent with equation (3.22)] 

A = - 2u, a = 2¢x' (3.25) 

This gives rise to the dynamical equations 

u, = - Uxxx + 6uux + 3¢xx¢' 

¢, = - ¢xxx + 3(u¢)x' (3.26) 

which are nothing other than the second fermionic extension 
of the KdV equation,13,15 and by construction these are su
persymmetric. It is clear now that this method would lead to 
a unique supersymmetrization of every equation in the KdV 
hierarchy. However, there may be more than one fermionic 
extension of a given equation in the hierarchy and only one 
of them would be manifestly supersymmetric. 

IV. A LENARD TYPE OF DERIVATION 

Let us next give a derivation of the sKdV equations fol
lowing from the linear problem. Let us consider the coupled 
linear equations 
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t/Jxx - (u + A)t/J - i¢<I> = 0, <l>x - i¢t/J = 0, (4.1) 

where t/J and <I> are, respectively, bosonic and fermionic, de
pending on the coordinates x and t. The variables u and ¢ 
will be identified with the dynamical variables of the sKdV 
equations later. Note that A is the spectral parameter as
sumed to be independent of x and t. 

Let us assume that t/J is real and normalized so that 

JdX~=l. 
It then follows that 

..1= J dx(tPt/Jxx - u~ - i¢<I>t/J). 

Since 

A, =0, 

we obtain 

J dx(2t/Jt/Jxx, - u,~ - 2ut/Jt/J, - i¢,<I>t/J 

- i¢<I>, t/J - i¢<I>t/J,) = 0. 

Using Eq. (4.1), this can be simplified to give 

J dx(u, ~ + 2i¢, t/J<I» = 0. 

(4.2) 

(4.3) 

(4.4) 

( 4.5) 

(4.6) 

It is clear now that for Eq. (4.6) to be true, the integrand 
must be a total derivative. Writing 

u, ~ + 2i¢, t/J<I> = ~ P, 
ax 

(4.7) 

we see that the most general form for P can be written as 

P = Arfx + Bt/Jt/Jx + C~ + iat/Jx <I> + i/3t/J<1>, (4.8) 

where A, B, and C are bosonic and a, /3 are fermionic func
tions of u and ¢ and their x derivatives. Any higher deriva
tive of t/J and <I> in Eq. (4.8) can, of course, be reduced 
through the use of Eq. (4.1). If we now require 

ap = u, ~ + 2i¢, t/J<I>, 
ax 

we obtain relations between the different functions in (4.8), 
namely 

B= -Ax, 

C = !A xx - A (u + A) + !a¢, 

/3= - 2A¢ - ax· 

(4.9) 

Furthermore, the dynamical equations for u and ¢ then turn 
out to be 

+~aA+!a¢x' (4.10) 

¢, = - !axx + !ua - ~A -A¢x + !A.a. 

We recognize these to be identical to Eq. (3.8) and, there
fore, the entire discussion of Sec. III can now be carried over. 
This, therefore, gives a Lenard type of derivation26 of the 
sKdV equations starting from the linear problem. 
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V. CONCLUSION 

We have derived both of the sKdV equations from the 
zero curvature condition associated with the superalgebra 
OSp(21l). We have shown that every member of the KdV 
hierarchy can be independently supersymmetrized and may 
have a hierarchy of its own. The higher members of the hier
archy, however, need not be supersymmetric. This explains 
why there are two fermionic extensions of the KdV equation. 
In particular, we have shown that one of the extensions is 
really nonsupersymmetric because it corresponds to a higher 
equation of the chiral superparticle hierarchy. We have also 
presented a Lenard type of derivation of the sKdV equations 
starting from the linear problem. 
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Backlund transformations for the isospectral and nonisospectral AKNS 
hierarchies 
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By converting the usual Lax pairs for the isospectral and nonisospectral AKNS hierarchies 
into Lax pairs in Riccati forms, a unified explicit form of Backlund transformations for these 
hierarchies of nonlinear evolution equations can be obtained. In the isospectral case it is an 
auto-Backlund transformation; however, in the nonisospectral case it is not an auto-Backlund 
transformation. 

I. INTRODUCTION 

It is well known that the Backlund transformation is a 
powerful means in the construction of solutions for nonlin
ear evolution equations. 1-6 In recent years, it is noticed that 
by using the Darboux matrix method, a unified explicit form 
of auto-Backlund transformations can be obtained for some 
hierarchies of isospectral nonlinear evolution equations, 
such as isospectral KdV, MKdV, sine-Gordon, and AKNS 
hierarchy. 7-11 The approach to the study is to construct the 
Darboux matrix first, and then to prove the gauge equiv
alence of the related Lax pairs. However, the demonstration 
of the t part is quite difficult, and it is also hard to employ this 
method to obtain the Backlund transformations for hierar
chies of nonisospectral nonlinear evolution equations. 

where 

<I> = (D - 2qD - 1 r 
- 2rD -Ir 

Equation (2.1) has the following Lax pair: 14 

( lPiX) = (1] q) (lPl) , 
lP2x r - 1] lP2 

(lPl') = (All ~Il) (lPl), 
lP21 CII All lP2 

where 

All =D-1(qC
Il 
-rB

Il
) _2"1]"+1, 

( BII) = -i 2Jr/ct>" - j (q), 
C" J~O r 

and 1] is the spectral parameter, 1], = O. Let 

(lPll (x,t,1]) 

lPZI (x,t,1]) 

lPIZ(X,t,1]») 

lPn (x,t, 1]) 

(2.2) 

(2.3 ) 

(2.4) Recently, we obtained a unified explicit form of Back
lund transformations for both the isospectral and noniso
spectral KdV and MKdV hierarchies. 12.13 The method we 
used is to convert the usual Lax pairs for these hierarchies of 
equations to Lax pairs in Riccati form, and then get use of 
some obvious in variabilities of the t parts of the Lax pairs. 
The advantage of our approach is that it not only enables us 
to get the Backlund transformations for both the isospectral 
and nonisospectral hierarchies of nonlinear evolution equa
tions in a unified way, but also makes the procedure much 
more simple and clear. 

be any fundamental solution matrix for Eq. (2.2), and define 

In this paper, we apply our method to the isospectral 
and nonisospectral AKNS hierarchies. We obtain a unified 
explicit form of Backlund transformations for these hierar
chies of equations. In the isospectral case it is an auto-Back
lund transformation; however, in the nonisospectral case it is 
not an auto-Backlund transformation. For clearness, we first 
consider the isospectral AKNS hierarchy in Sec. II, and then 
consider the nonisospectral AKNS hierarchy in Sec. III. 

II. ISOSPECTRAL AKNS HIERARCHY 

For convenience we always assume in this and the next 
section that q(x,t) and r(x,t) are smooth functions of x and 
t, and their any-order derivatives with respect to x vanish 
rapidly when x -+ - 00. 

Consider the isospectral AKNS hierarchy 

(~J = - ct>n+ 1 (~) = - ct>" (~xrJ, n = 0,1,2, ... , 

(2.1 ) 

r _ J-ljlP21 (x,t,1]j) + Vj lP22 (x,t,1]j ) . _ 1 2 
':Jj - , J- , , 

J-ljlPll (x,t,1]j) + Vj lPI2(X,t,1]) 

where 1] i =1= 1]j when i =1= j, and J-lj' Vj are any constants with 
IJ-lj I + IVj I =1=0. From (2.2) we know that ;j satisfy the fol
lowing Riccati equations: 

;jX = r - 21]j;j - q;J, 

;jl = C - 2A;j - B;j. 

Define 

Then, from (2.5) we have 

(2.5a) 

(2.5b) 

(2.6) 
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(1)11 (7/1,112';1';2) 

(2.7) = _ ;i + ;~ D + 2;1;~;lx - 2;~;lx 
;~ -;i (;~ _;i)2 

+;ID-IG, 

<1>21 (7/1,7/2';1';2) 
Define = - [2;U (;~ -;i)] D+ (;~ _;i)-2 

X [ ( 8; I; i - 4; i ; ~ - 4; ~ ) ( 7/ 1 + 7/2) 

- 4;1;~;lx - 2;i;2x - 2;i;2;2x 

+ 4;1;~;2X + 4;~;,x] + ;2D -IG, 
where where 

G=2{-( r ) _( qt~ ) + 2r(7/I+q;I);2q~~(7/I+q;I)} 
;~ -;i x ;~ -;i x ;2 -;1 

= 2 (; ~ - t i ) - 3 { ( 17 I + 7/2)( - 2; i - 12; i ; ~ + 8; I; i + 8; ~ ; Z - 2; i ); 2x + 8 (7/i + 7/~ )(; ~ ; ~ +; I; i ) 
-47/,7/2(6;i;i +;i;z+;~) -2;~(;~ -;i);,xx + (;i +;~)(t~ -;i);2XX +4(;i +;i;2);lxt2X 
+ ( - 2ti + 2t~ + 2;,;~ - 6;i;z);~x - 4;,;~;Tx}' 

<l>12(7/I,7/2';I,t2) = cP2I (7/Z,7/I';Z,;I)' cPn (7/I,7/Z';I';2) = <1>11(7/2,7/1';2';1)· 

It is a straightforward calculation to verify that 

<l>T= TcP, (2.8) 

and from the definition of <I> and G we have the following 
lemma. 

Lemma 2.1: If we take the elements of cP to be polynomi
als of 7/ I and 7/2' then they are symmetric polynomials. 

Lemma 2.2: Let r(x,/), q(x,t), and ;I';Z be related by 
Eq. (2.5a), then we have 

(C" - 2A,,;, - B,,;!) = _ <1>" (;IX) . 
C" - 2A,,;2 - B,,; 2 t2x 

Proof See Appendix A. 
By using the identity (2.8) we get 

<1>" (~x ) = <I>"T(;Jx) = TcP" (tIX), (2.9) 
rx ;2x t2x 

so from (2.7) with 7/, ~ 0' we have 

(~'rJ + <1>" (~xrJ = T {(~::) + cP" (~::) }. 
(2.10) 

From the above identity we obtain the following lemma. 
Lemma 2.3: If ;1';2 satisfy Eqs. (2.5b), then q and r, 

which are defined by (2.5a), satisfy Eq. (2.1). 
Now we are prepared to obtain the auto-Backlund 

transformations for Eq. (2.1). 
Theorem 2.1: Let q,r satisfy Eq. (2.1). Choose t; 

(i = 1,2) appropriately, such that 

lim ;1 = 0, lim It21 = 00 
x--- - 00 x- - oc 

(or lim It,l = 00, lim ;z = 0). 
x_ - 00 x- - ex: 

2151 J. Math. Phys., Vol. 31, No.9, September 1990 

Then q,r defined by 

q = q + 2( 7/2 - 7/1) , 
;2 -;1 

also satisfy Eq. (2.1) . We now prove this theorem in detail. 
Proof Denote <1>, T, cP in formula (2.8) by <I>(q,r), 

T(tl';2,7/I,7/2)' ct>(;1';2,7/1,7/2), respectively. Motivated by 
Lemma 2.1, we define q,r by 

;Ix =r- 2172;I-q;i, (2.12a) 

(2.12b) 

From (2.5a) we know that q,ris given by (2.12). From the 
boundary conditions of t 1 and t2' we know that q and r have 
the same boundary conditions as that of q and r, so from 
(2.8) and (2.12) we have 

<I> (q,r) T(tl,t2,7/2,7/I) 

= T(tl';2,7/Z,7/1 )ct>(;1';2,7/2,7/1)' (2.13 ) 

so from Lemma 2.1, Lemma 2.2, and (2.5b) we have 

( !'r,) + <I>"(q,r) (~:) 

= T(tl';2,7/Z,7/I){ (~::) + ct>"(;1';2'7/2'7/1)(~::)} 

= T(tl';2,7/z,7/I) { (~::) + ct>"(;I';Z'7/I'7/2)(~::)} 
=0, 

which proves the theorem. 
The auto-Backlund transformation (2.11) coincides 

with the auto-Backlund transformation which was present
ed in Ref. 9. In Ref. 10 three kinds of auto-Backlund trans-
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formations were given, (2.11) corresponds to the third one, 
the first and second one can also be obtained by using our 
method. However, the main purpose of this paper is to em
ploy our approach to obtain the Backlund transformations 
for the nonisospectral AKNS hierarchy. This will be done in 
the next section. 

III. NONISOSPECTRAL AKNS HIERARCHY 

Consider the nonisospectral AKNS hierarchy 

(~Ir) = - ~n+ I(:~) = - ~n( ~~r: ~ J. (3.1) 

Equation (3.1) has the following Lax pair: 

( BII) = _ i 2!rI~lI-j (Xq), 
CII 1=0 xr 

(3.4) 

where the spectral parameter 1/ satisfies 1/, = - 2"1/11 + I. 

Let (::; :~;) be any fundamental solution of Eq. 
(3.2), define {;j,j = 1,2 as in Sec. II, then we have 

{;)X = r - 21/j{;j - q{;], 

(;jI = C - 2A{;j - B{;], 

( 3.5a) 

(3.5b) 

where All ,BII ,CII are defined by (3.3) and (3.4). 
Define 

( ~' ) = T ({;It) _ (all + I) , 
r , {;21 bll + 1 

(3.8) 

(3.9) 

Lemma3.1:~ (~) = TEj + (t:), j= 1,2, .... 

Proof By direct calculation. 
From Lemma 3.1 we have 

Lemma 3.2: Assume {;I and (;2 have the same boundary 
conditions as in Theorem 2.1, using (3.5a), we represent the 
q,r in (3.7) by (;j and 1/) ( = 1,2). Then if we denote this Ej 

by E) ({;1'{;2,1/1,1/2), we have 

.. . ((;I) 
Ej ({;I'{;2,1/,,1/2) - E) ({;1'{;2,1/2,1/1) = 21(rfz - ~I) (;2 . 
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Proof Denote E) = (t~) . By a direct calculation we 
have 

From the boundary conditions of {;j (j = 1,2) we have 

lim [Mj ((;1'{;2,1/1,1/2) - M/{;I'{;2,1/2,1/I)] 
x- - 00 

so we get 

Similarly, we have 

which proves the lemma. 
Lemma 3.3: If q,r and {;1'{;2 are related by (3.5a), then 

Proof See Appendix B. 
Lemma 3.4: If {;I and (;2 satisfy Eq. (3.5b), and q,r are 

defined by (3.5a), then q,r satisfy Eq. (3.1). 
Proof From (2.8) and (3.9) we have 

Using (3.8) we have 

(~Ir) + ~"+ I (:~) 

=T[({;I') <i>1I(X{;IX) 1I~1<i»E.] (3.11) r + r + ~ 11--1' 
~21 X~2x )=0 

which proves the lemma immediately by using Lemma 3.3. 
Now we are prepared to obtain the Backlund transfor

mations for the nonisospectral AKNS hierarchy. 
Theorem 3.1: Let q,r satisfy Eq. (3.1), {;,,{;2have the 

same boundary conditions as in Theorem 2.1. Define 

then we have 
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(a) When lim bl = 0, lim Ib21 = 00, q;r satisfy 
x- - oc x- - 00 

( ~Ir) + <1>" + I (q,r) (:~) 
+ ± 2j (7ft - ~ )<1>" -jCq,r) ~) = 0; 

j~ I \r 

x..--. - ex:: x_ - 00 

( !'
r
) + <l>n+ I (q,r) (:~) 

+ ± 2j
( ~ - 7ft )<1>" - j(q,r) (~) = O. 

j~1 r 

Proof We only prove case (a), the proof of case (b) is 
similar. Define q,r as in the proof of Theorem 2.1, then by 
using Lemmas 3.1-3.3 and relation (2.8) we have 

{ (
bl') - (Xblx) '/ -. } 

= T(bl,b2,Th,'TJI) b21 + <I>"(bl,b2,'TJI,'TJ2) Xb2x + jf.
l
<I>J(bl,b2,'TJI,'TJ2)E,,_j (bl,b2,'TJI,'TJ2) 

+ T(bl,b2,'TJ2,'TJI) { (~::) + (f)"(bl,b2,'TJ2,'TJI )2
j
( 'TJI - 'TJ1) (~:) } 

= ± 2j ('TJ1 - 'TJ{)<I>"- j(q,r) (~)., 
j~1 r 

which proves case (a). The theorem is proved. 
We notice that the Lax pair ofEqs. (3.12a) and (3.12b) 

can be obtained from the Lax pair of Eq. (3.1) and Lax pairs 
of the equations of the isospectral hierarchy. So we can get 
solutions of Eq. (3.1) by using Theorem 3.1. 

Remark: We call the following equations the modified 
isospectral AKNS hierarchy: 

( bl') = _ (f)" (bIX) . 
b21 b2x 

Since (f) is a hereditary symmetry, we can obtain two infinite 
sets of symmetries for this hierarchy of equations, and we 
can also consider the Lie algebraic structure of these sets of 
symmetries. Similarly, we can consider the modified noniso
spectral AKNS hierarchy 

(
bl') = _ (f)" (Xblx) "~'(f}jE . 
r r + £.. "-)' 
~21 X~2x j~O 

We will discuss this aspect in another paper. 
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APPENDIX A: THE PROOF OF LEMMA 2.2 

Denote 
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~ = (~~~~~). 
First, it is not hard to prove that 

- I) T (2b1D -I ( - r,q) 1\ 
- I + 2b2D -I ( - r,q) T) 

= _ (f) + (2'TJ' 0). (AI) 
o 2'TJ2 

Then by using (2.3 )-(2.5a), (2.6), (2.8), and (AI) we have 

(
C,,('TJI) -2A"('TJI)bl-B"('TJI)b~) 
c" ('TJ2) - 2A" ('TJ2)b2 - B" ('TJ2)b 2 

n 11 

= ~ H<I>,,-ju+ ~ RD- ' ( -rq)<I>,,-jU+1R 
~ J "'-' J ' 2 n+r 
j~O j~O 

II-I 

= L {HjT+RjD- ' ( -r,q)T}(f),,-j-,V 
j~O 

+HIIU+~RII+I 

11-1 11-1 

= ~J(f),,-jV+ ~J (f)"- j - IV+H U+IR L ) L 1+1 n 2 ,,+1 
j~O j~O 

= (f)1I V + {JII V + HII U + !RII + I} 

= - (f)IIV, 

which proves the lemma. 

APPENDIX B: THE PROOF OF LEMMA 3.3 

Define U, V, R j , Hj , ~ as in Appendix A. From (3.9), 
Lemma 3.1, (2.8), and Appendix A we have [here, we also 

define}j = (~) ] 
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(
Cn (1/1) - 2An (1/1 )~I - Bn (1/1 )~i) + <i>n (X~IX) 
Cn (1/2) - 2An (1/2)~2 - Bn (1/2)~; X~2x 

n-2 n-2 

= IH/pn-j-IFI +Hn_IFI + IRjD- I( -r,q)4>n- j - IF I +Rn_ID- I ( -r,q)FI 
j~O j~O 

= ~~: [Hj +RjD- I ( -r,q)] r~t:2T<i>IE/I_j_I_1 +Fn_j } +H,,_IFI +RII_ID-
I
( -r,q)FI 

n-2 
= I [HjT+RjD- I ( -r,q)T] 

,,-j- 2 

I <i>'E" -j-I- I + S 
j~O I~O 

11-2 "-j-2 

= I [-Jj<i>+J.i+d I <i>IEII_hl_1 +s 
j~O I~O 

/1-2 h-j-2 /1-2 11-1'-2 _, . 

- I J.i I <i>/+IE,,_j_,_1 + I J.i+1 I 4>EII _ j _ I _ 1 +s 
j~O I~O j~O I~O 

n-2 n-j-l _, n-I Il-j- 1_, 
- I J.i I 4> E" - j - 1 + I Jj I 4> E" _ j _ 1 + S 

j~O I~I j~1 I~O 

11-2 11-2 n-j-l ,,-1 n-j-l 

= I JjE,,_j - I Jj I <i>IEII _ j _ 1 + I Jj I <i>IEII _ j _ 1 + S 
j~O j~O I~O j~ I I~O 

11- 1 11·- 2 
-I ~ - I 4> Ell _ 1 + J II _ lEI + S + L J.iE" - j 

I~O j~O 

11-1 11-2 If-I 

- I<i>'E,,_,+J"_IEI+ I JjEII _ j + I [Hj+RjD-I(-r,q)]FII_j 
I~O j~O j~O 

/I-I ,,-I II-I 
-I ~ - I 4>E,,_, + I JjE,,_j - LJ.iEII - j 

I~O j~O j~O 

II-I 

- I <i>'E" - I' 
I~O 

Above we have used the definition 
n-2 

s= I [Hj +RjD- I ( -r,q)] Fn_ j +H,,_IFI +Rn_ID- I( -r,q)FI· 
j~O 

The lemma was proved. 
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Classical, linear, electromagnetic impedance theory with infinite integrable 
discontinuities 
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The impedance theory is formulated for classical, linear electromagnetic scattering from a 
compact obstacle with a finite number of nonintersecting boundaries. The boundaries are 
allowed to support infinite, integrable discontinuities in electromagnetic response and the 
compact regions can depend on space and time. The direct scattering problem is discussed, 
generalizing recent results by Sabatier and collaborators for the scalar impedance acoustic 
problem to classical electromagnetism. A chain of Maxwell scattering equations are derived for 
the direct scattering problem. Two kinds of ambiguities of electromagnetism at a fixed angle of 
incidence are found to arise, one from discontinuities in electromagnetic material properties, 
and the other is from time dispersion. Cases are mentioned when parts of the scattering 
medium are allowed to have time-dependent motions. This is in contrast to the case of scalar 
acoustics where ambiguities are intrinsic to certain infinite families of values of Young's 
modulii. 

I. INTRODUCTION 

Recently, Sabatier and his collaborators have made a 
breakthrough in direct and inverse scattering problems for 
the scalar impedance equations. I-5 Both one-dimensional 
and three-dimensional results for acoustic waves have been 
obtained, which significantly extend earlier results.6

•
7 The 

impedance problem is based on the linear pde: 

[a2 (x) j- IV·{a2 (x) (V'I')} 

(1) 

for xER 3, a 2EC 2 (R 3)\ {UiSJ with the S;'s N-orientable, 
nonintersecting surfaces with outward normals ni (x,t), 
V:R 3 __ R I is a mUltiplication function for which a scattering 
theory is defined such as the Rollnik class, V is the del opera
tor, and 'I' is the condensation or variation in pressure from 
the mean value. The boundary conditions are that 'I' and 
traction a i 'l'i (i labels the interface) are continuous at the 
interface Si' The impedance is allowed to be singular on the 
surfaces Si with the integrable singularities. The scattering 
data from each xES; are given by 

{t;(X)}-I=J...{a(x+)+a(x-)}, (2a) 
2 a(x -) a(x + ) 

ri (x) = J...{a(x + ) _ a(x - )}, 
t; (x) 2 a(x - ) a(x + ) 

(2b) 

and 

s;(x) =J...n.{Va(x-) _ Va(x+)}. (2c) 
ti (x) 2 a(x + ) a(x - ) 

The interpretation of these equations is that ri and ti are 
reflection and transmission factors and S; is the slope factor 
for the ith interface Si' Obviously, for each i 

";+t;=1. 

In Ref. 2 it is shown that in the special case of one dimension 
(10), when at some interfacej,rj = 0, tj = 1, then the 1-0 
version of Eq. (1) reduces to the Schrooinger equation: 

[ 
d2 N ] 
-2 + k 2 

- V - 2 LSiO(X -x;) 'I'(k,x) = o. 
dx i 

(3) 

This special case allows an interpretation of the slope factors 
Si as the magnitude of the discontinuity on the ith surface. 
Whenever ri and tj are both nonzero, Eq. (1) does not re
duce to any Schrodinger equation. In general, the slope data 
are singular functions required by the boundary conditions 
and could be obtained from any compatible boundary condi
tion (usually continuous traction or slip be in acoustics). 
Following Coston,8 the jumps will be restricted being no 
more singular than the Dirac delta distribution so that the 
media differ by a Heaviside function together with a finite 
number of point sources. All of the smooth terms are includ
ed in the potential V(x). The integrable discontinuities 
could arise in at least four different ways; as discontinuities 
of material parameters, or in linearizations of an electromag
netic shock wave,9 or a distributional metric, 10 structure, or 
from a surface electronic state. II Density p (x) or Young's 
modulus tensors Eij (x); premittivity E, conductivity, or per
meability f.l are the examples of material parameters in 
acoustics and electromagnetism, respectively. An imped
ance theory explicitly studies the discontinuities in material 
parameters. 

The results on scalar impedance, which have been ob
tained by Sabatier and co-workers,I-7 will be generalized to 
classical linear, macroscopic electromagnetism. 1

0-
25 This 

analysis should be valid for times that correspond to fre
quencies v < 1011 Hz, i.e., below the infrared frequency re
gion. The standard ambiguities of Sabatier et al. will be iden
tified for electromagnetism. I 1-25 The case of a material 
discontinuity is barely treated in the present work. The very 
different physics of temporal dispersion is studied in more 
detail. They are natural for sharp time pulses that will cover 
large frequency windows due to the uncertainty principle. 

Kruegerl7 has introduced jump discontinuities, into 
one-dimensional electromagnetic inversion and elasticity, 
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and Costen8 has given a thorough discussion of three-dim en
sional electromagnetic jumps with more general discontinui
ties. The impedance structure given here briefly discusses 
moving, deforming surfaces with variable pointwise mean 
and curvature. 

The electromagnetic generalization of scalar impedance 
problems treats spatial discontinuities in the constitutive 
functions, and also time dispersion in the dielectric response 
function E(t,X) and the permeability function I"(t,x) must 
be considered at higher frequencies. Their resonant response 
frequency is not equal to the frequency of the electromagnet
ic field in general and any phase lags in response are impor
tant. Parts of the scattering obstacle may be moving spatially 
or changing in time. It is useful to define effective current 
densities of electric polarization J p and magnetization J M in 
terms of the polarization P and magnetization M as 

(4a) 

and 

(4b) 

in matter. In nonmagnetic objects J M = 0 and in conductors 
the effective polarization current density is numerically 
much smaller than the conduction or free current density J / 
at low frequencies. The fact that spatial dispersion automati
cally follows from nonlocality has been discussed by Erin
gen. 18 The most general linear local case will be formulated 
here for completeness in the time domain. 

In biophysics, in geophysics, and in nondestructive eval
uation, a continuously varying medium Vex) populated by 
various surfaces of discontinuity Si' is a canonical model. 
The fact that the propagation of energy and information are 
changed in a qualitative way which cannot be treated in the 
standard manner l

-
7 may add to the value of this investiga

tion. As Sabatier has stated,4 this involves the propagation of 
the singularities of a pde that is a basic aspect of its solution. 
Indeed, the difference in his acoustic case and the present 
electromagnetic study occurs because of the transverse vec
tor nature of electromagnetism and the higher frequencies 
considered. 

In order to maximize the number of readers, the presen
tation is in terms oflocal coordinates and in (awful) SI units. 
It is assumed that the objects (x,t), (k,w), etc. are expressed 
on some smooth coordinate chart of an atlas. 

II. ASSUMPTIONS AND NOTATION 

A classical, linear electromagnetic wavel2
-

25 in matter 
satisfies Maxwell's equations in three-vector form where 

V·B =0, 

V·E = piE, 

(5a) 

(5b) 

(5c) 

(5d) 

where E is the electric field, B is the magnetic field, D is the 
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electric displacement vector, H is the magnetic displace
ment, and J T' P are the total current density and total charge 
density sources, respectively. The linear, constitutive equa
tions are 

D=EE=EOE+P, (6a) 

B = I"H = l"oH + l"oM, (6b) 

J/=aE, (6c) 

and 

JT=J/+JM+Jp , (6d) 

where E, 1", a are the symmetric, electric permittivity, mag
netic permeability, and conductivity tensors, and P, Mare 
the macroscopic electric and magnetic polarization vectors. 
For simplicity of exposition, the linear, inhomogeneous iso
tropic stationary case will be presented. The physical funda
mentals of these constitutive equations are sketched in the 
Appendix. The scattering regions discussed in Sec. IV will 
assume that the response functions E and I" are 
C 2 (R 3 X [0, T] ), except upon the surfaces of discontinuity 
between regions. The Lorentz force law describes the action 
of the electromagnetic field on a point particle of mass m, 
charge e, and instantaneous velocity v. 

Consider a single moving, deforming surface S between 
regions 1 and 2 are parametrized by the C 2 (R 3 X [0, n ] 
function ifJ according to 

ifJ(x,t) = 0. (7a) 

The unit outward normal to the surface fi(x,t) is given by 

fi(x,t) = (lIlVifJl )(VifJ) , (7b) 

the speed of a point on the surface along fi is 

Un = fi·v s = I V
1
ifJ I (~~) , (7c) 

where v s is the velocity at the point and the pointwise mena 
curvature, positively concave in the direction - n, is given 
by 

K = - !V·n. (7d) 

This comes directly from Sec. 278 of Truesdell and Toupin's 
classical article in Ref. 15 and Costen in Ref. 8. 

The following notation was required to allow general 
relations between the surface S and the electromagnetic 
wave. 

( 1) The square bracket symbol [ . ] denotes the jump in 
a field quantity across the surface S, including [E], [B], 
[D], [H], [J], and [p]. The general expressions for these 
vector fields will be presented later, as taken from Ref. 8. 

(2) The component of a vector in the surface S will have 
SUbscript "s" added, i.e., Es' Bs ' Ds' Hs' Js' andps. The first 
four of these terms arise from the point charges in the materi
als interface. 

(3) The unit vectors (i )2,n) form an orthonormal ba
sis for R 3 with origin in S. A generic tangential unit vector 

will be written as t and the outward normal derivative to S 
will be written as 

~=n.V. 
an 
For two or more surfaces it is necessary that the surfaces 
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either nest or are approximately parallel without intersec
tions. 

The case of a jump discontinuity is well known, and 
Jackson II correctly states that it is easy to generalize the 
jump conditions but only gives partial results. Truesdell and 
Toupin l5 develop the framework and give the most general 
jump relations for a discontinuity in their Sec. 278 as 

[E] =jn - Unk TT , 

[B] = kTTXn, 

(Sa) 

(Sb) 

where/ nand kTT are "arbitrary vector fields on the material 
surface of discontinuity." In order to define a scattering the
ory, Holder continuity conditions25 as specified in the next 
section are required. Moreover, to apply Eqs. (Sa) and (Sb), 
it is necessary to know the physical and geometrical content 
of the fields/and kTT that Costen8 has given. The scattered 
electromagnetic wave from simple jump discontinuities 
between fixed media was given by Strom 16 in a lovely exposi
tory paper. This paper generalizes his result in two respects: 
( I ) A moving deforming boundary between media is treated 
instead of his fixed boundaries, and (2) spatially inhomo
geneous media are allowed in the present analysis. This was 
given in Ref. S and in addition, the discontinuity equations 
for the macroscopic fields Hand D are needed for the inter
play of the geometry of the surface in motion, surface 
charges, and surface currents. There is one major difference 
between the impedance theory presented here and the work 
by Costen.8 Since the impedance structure follows from the 
nature of the discontinuity, his interpolating field that was 
defined everywhere is not useful here. 

The interpretation of the various terms include the fol
lowing. 

The term 

(!...- Un ~)(') 
at an 

represents the time rate of change of ( .) moving with the 
moving surface along its normal. The term 2KUm (.) repre
sents a local increase (or decrease) of (.) due to expansion 
(or contraction) of the interface at the point, a term Un [ ( • ) ] 

represents a "garden-plow effect" of piling up (or pushing 
away) discontinuity of ( . ). 

The discontinuity equation 

nX [H] + n(n(VXHs» - «nxHs)·V)n - nXV(n·Hs) 

= J s + Un [D] + 2KUnDs - (!... + Un ~)Ds, (9a) 
at an 

was obtained for Eq. (5a) by Costen. He applied a similar 
analysis to Eq. (5b) and this gave 

nX [E] + n(n·(VXEs» - «nxEs)·V)n - nxV(n·Es) 

= Un [B] + 2KUnBs - (!... + Un ~)Bs, (9b) 
at an 

for the VXE Maxwell equation. Using a pillbox integration 
region the divergence Maxwell equations have the discontin
uityequations 

n·[B] + n·(VX (nxBs» = 0, 

n·[D] + n·(Vx(nxDs» = 41T[p]. 
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(9c) 

(9d) 

Interpretation: For sufficiently differentiable generic 
vectors A,As: (1) «nXA)·V)n is a contribution from the 
twist and curvature of the material surface along the direc
tion (nXA); (2) nX(V(n·As» is the contribution of the 
normal part of the line integrals. This occurs with the pres
ent degree of singularity in the boundary in addition to the 
usual tangential contribution n X As; (3) n·(V X (n X D s » 
= V2·(Ds - nDn ), where V2 is a two-dimensional diver-

gence and Ds - nDn is a two-component part of D in the 
surface, t/J = O. 

Remarks: Using Eqs. (9a)-(9d) it is now possible to 
identify the fields/and kTT ofEqs. (Sa) and (Sb). 

(2) Many of the terms such as Ds' Hs ' J s ' etc., have 
their support in the material surface t/J(x,t) = 0 and are iden
tically zero elsewhere. 

(3) From Eqs. (9a)-(9d) it is clear that there are kine
matic relations between the tangential and normal compo
nents of the jumps in vector fields for general moving materi
al interfaces. In the case of an electromagnetic shock wave,9 

these terms couple the shock to the vorticity of the field. 8 

( 4) The general discontinuity equations given in Eqs. 
(9a)-(9d) show the source of growth/decay/scattering due 
to interactions with material boundaries. 

III. DIRECT SCATTERING FOR ELECTROMAGNETIC 
IMPEDANCE THEORY, A CHAIN OF MAXWELL 
EQUATIONS 

The geometry assumed in the remainder of this paper is 
shown in Figs. I and 2. A schematic of the scattering geome
try is given in Fig. I where the source is contained in a two-

SIlO 

~---@ 

FIG. I. A schematic of the geometry for the scattering process. The source 
is contained in the sphere So and launches a wave or pulse in the fixed direc
tion e, the obstacle is in the sphere S" and need not be spherically symmetric. 
The detector is free to move anywhere on the large sphere S ~ centered at an 
origin in the obstacle. The scattering region is Sc = Soo '\ (SoUS,,). 
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FIG. 2. The contents of the sphere S,. sketched in more detail, for each 
j = 2,3, ... ,N + I each 0, contains material with variable electromagnetic 
parameters and with boundary an, = S,. The hypotheses on the media and 
their boundaries are given in the text as HI-H4. 

sphere So; the scattering region, which need not be spherical
ly symmetric, has its support properly contained in the 
two-sphere Sv and the detector can range anywhere over the 
surface of the arbitrarily large two-sphere S 00 • The "scatter
ing region" Osc = Soo '\ (SoUSv ) contains a linear, isotrop
ic, homogeneous dielectric material with constitutive pa
rameters €l' J-tl' The scattering region contains N-smooth, 
orientable, nonintersecting surfaces indexed from 2 to 
(N + 1) with boundaries S; = ao; as shown in Fig. 2. The 
constitutive parameters in the ith region, 0 0 1 <,i<,N are 
written as a; = Ke;, J-t; and vary spatially and satisfy hypoth
esis HI-H4 below. The interfaces S; = ao; can be parame
trized some by C 2 functions tP; (x,1) = O. The total surface is 
SN+ I = uf~~ IS; and the total scattering volume is ON+ I 
=Uf+IQ;. 

Let A denote E and H generically and in each 0; let a; 
denote (Ke;,J-t;) generically. Following Colton and Kress,24 
a hypothesis that will assure the existence of unique, com
plete scattering operators for the direct scattering problem in 
the frequency domain are given by HI-H4. The standard 
notation of Ref. 24 is used, where CO.a(ON ,\SN)' 
C I,a (0 N ,\S N) are the sets of functions uniformly HOlder 
continuous with index 0 < a<, 1 and functions whose first 
derivations exist with respect to all variables and are uni
formly HOlder continuous with index O<a<,1 in ON'\SN' 
respectively. The smooth tangential fields on a surface S; are 
given by 

~(S;) = {AlnoA = O,AEC(S; )}, (lOa) 

where A: S; -+ C 3 (C I complex numbers) and the uniformly 
Holder continuous vector fields on a surface S; are given by 
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( lOb) 

for 0 < a <, 1. Using these spaces,24 the conditions on the elec
tromagnetic fields and the constitutive functions are as
sumed to satisfy the following hypothesis. 

HI: The A's and a;'s have finite limits in ON '\SN and 

{VXA,Vo(a;A),(a;; )}ECO,a(ON ,\SN)' O<a<,1. 

H2: The surface sources [p;], [J;]ECO,a(s;), with 
0< a<, 1, for each S;. 

H3: Each a;ECO,a(s;) in both tangential directions {t;, 
t2} and a;ECI,a(s;) with 0 <a<, 1. 

H4: The product of {G + (x,y) - Go(x,y)} and 
(noVXA) IS;,x,yES;. is a compact map from ~(S;) into 
~O,a(Si)' 

Remarks: (1) There are no surface fields {E .. Bs ' Ds> 
H,} in Ref. 24 but ifthe above hypothesis is applied to more 
general media ai with point surfaces the arguments are val
id. 

(2) These conditions can be gathered using Eqs. (9a)
(9d) into the surface operators of Colton and Kress, where 
H4 is related to their operator N-No' That operator is proven 
to be compact in Theorem 2.33 of Ref. 24. 

(3) Time domain scattering theory is well 
known.26--28,12,14 The outgoing solution u to a vector-valued 
wave equation subject to t = 0 initial conditions 
{f(x),g(x)} has energy 'if! in an exterior volume Osc given 
by 

'if! (u,Osc,O) = i {1(Vof)(x)1 2 + Ig(xW}d 3x. (lla) 
Usc 

The conservation of energy principle is that for conservative 
systems for each tER I 

(lIb) 

where the constant CI can be finite or infinite. The physically 
interesting cases have finite energy C1 < 00 and propagate 
outward from the region Sv toward S 00 in Fig. 1. A precise 
statement of outward propagation is that 

lim 'if! (u,KnOsc,1) = 0, (llc) 
1- 00 

for any compact set K, i.e., at long enough times the energy 
propagates out of any bounded set K. When the conditions in 
HI-H4 are placed upon the object inside Sv the behavior of 
the field u at large times is 

u(x,1) 1_ 00 = [uo(x,t) + Usc (x,t) ], (lId) 

where Uo is the incident wave and 

usc (x,t) = R(t -lxllc,,X)/lxl (lIe) 

is the scattered wave with R ( . , .) as the unit impulse re
sponse. The unit impulse response includes both the time 
domain scattering amplitUde and the outgoing wave. 
Uniqueness for the direct scattering problem follows from 
the Sommerfield radiation conditions in Eqs. (lId) and 
( 11 e). The existence is proven by either establishing unitary 
translation groups for f,gEL 2 as in Ref. 26 or by placing con
ditions on the coefficients and proving local compactness. In 
the present discussion, the focus is on nonuniqueness, or am-
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biguities, caused by electromagnetic media that do not satis
fy the conditions. Both surfaces of discontinuity and tempo
ral dispersion of the medium will be shown by yield 
ambiguities. 

If the stationary nonconducting material in the region 
flsc is linear, isotropic homogeneous then the curl of Eqs. 
(5a) and (6b) yields the vector-valued wave equations 

{( Ll - c~ :t22 )E} (x,t) = 0 (12a) 

and 

{( Ll - :i :t
22

)H} (x,t) = 0 ( 12b) 

whereci = c2lfll€1 is the speed of the light wave in the medi
um and Ll = V·V is the Laplacian. The scalar fundamental 
solution that satisfies outgoing boundary conditions and the 
equation, 

(Ll-~~)G+ =8(R)8(t-t'), (12c) 
ci at 2 

and is given by 

G + (R,t - t') = - [8(t' - t- R Ic l )/41TR], (12d) 

where R = Ix - xl. It is important to use this object instead 
of a dyad to get the direct scattering terms to show all discon
tinuities as Strom showed in Ref. 16, albeit where his presen
tation was in the frequency domain. Inside the scattering 
regions flk CSu the media depend upon (x,t). The curl of 
Eqs. (5a) and (5b) for such media becomes 

a2E a 
LlE - fl € -- = V(V'E) + - J T (13a) 

KK at 2 at 

and 

where the total current density J T was defined as 

JT=Jj+Jp+JM • 

(13b) 

The integral equations for scattering are derived from 
Eqs. (13a) and (13b) by mUltiplying them byG + (R,t - t ') 
and subtracting Eor H times Eq. (12d) and then integrating 
over the volume flsc and time. Applying the radiation 
conditions, the terms with integrand given by 
G + {Dc. E} - E{Dc• G + } and a similar term in H vanish 
at the limits. The integration over the surface of So yields an 
incident wave (Eo,Ho)' analogous to the Uo term in Eq. 
( 11 d), from the source. All of this yields 

E(x,t) = Eo - _1_ r d 3x ' 1 {V(V'E) - jT}rel 
41T In, Ix - xii 

(14a) 

and 

H = Ho - _1_ r d 3x' __ I_{V(V.H) - VXJT}rel' 
41T In. Ix - xii 

(14b) 

where jT = (a lat) (JT ) and "ret" means that in the term 
inside the curly bracket t I is evaluated at t I = t - R /C. If the 
crude, numerical approximations 
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D(x,t) Z€(x,t)E(x,t), 

B(x,t) Zfl(X,t)H(x,t), 

(15a) 

(15b) 

which are discussed in the Appendix are used, Eqs. (14a) 
and (14b) can be rewritten as 

EzEo __ 1_ r d3x' 1 
41T Jni Ix - xii 

X {V(V'E) - jj _ a2~ E _ 2(a€)(aE)} 
at at at reI 

(16a) 

and 

HzOo __ 1_ r d3x' 1 
41T Jni Ix - xii 

X {V(V'H) - VXJj - (~;~ )H 

+ 2( afl )(~)} 
at at reI' 

(16b) 

The volume form of the integral equations for scattering for 
the (N + 1) media shown in Fig. 2 can be obtained by sum
ming over the different scattering regions in Eq. (14). Under 
the assumptions made here these equations are 

and 

H = Ho - Nil {_1_ C d 3X' 1 I 

i= 2 41T J!l; Ix - x I 

X {V(V'H) - VXJT}rel}' (17b) 

These volume equations over closed subvolumes ni have 
well-defined scattering operators uniformly in the direction 
of x as I x I ..... 00 whenever the N-scattering media satisfy H 1-
H4. They are valid even when the regions fl2 - flN+ I are 
either nonspherically symmetric or inhomogeneous. For ho
mogeneous media there is a beautiful" T-matrix method" of 
Waterman29 and many others, see, e.g., Refs. 16, 29, 30, 
which has made a number of new scattering calculations 
possible. In the case of a conductor, the electric field vanish
es in the interior. However, the magnetic field need not van
ish there, but its volume terms will be very small at frequen
cies at and above the radar region. 

Still, Eqs. (17a) and (17b) hide two important struc
tural features. One aspect is the discontinuities at the N inter
faces. Using the hypothesis HI-H4 it is necessary to recog
nize that the E and H fields in the volume integrals over fli 
now represent fields due to the continuous dependence of 
(VXJT,J T ) in the presence of the discontinuous interfaces 
Si' i.e., all of the multiple scattering from all interfaces also 
included in these fields. The discontinuities will be written 
out explicitly. The second hidden aspect is that the different 
terms have completely different time--or frequency--de
pendence. Workers in geophysics and radar scattering have 
a useful classification of the type of terms that Sabatieii in-
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troduced into impedance theory in Ref. 5. The description of 
these terms is the following: (1) The pure volume terms will 
be called diffuse reflectors; (2) surface terms involving dis
continuities in the material parameters are called soft reflec
tors; and (3) surface terms involving gradients of discontin-

and 

Now, Eqs. (17a) and (17b) have been rewritten to expose 
the two kinds of scattering processes in Eqs. (1Sa) and 
( ISb). The three volume terms on the right-hand side are the 
diffuse scatterers, the next term is a soft reflector and the 
remaining two terms are hard reflectors. At radar and higher 
frequencies, the volume scattering terms will be negligible 
for conductors, zero for E, and numerically very small for H. 
The Fourier transforms of these equations have Fourier 
transforms which agree with Strom in Ref. 16. Equations 
( ISa) and ( ISb) are a chain of Maxwell scattering equations 
linked by the surfaces Si' 

At least for small motions, the normal components of 
the terms in Eqs. (9a)-(9d) generalize Eqs. (ISa) and 
(ISb) to include moving surfaces. 31 The Truesdell-Toupin 
equations, here Eqs. (Sa) and (Sb) remain valid but Cos
ten's expressions give the explicit form of kIT and f This 
means that the tangential fields of hypothesis H4 and any 
evanescent waves are more complicated and more interest
ing. In Eqs. (1Sa) and (1Sb) this simply adds new surface 
terms that are links in the chain of Maxwell scattering equa
tions presented there. 

Various experiments in the physics and chemistry of sol
ids and liquids show that from the UHF (_108 Hz) to mi
crowave (3 X 1011 Hz) frequencies, the molecular dipoles of 
the matter respond strongly to electromagnetic waves. For 
the generalized dielectric response ofEq. (6) ionic and elec
tronic response continues to (and well past) the optical re
gion. On the other hand, the magnetic permeability f.l for 
most materials becomes and remains constant (one in Gaus
sian units) at optical frequencies and above. 31 It has been 
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uities in the material parameters and fields are called hard 
reflectors. At short enough times (or high enough frequen
cies) the hard reflectors are called specular points in the scat
tering and dominate the signal. Similarly, the other terms 
will dominate low- and mid-range scattering processes: 

(1Sa) 

(ISb) 

known for a long time31 that many dielectric solids have an 
approximate Lorentzian permittivity €(ill)::::; [(ill2 - ill6) 

+ iillrl - I. This follows directly from the Fourier trans
form of complex exponential time dependence of the polar
ization or magnetization. In small electron beams and plas
mas, very different time-dispersion relations for €(ill) and 
f.l (ill) are well known.32 Thus there is a frequency window 
from UHF to midinfrared where time dispersion is physical
ly important and classical electromagnetism is valid. In this 
case the polarization P and the magnetization M vary with t 
or ill. 

The existence and uniqueness offar-field scattering op
erators follow from the conditions on the polarization and 
magnetization vectors and the compactness of the surface 
operators and follows from mimicking the proofs of Lax and 
Phillips26 for the direct scattering problem and Stefanov27.28 

for the inverse problem. 
The next section will apply these results to electromag

netic impedance ambiguities. Both geometrical effects due to 
spatial discontinuities, analogous to Sabatier's acoustic re
sults in Refs. 1-5; and a new kind of ambiguity due to disper
sion experimentally known at UHF, microwave frequencies 
and above, are exhibited. 

IV. AMBIGUITIES IN INVERSE ELECTROMAGNETIC 
IMPEDANCE THEORY 

Two natural questions that motivated this study are 
whether ambiguities exist in electromagnetism and, if so, 
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what is their structure? The transverse structure of Max
well's equations is very different from the longitudinal 
acoustics for which Sabatier has presented a thorough, com
plete study. The same geometrical situation as the previous 
section will be considered where an obstacle with variable 
f.l2' and E2 is embedded in a constant host material f.ll ,E I' 

Two independent scaling functions Es ( .) and f.ls (. ) are 
required for electromagnetic impedance theory since there 
are two fields (E,B). The scaling relations between pairs of 
electromagnetic fields (E,B) and (E- ,B- ) is given by 

E- = EsE, (19a) 

B- = B/f.ls' (19b) 

J't = JTlf.ls' (19c) 

and 
-p = EsP' (19d) 

There are then three types of ambiguities depending upon 
whether the scaling functions depend on x only, t only, or 
both x and t. Physically, these three cases correspond to spa
tial boundaries, temporal dispersion, and combinations of 
boundaries and dispersion, respectively. All are taken at a 
fixed angle of incidence. 

It is easiest to discuss electromagnetic ambiguities if 
three simple calculations are presented. The first is for the 
exterior region fisc where the curl of the two curl Maxwell 
equations can be written as 

and 

a2B 
AB - EI f.ll -- = - f.ll (VXJ2)· 

at 2 

(20a) 

(20b) 

In an interior region with electric and magnetic response 
functions E2 ( .) and f.l2 ( . ) there are three cases. The first is 
spatially varying media E2(X) andf.l2(x) in c2(R 3\S2) with 
possible integrable discontinuities on the boundary 
S2 = afi2• The scaling functions will also be taken to depend 
on x only. This was given for unscaled fields in Eqs. (17a) 
and ( 17b) and the integral equations for scattering were pre
sented in Eqs. (18a) and ( 18b). The idea is the one advanced 
by Sabatier in Ref. I, except that two scaling functions Es and 
f.ls are required. First substitute the scaled fields and sources 
into Maxwell's equations and take the curl of each side. 
Rearrange this result into wave equations and the pointwise 
condition Esf.ls = I will be required for equal phase veloc
ities. The equality of the remaining terms then give the fam
ilies of ambiguities. Maxwell's equations for the scaled fields 
in the interior region yield the wave equations 

AE _ Ezf.l2 a 2E 
Es f.ls at 2 

= ~ (VEs) +..l v.£.- + --E.L jT +..l V«VEs)"E) 
EsE2 Es Es Esf.ls Es 

I I 
- - (AEs)E - -2 (Vf.ls) X (VXE) (2Ia) 

Es Esf.ls 

and 
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a2B 
AB - E2 f.l2E2 f.ls --2 

at 

= + e: -f.l2)VXJ T - f.ls V~:)XJT 
11 + -±-(Vf.ls )2B + ~(Aps)B _..l (Vf.ls) XB 

f.l; f.ls f.l s 

-~V(E2f.lsf.lS)X(VXB), (2Ib) 
E2 f.ls 

for the case where the scaling functions depend only upon x. 
The second case occurs when the physical response func
tions (E2, f.l2) and the scaling functions (Es' f.ls ) depend only 
on time. This would describe an isotropic bulk medium with 
strong dispersion. The wave equations in this medium are 

AE _ E2f.ls a
2E 

Es f.ls at 2 

(p) 1 a f.l2 (d J.Ls)J =V- +---(f.lsJT)---2 -- T 
E2 Es f.ls at Es f.ls dt 

+ {Es~s :/Ezf.l2) - ;~;( d;s )}(aa~) (22a) 

(22b) 

The wave equations for media with space and time depen
dence contain a new complication, the E and B fields are 
coupled. This coupling occurs through nonzero electric and 
magnetic pressure terms Pe and Pm: 

(23a) 

and 

Pm = V( a:rs 
). (23b) 

These wave equations are given by 

x(aE) I aE I (af.ls) - --(VEs)X---V - XB 
at Es at Esf.l; at 

and 

a2E 
AB - E2 f.lsEsf.ls --2 

at 

-f.lsVX(f.lsJT) _f.ls V(E2Esf.ls)XJT 
E2 
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-~ V (E2EsPs ) X (VXB) 
E2 P2 

- Ps V( E2 Ps( a;; ) )XE. (24b) 

The pressure coupling terms mentioned are the last term in 
each equation. 

Lemma 1: In time-dependent, linear, stationary media 
that vary spatially, {E2(X),P2(X)}, the scaling functions 
{Es ' pJ depend only upon x and all families of sources {J TO 

p} and {JhP-} that satisfy hypothesis HI-H4 together 
with the equations 

P2( a;T ) + v(~) 

= p2(aJ't) + V(L) + p(VEs) + J.. V«VEs )"E) at E2 Es 

- J.. (aEs)E - J.. (Vps) X (VXE) (25a) 
Es Ps 

and 

P2(VXJT ) = ( Ps )(VXJr) 
E2 - P2 

+ ~[J.. (Vp.)2 + (aP,)]B 
Ps Ps 

(25b) 

with 

Es (x)Ps (x) = 1 (25c) 

continuous tangential fields (H3), response functions that 
satisfy a i (x - ) = Aiai (x/ ) foreachxE supp (S), S the sur
face of discontinuity are ambiguous. 

Proof' Straightforward calculation using Eqs. (19a)
(19d) in Eqs. (5a)-(5d). 

Lemma 2: In a spatially homogeneous, time-dependent 
linear, stationary obstacle and all families of sources {J T'P} 
and {Jr, p-} which satisfy hypothesis HI-H4 in a medium 
with constitutive tensor {E2, pJ and scaling functions that 
depend only upon time, if EsPs = 1 pointwise and the equa
tions 

V(.!!-.-) + ~(P2JT) 
E2 at 

v( p- ) a J P2( dps )J = - +-(P2 't) -- -- 't 
E2 at Ps dt 

+ {:t (E2P2) - E2P2( d;s )} (aa~). (26) 

are ambiguous. 
Proof Straightforward calculation using Eqs. (19a)

(19d) in Eqs. (5a)-(5d). 
Lemma 3: In time-dependent, spatially inhomogeneous, 

2162 J. Math. Phys., Vol. 31, No.9, September 1990 

stationary obstacle {E2(X,t),P2(X,t)} the scaling functions 
{EspJ depend upon x and t and all families of sources 
{J T'P }and {J't, P - } that satisfy hypothesis H I-H4 togeth
er with the equations EsPs = 1 pointwise and 

(27a) 

and 

are ambiguous. 
Proof Straightforward calculation using Eqs. (19a)

(19d) in Eqs. (5a)-(5d). 
From these three lemmas, the Maxwell equivalence of 

different media that give identical near-field or far-field scat
tering follow. One standard equivalence is the special case of 
Lemma 1 when (Es'Ps) are nowhere vanishing with 

EsP, = 1, (28) 

nontrivially, pointwise, and when Eqs. (25a) and (25b) 
hold. Additional cases are given in Lemmas 2 and 3. 

The above ambiguities are exact at fixed angle of inci
dence and occur in principle. When the data are bandlimited 
and noisy, as discussed for acoustics in Ref. 2, the following 
homogenization can occur. Many weak reflectors or fewer 
strong reflectors may approximately mimic one another or a 
diffuse reflector. Only in the limit as noise goes to zero and 
the filter goes away (i.e., the data become complete) do these 
possibilities become distinguishable. At the same time, the 
homogenization can be used to simplify an inverse problem 
as follows. Uniqueness is already lost when there are ambi
guities so one need seek only a simple member of the ambigu
ous family. The problem is that some mathematical struc
ture such as the one-dimensional Darboux transform in Ref. 
3 is needed to know when two sets of sources belong to a 
single family. 

v. CONCLUSIONS AND FUTURE STUDIES 

Two classes of ambiguities for classical, linear, electro
magnetic scattering at fixed angle of incidence have been 
given. One in Lemma 1 involves sharp interfaces and is a 
direct generalization of Saba tier's impedance studies. 1-7 The 
second given in Lemma 2 involves time fluctuations and 
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time dispersion and becomes important at UHF, microwave, 
and infrared frequencies. In general, these are Maxwell 
equivalence classes in the special case of Eqs. (28a) and 
(28b) and they reduce to electromagnetic standard equiv
alence classes. These latter ambiguities can occur under the 
stated conditions in light scattering from molecules, liquids, 
and solids. 

In addition, chains of Maxwell's equations were pre
sented in Eqs. (18a) and (18b) and Eqs. (28a) and (28b). 
The more general boundary conditions in Eqs. (19a)
(19d), give a new chain of Maxwell equations with the addi
tional terms from the normal component of the new surface 
fields Es and Hs to be studied at fixed incident angle. 

By inspecting Refs. 1-5c it is clear that much remains to 
be done before electromagnetic problems will be as well un
derstood as acoustics problems. In order of importance, 
these include (1) a path integral to semiclassically couple 
various waves at boundaries; (2) the ambiguities reex
pressed in terms of the boundary operators of Ref. 24 and the 
roles of the single layer and double layer potentials estab
lished; (3) a full-space Green's distribution, and (4) a per
turbation theory for Eqs. (18a) and (18b). Of these, only 
number ( 1) is completed. 33 
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APPENDIX 

The decision to study time dispersion requires a more 
careful discussion of the structure of the constitutive rela
tions than the usual superficial treatments. This is required 
by Physics, and even Biology. Thus it is necessary to take 
into account the general treatment in Refs. 15 and 20. 

In linear electrodynamics of isotropic media the materi
al equation gives the relation between the electric displace
ment D, and the electric intensity E as 

D(r,t) = F 00 dt' J d 3r'E(t,t',r,r)E(r,t'), (AI) 

where the kernel E is a complex-valued dielectric response 
gives the physical meaning of the medium, the constitutive 
equations. The principle of causality is satisfied by Eq. (A 1 ) 
because the electric displacement D at position r and time t 
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depends on the dielectric response of the medium E as a ker
nel and the electric field E at all times t' <to This is the classi
cal causality which states that the effect in D(t) must follow 
from the cause E (t ') only at earlier times t '. Stability is an
other general principle that all materials must satisfy, objec
tivity is a fundamental principle that could be neglected for 
the isotropic media in a single frame considered. In aniso
tropic media or multiple frames it is a powerful restriction. If 
the medium is spatially homogeneous, the dielectric re
sponse kernel depends only on r - r' and time independent 
media depend only on t - t'. The dielectric response is a 
complex-valued function with real and imaginary parts E' 

andE", 

E= E' + iE". (A2) 

If E(t - t' .. ) is in L 2 (R 3 X R I), its Fourier transform 
E(W,·) automatically exists so assume this for the rest of this 
appendix. The causality of a spatially homogeneous medium 
that is temporally inhomogeneous provides a sharp cutoff 
for all t ' > t. This guarantees that the Fourier transform E( W ) 

of E(t - t') is half-plane analytic, and that the real and 
imaginary parts of this Fourier transform, 

e(w) = E'(W) + il"(w), (A3) 

are a Hilbert transform pair. These Hilbert transforms are 
called the Kramers-Kronig relations of the dielectric re
sponse function in physics. The neglect of spatial inhomoge
neity is a good approximation for nonconducting scatterers 
at the frequencies considered here because the size of the 
regions in which E determines D depends on if b is of order 
one A and the wavelength A, is greater than 10 - 2 m so that 
(b / A,) is negligible. 

There is an interesting subtlety when the dielectric re
sponse E(w,k) has non-negligible k dependence which Pines 
and Nozieres34 first pointed out and which Dolgov, Krirzh
nits, and Maksimov35 have reviewed. The subtle point is that 
the causality principle cannot imply the Hilbert transform 
relations between the real and imaginary parts of E(w,k). 
This is because l is the response to the total field which is not 
finite, in general. The external field can be controlled and 
hence the real and imaginary parts of [E(w,k)] -I satisfy 
Hilbert transform relations. On the other hand both E(W) 
and [E(W)] -I satisfy Kramers-Kronig relations, which 
may be the source of this widespread error. The convenient 
relation 

D(r,t) =E(t,r)E(r,t), (A4) 

was given between Eqs. (1.4) and (1.5) in an unnumbered 
equation in Ref. 20 and is stated there to have "only a sym
bolic significance" and to hold "only in exceptional cases 
(and then only approximately)." Stated another way, dis
persion always has memory.36 
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A derivation is presented for the compact integral representation that describes the first-order 
perturbed wavefunction of an electron in a fixed Coulomb field and in a harmonic uniform 
electric field, for the case of an initial stationary Stark state with the symmetry axis along the 
electric field. 

I. INTRODUCTION 

This paper considers the effect of a weak harmonic uni
form electric field on the Stark states of an electron in the 
Coulomb field. The Stark states, found by solving the Schro
dinger equation in parabolic coordinates, were obtained by 
Schrodinger at the very beginning of quantum mechanics. I 
Today these states can be selected and directly used in ex
periments: Bayfield and Pinnaduwage2 produced and inves
tigated for the first time the extreme Stark states with princi
pal quantum number n = 60 and electric quantum number 
ne - 59. 

We present here our work concerning the first-order 
perturbed wavefunction of a hydrogenic atom (with fixed 
nucleus) in an ac electric field. The initial state of the elec
tron is a Stark state described by the parabolic quantum 
numbers n I' n2 , and m. The electric field is switched on 
adiabatically. 

Independent calculations for this problem have been 
performed recently by Marian.3 Our results for the per
turbed parabolic states agree with those in Ref. 3, but the 
calculations differ essentially in their details and provide dif
ferent insights into the underlying theory. In our paper we 
shan stress the similarities and the differences of the two 
calculations. Both calculations are based on the results ob
tained recently4 for the linear modification of a bound 
"spherical" state of hydrogen (arbitrary values for the quan
tum numbers nlm). 

In Sec. II, based on Ref. 4, we write the general equa
tions for the first-order perturbed spherical wavefunctions in 
a way that is convenient for the construction ofthe perturbed 
parabolic states. Section III presents the main steps of our 
derivation. We also point out two new relations [Eq. (21) 1 
for the coefficients connecting spherical and parabolic states 
of an electron in the Coulomb field. In Sec. IV we comment 
on some properties of the linear response of the parabolic 
states and on its application in the study of some radiative 
processes. 

II. THE FIRST-ORDER PERTURBED SPHERICAL 
STATES 

We consider an electron in an initial stationary state of 
energy En' 

t/Ji~)(r,t) uin(r)exp(-(ilft)E"t), (1) 

where U in (r) is uniquely characterized by a set of quantum 

numbers that will be specified later. A harmonic uniform 
electric field, 

~ = ~ 0 cos (J)t, (2) 

is switched on adiabatically. We describe the electric field by 
the potentials 

A= - (~ol(J)sin(J)t, </J=O, (3) 

so, in the first order, the perturbation is 

H' = (elm.)A·P, 

with e the elementary charge (e> 0), me the electron mass, 
and P the momentum operator. The calculation of the re
sponse of the hydrogen atom to a harmonic uniform electric 
field (2) is equivalent to the calculation of the dipole approx
imation of the response to a monochromatic electromagnetic 
plane wave. 

The first-order modification of the wavefunction, which 
has the simple time-dependence 

tPi\,1) (r,t) = [Ji~ «(J),r)exp(i(J)t) - !i~ «(J),r) 

Xexp( - i(J)t) ]exp( - (ilft) E"t), (4) 

was studied for the first time by Podolsky.5 Closed-form 
expressions for Podolsky'S functions! ± for the ground state 
case were given much later by Luban and co-workers.6 Less 
known is the unpublished work of Johansson.7 

The functionsfi~ for a given initial state of energy E/t 

can both be obtained from a single function, denoted 
F.n (n,r), taken for different values of the parameter n, 

!i~«(J),r)=F.n(En+fzw,r). (5) 

The function F.n is the projection along the electric field of a 
vector field Win: 

F.n (!l;r) = (ieI2me(J)~O'Win (!l;r). (6) 

The vector Win is defined as 

Win (!l;r) == J G(r,r';!l)P'Uin (r')dr', (7) 

with G the Coulomb Green's function. 
If the initial state (1) is characterized by the quantum 

numbers n/m, the vector W /tIm in (7) can be expressed in 
terms of two vector spherical harmonics (see Ref. 4): 
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Wnlm (O;r) 

ime [ (I + 1 )112 
= -,;- - 21 + 1 q; n,I.I+ I (O;r)V /+ I,/,m (O,q;) 

( 
1 )112 ] + 21 + 1 q; n,I,I-1 (O;r)V / _ 1.I,m (O,q;) . (8) 

The second term exists only for I> O. The expressions of the 
radial functions q; n,l,l ± I are given in Eqs. (17)-(20) of Ref. 
4 as integral representations. They were also expressed in 
terms of Humbert functions. 

Here we present a derivation for the function F:n in (6) 
for the case of an initial Stark state characterized by the 
quantum numbers n I , n2 , and m with respect to a quantiza
tion axis taken along the direction of the applied electric field 
(2). First, using Eqs. (6) and (8) here, together with Eqs. 
( 17) and (20) of Ref. 4, we transcribe F nlm as follows: 

e~ . (. ) 
F (O'r) = __ 0 (2K )1I2 1exP 11TT 
nlm' 21itu n 2 sin 1TT 

X f O

+) t - r[ N 2_ (n: 1 rg~/~ ) (t,O;r) 

N 2 (n-l)2 (+) n. ] - + -n- gnlm (t,u,r) 

X ( 
n+T-(n-T)tXr Yn)d exp - -+- t 

N Ii 2 ' + 

with the notations 

X=( - 2meO) 1/2, ReX>O, 

T=aZmeclX. 

Also 

N ± = n ± T + (n + T) t, 

Yn = (8n2Knt IN + N _ )r, 

(9) 

(10) 

(11 ) 

a is the fine structure constant, c the velocity of light, Z . the 
nuclear charge, and the constant Kn is defined in (A2). The 
functions g~~ ) appearing in the integral (9) are expressed in 
the following in terms of hydrogenic functions in which the 
usual radial variable 2Knr is replaced by Yn' defined in Eq. 
( 11 ), regardless of the value of the principal quantum num
ber (n ± 1) of these functions. In order to distinguish from 
the usual functions Unlm ' we use the tilde sign. The explicit 
expression of the functions g~/!t ) is 

g~/!t)(t,O;r) = a~/!t)Un± 1,/+ I.m 

(12) 

where 

(u + 1)2 m2 )112 
a~/~)= - (n+l+l)(n+I+2) , 

2/+ 3 
(_ )_([2 _ m2 )1/2 

/3 nlm = (n -/)(n -I + 1) , 
2/+ 3 

(13 ) 

while a~/;') and/3 ~/;') are given by the same expressions with 
n replaced by - n. 

The essential step for our calculation is the use of hydro
genic functions in Eq. (12). The starting point in Ref. 3 for 
the problem we discuss here is Eq. (B3), which has a certain 
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elegance: it expresses the vector W nlm through the action of 
an operator 9 nr [given in Eq. (B4) of Ref. 3] applied to a 
single modified hydrogenic energy eigenfunctions inside in
tegral representation. But the operator 9 nr itself is not too 
simple, and in the final stage of the calculation it has to be 
applied effectively, which implies long calculations. In our 
procedure, we work with explicit expressions at each stage, 
for each component of the vector W n,n2m' We present here the 
case of the component ofwn ,n

2
m along the symmetry axis of 

the initial states, but the other components can be treated in 
a similar way; our results are in accord with Ref. 3. 

III. THE FIRST-ORDER PERTURBED STARK STATES 

As shown by Schrodinger, I for the electron in an attrac
tive Coulomb field, one can construct stationary states by 
separating the variables in the parabolic coordinates 5, TJ, 
and q;: 

5=r + z, TJ=r - z. (14) 

Because the final results will contain, under a integral sign, 
these energy eigenfunctions, denoted here by q; n, n2m (r), they 
are reproduced in Appendix A. A function m corre-

TNI N2m 

sponds to the Bohr energy En with 

n =nl +n2 + Iml + 1. (15) 

The relation between the spherical energy eigenfunctions 
Unlm and the parabolic energy eigenfunctions m is Tnln2m 

n-I 

q;n,n2m (r) = L A ~;:2unlm (r). (16) 
1=lml 

We use the notation of TarterS for the coefficients in (16). 
For a given n, they form a quadratic orthogonal matrix. 
Some details regarding the A ~;:2 can be found in Appendix 
A, together with their explicit expression in terms of a gener
alized hypergeometric function 3F2 of variable 1. This 
expression was directly used in our calculation. 

In contrast to the case of the (nlm) states, the charge 
distribution of the Stark states is not symmetric with respect 
to the plane xOy. It keeps only the symmetry around the 
quantization axis z. As the electric quantum number defined 
as 

(17) 

increases, the charge distribution becomes more eccentric. 
For ne < 0 it is oriented along the z axis, for ne > 0 in the 
opposite direction. 

In the case of an initial state (1) characterized by the 
energy eigenfunctions q;n,n

2
m given by (AI), with the sym

metry axis along the applied ac field (2), the corresponding 
function Fin (5) will be denoted by Fn ,n2m ' From Eqs. (6), 
( 7 ), and (16), one gets the connection 

n-I 

Fn,n2m (O;r) = L A ~;:2Fnlm (O;r). (18) 
1=lml 

For F nlm we shall use the expression (9). 

Equations (18) and (9) show that Fn n m will have the 
, 2 

same structure as F nlm , with g~/!t ) (t,O;r) in (9) replaced by 
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n-I 
(+) (to' ) - ~ A n,n, (+)(/0' ) gn,n,m , ,r - ~ nlmgnlm "r. (19) 

1=lml 

Replacing (12) in (19) and ordering the terms after the 
hydrogenic functions, we obtain 

n 

g~'~2~ (t,O;r) = L (a~02 \)m A :;;~ I)m 
1=lml 

+ f3~0! l)mA :;~~ I)m )u(n+ 1)/m' (20) 

Because of the structure of our starting point for Fnlm [Eqs. 
(9) and (12) J, we cannot directly use Eq. (16) in order to 
perform the summation of the corrections to the spherical 
bound states. In contrast to Ref. 3, we are forced to prove 

some identities for the coefficients A :1:\ and only after this 
can we exploit the basic equation (16). These identities, 
which to our knowledge are new, can be written compactly 
as 

(21 ) 

with 

r~:;-;2~ = - [(n l + 1 )(n l + Iml + 1) ]112, 

(22) 

and 

(23) 

The derivation of the identities (21) is sketched in Appendix 
B. 

Now, as mentioned before, with Eq. (21) replaced in 
(20), the summation can be performed directly using (16), 
and this way the calculation is completed. The result for the 
functions (20) is 

g~,~,~ (t,O;r) = r~'~2~~(n, ± I)n,,,, + t5~,~,~~n,(n2± I)m' (24) 

where the tilde sign is used in order to note that the usual 
variables Kn5 and Kn 1] of the functions mn n m in (AI) are T , , 

replaced, according to (7) and (11), by 

- 4n2t - 4n2t 
5- N N KnS, 1] N N Kn 1], (25) 

+ - + -

regardless of the value of the principal quantum number 
(n + 1 or n - 1) with which the functions are associated. 

Consequently, our final result for the function Fn,",m in 
Eq. (6) is the integral representation 

F O' )_e'6'o (2 112 iexp(hrr) (0+) -T[ 2 (n+l)2 (-) - 15(-)-
n,n,'" ( ,r - 217m Kn) 2 sin 1Tr)1 t N - -n- (rn,n,m({J(n, + I)n,m + ",n,m({Jn,(n, + I)m) 

N2 (n - 1)2( (+) - 8( +) - ] ( n + r - (n - r)t Xr Yn)d 
- + -n- rn,n,m({J(n, - I)n,,,, + n,n,m({Jn,(n, - I)",) exp - N + fz + 2" t. (26) 

The result agrees with Eq. (37) of Ref. 3 [the case J-l = 0, 
corresponding to the component of the vector wn,n,m in Eq. 
(7) along the quantization axis]. For further calculations, 
we prefer to give the final result in the form (26). The main 
feature of our result is the possibility of expressing the func
tion under the integral sign in (26) in terms of parabolic 
hydrogenic functions depending on the variables (25). The 
integration variable t appears in a way that shows that the 
functionsFn,n,m themselves do not have a simple structure in 
parabolic coordinates, in contrast to the energy eigenfunc
tions in a static electric field. 9 Some properties of the func
tions Fn,n,,,, are described in Sec. IV. 

IV. PROPERTIES OF THE FUNCTIONS Fn,n2m 

Not aU the properties ofthe functions Fn,n,m and, conse
quently, of the linear modification (4) of the wavefunction, 
are directly accessible from Eq. (26). As in the case of the 
functions Fnlm corresponding to the spherical states, the 
functions Fn,n,,,, can be expressed in terms of a finite number 
of Humbert functions tPl' Such an expansion is described in 
Ref. 3. The expression of the functions Fn,n,m in terms of 
Humbert functions is useful in a numerical evaluation of the 
linear response or of some functions of it having physical 
significance, like induced charge density or electric field in 
the interior of the atom. These quantities deserve further 
investigation. The expression also makes possible an analytic 

2167 J. Math. Phys .• Vol. 31, No.9, September 1990 

investigation of the behavior of the functions Fn,n,m for low 
frequencies w. For lU-+O, the quantity r in Eq. (10) ap
proaches the value of the principal quantum number n. The 
two variables of the Humbert functions go to zero in this 
limit. In order to get the correct answer, some attention has 
to be paid to the behavior of the parameters of these func
tions, too. The result is 

Fn,n,m (En + 17m;r) 

= _e_(r cos () - 2 nn l aO)mn n m (r) 
217m 2 Z T " 

±!Xn,n,m(r) + dew), (27) 

where Xn,n,m (r) is the first-order modification ofthe Stark 
states in a static field, as given by Eq. (69) of Omidvar, 9 and 
ao is the Bohr radius. 

Equation (27) can be predicted without using the ex
plicit expression of the functions Fn,",m' starting from the 
general identitylO 

(fzlime )win (O;r) = rUin (r) + (0 - En )Vin (O;r), 

where Vin (O;r) is defined by an expression similar to (7), 
with the momentum operator P' replaced by the position 
operator r'. After isolating from Vin the contribution of the 
states with energy En' the limit w -+ 0 can be taken directly. 
Alternatively, as a check, the first term in Eq. (27) was ex
tracted from (26) by integration by part. More details con-
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cerning the static limit of the linear response ( 4) are given in 
Ref. 3, together with the analytic expressions for the vectors 

V nln2m • 

Some application of the functions w",",m arises in the 
study of two-photon processes. General analytic results for 
bound-bound transitions have been presented recently. I I 
We have studied independentlyl2 the particular transitions 
in which one of the states is an extreme Stark state 
(n I = n - 1). For the ground state case, we have directly 
used the connection with our results for Is --> ns,nd transi
tions,13 in order to predict numerically the behavior of the 
transition amplitudes from the ground state to Stark states. 
The relevant equations, together with their numerical conse
quences, will be published subsequently. 
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APPENDIX A: THE STARK STATES AND THE 
COEFFICIENTS A~i~ 

The explicit expression of the Stark (or parabolic) ener
gy eigenfunctions for an electron in the field of a fixed nu
cleus of charge Z is 14 

CP",n,m (r) = Nn,n,m (~S17)lmI12 exp (imcp) 

X IFI ( - nl ,Iml + I;KnS) 

X IFI ( - n2,lml + I;Kn17) 

xexp[ -!Kn(S+17)], 

with 

and 

Kn == (Z In)ao' 

(A1) 

(A2) 

The coefficients A ~;::: in Eq. (16) connecting the para
bolic and the spherical energy eigenstates have been ex
pressed by Park l5 as particular Clebsch-Gordan coeffi
cients. For a fixed n the matrix A diagonalizes the electron 
energy H' = e'll z in a dc electric field directed along the z 
axis. This leads to the basic property9 

with 

Cnlm == [(n2 - 12)([2 - m2)/( 412 _ 1)] 112, 

and n e defined in (17). 

(A3) 

According to Eq. (22) of Ref. 8, the coefficient A ~):'has 
the analytic expression 

An,", = (_ 1)1-lml (n -Iml- I)! 
"1m 1m I! 

X (21 + 1) (I + Iml )!(n l + Iml )!(n2 + Iml )!)I12 

(n + I)! 

(
I + Iml + 1, -I + Iml, - n2 ;1) 

X3 F2 , Iml + 1, - n + Iml + 1; 
(A4) 

where 3 F2 is the hypergeometric generalized function 

F(aJ3I,P2;X)= ~ adPI)k(P2)k k 
32 -£". x, 

YI'Y2; k=O (YI)k(Y2)k 1k 

with ak Pochhammer's symbol. 

The coefficients A ~):' depend only on Iml. The inter
change of n l and n2 leads to 

(AS) 

The values of the coefficients for low values of n can be found 
in several papers. 16.9.8 

APPENDIX B: RECURRENCE RELATIONS FOR THE 
FUNCTION :r2 

The key relations (21) are based on four recurrence re
lations for the functions 3F2 of variable I that express the 

coefficients A ~):2 according to (A4). These are Eqs. (B3)
(B8) whose derivation is now sketched. 

We denote 

_ ~1,a2,a3;1) 
ho =3 F2 P . ' 

l' 2, 

_ ~I + l,a2 ± l,a3 ;1) 
hI =3 F2 P . ' 

2 I' 2, 

(B1) 

Using Eqs. (14), (15), (19), and (21) in Chapter 5 of Rain
ville's book,17 we obtain the recurrence relation 

a 2(a l -PI )(a l -P2)h l = (a2 -P2 + 1)[(a, -l)(a, -P,) + (a, -a2 -1)(a 3 -P2 + l)ho ] 

- (a, -a2 -1)(P2 -1)(a, +a2 +a3 -/31 -/32 + 1)hs· (B2) 

Interchanging a, and a 2 in (B2) we obtain another recurrence relation connecting h2' ho, and hs. We may also prove that 
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The case we are interested in corresponds to 

We notice, as a check, that the elimination of the function hs 
between (B2) and its analogous with a. ~ a 2 gives a rela
tion between hI> h2' and ho, which leads directly to (A3). 
The elimination of the function ho gives 

(n + I)(n + 1 + 1) (I + Iml )h. 

= (n -Iml) [(2n + I-Iml- 2n2)(n + Iml + l)h 3 

- (n - n2 )(1 + Iml + 2n2 + 2)hs ]. (B5) 

Using (B3) we get 

(n -/)(n -1- 1) (I + Iml + 1 )h2 

= (n - I m I )[ (2n - 1 - I m I - 2n2 - I) 

X (n2 + Iml + 1 )h3 ] 

- (n - n2) (1- Iml - 2n2 - 1 )hs ]. (B6) 

The parameters in the functions h in (B5) and (B6) are 
given by (B4). The first equation (21) follows directly from 
(A4), (B5), and (B6). Similar techniques give 

(Iml + I-n)(I-lml)h. 

= (I + Iml )n2h4 + n. (2n -I + Iml - 2)h6 , (B7) 
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(Iml + 1 - n)(I + Iml + I)h2 

= (l + Iml + I)n2h4 - n. (2n + 1 + Iml- l)h6 • 

(B8) 

Here, again, the parameters in the 3 F2 functions are given by 
(B4). The second equation (21) follows directly from (A4), 
(B7), and (B8). 
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Properties of Leach-Flessas-Gorringe polynomials 
D. L. Pursey 
Department of Physics, Iowa State University, Ames, Iowa 50011 

(Received 11 January 1990; accepted for publication 2 May 1990) 

A generating function is obtained for the polynomials recently introduced by Leach, Flessas, 
and Gorringe [J. Math. Phys. 30, 406 (1989)], and is then used to relate the Leach-Flessas
Gorringe (or LFG) polynomials to Hermite polynomials. The generating function is also used 
to express a number of integrals involving the LFG polynomials as finite sums of parabolic 
cylinder functions. 

I. INTRODUCTION 

Several papers dealing with the sextic anharmonic oscil
lator have been published in recent years. 1.2 Particularly in
teresting is the technique developed by Leach, Flessas, and 
Gorringe.2 These authors considered the one-dimensional 
anharmonic oscillator with Hamiltonian 

1 d
2 

1 [ 2 b 2 2 k 2] H= ---+- (ax + ) x - ax , 
2 dx2 2 

(1) 

and sought solutions of the form 

00 (1 1) rp(x) = L c"/n (x) exp - -ax4 
- -bx2 , 

n=O 4 2 
(2) 

for even parity states, and 

(3) 

for odd parity states, wherein (x) and gn (x) are polynomi
als defined by 

In (x) = ~(I/2)ax4 + bx' ( _ ~ ~)n 
2nn! X dx 

Xe- (112)ax4-bx', (4) 

and 

( 5) 

With this ansatz, the eigenvalue problem reduces to the 
determination of the eigenvalues of an infinite tridiagonal 
matrix. Furthermore, if k = 4N - 1 (4N + 1), the lowest N 
even (odd) parity eigenvalues are the eigenvalues ofa finite 
N X N tridiagonal matrix. 

The purpose of this paper is to explore some of the prop
erties of the Leach-Flessas-Gorringe (or LFG) polynomi
alsln (x) andgn (x). In the next section, I shall find a gener
ating function for the even LFG polynomials In (x) and 
relate them to the Hermite polynomials 
Hn [(a12)1/2x 2+b(2a)-1/2]. 

Normalization of the Leach-Flessas-Gorringe states 
involves sums over the integrals 

I m.n == f: 00 dx 1m (x)jn (x)e- (I/2)ax'-bx' (6) 

and 

Jm.n == f:oodXgm(X)gn(x)e-(II2)aX4-bX', (7) 

while transition matrix elements involve the integrals 

I ==foo dxx2p'f, (x)1' (x)e-(1I2)ax4 -bx' 
m,n,p m 'In 

- 00 

(8) 

and 

J ==foo dx x 2Pg (x)g (x)e - (I/2)ax4 - bx'. 
m,n.p m n 

- 00 

(9) 

Clearly, 

(10) 

In Sec. III, I shall derive an explicit expression for I m.n as a 
finite sum of parabolic cylinder functions Dp _ 112 (b /a I/2 ). 

The integrals I m.n.p , Jm.n, and Jm.n.p, are then readily ex
pressed in terms of I m•n by first expanding x 2Pl n (x) as a lin
ear combination of even LFG polynomials, and then using 
Eq. (6). 

In the course of the mathematical development, I use 
standard results found in Abramowitz and Stegun,3 in 
Gradshteyn and Ryzhik,4 and in Spanier and Oldham.s I 
refer to these by the initials AS, GR, and SO, respectively, 
followed by the formula number in the quoted reference. 

II. GENERATING FUNCTION AND RELATION TO 
HERMITE POLYNOMIALS 

In order to find a generating function for the even LFG 
polynomials, I first note that if u = (a/2) 1/2x2 then 

(2x)-1 ~ = (~)1I2 ~. 
dx a du 

For convenience, I also define a = b /(2a) 112. From Eq. (4), 

I In (x) (~)nI2tn = eu'+2<7u (_ t~)ne-U'-2<7U 
n=O a du 

= eU' +2<7ue - (u- I)' -2<7(u-t). (11) 

Hence, a generating function for the even LFG polynomials 
is 

00 ( 2 )n12 S== L In(x) - t n =e- t'+2(u+<7)t 
n=O a 

= e - t' + 2[(aI2)"'x' + b/(2a)'''lt. 

(12) 

From Ref. 3 (AS22.9.17), Sis also 
00 t n 

S = L -Hn(u+a) 
n=O n! 

_ 00 t
n 

[(a)112 2 b] 
- n~o n!Hn "2 x + (20) 1/2 . 

(13) 
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Hence 

fn(X)=(~r/2 ~!Hn [(~yI2X2+b(2a) 1/2]. (14) 

III. OVERLAP INTEGRALS 

In this section, I obtain an explicit expression for the 
overlap integrals 

Im,n == f~ 00 dx fm (x)fn (x)e- (1I2)ax· - bx'. (6) 

This is most conveniently achieved by developing a generat
ing function I for the I m,n using the generating function S of 
Eq. (12). I then use the recurrence relations for the LFG 
polynomials to obtain recursive formulas for I m.n,p' J m,n' and 
J m,n,p' which allow these integrals to be expressed in terms of 
the Im,n' 

For convenience, I define the scaled variable y 
= (aI2) 1/4X • Then 

00 ( 2 )( 112)(m + n) 
1== L - smtnlm,n 

m,n=O a 
(15) 

= e - (.r + I') + 2U(5 + I) ( ~ ) 114 

X2fO dy e-Ji' -2(u- 5- I)Y'. (16) 

The integral in Eq. ( 16) is evaluated using, Ref. 4, 
GR3.469.1, to yield 

1= (l/2a)1/4e25t +0" 1/2(u-5-1)' (eT-S t)I/2 

XK1/ 4 [!(eT-S t)2]. (17) 

The Bessel function is expressed as a parabolic cy Hnder func
tion using, Ref. 5, S046:4:5, with the result that 

1= (1rla)I/4 e25t+0"-0/2)(u-s I)' 

XD_ 1/ 2 [2 1
/
2 (eT s-t)]. 

From S046:5:2 it follows that 

1= (ria) 1/4 e2st + (/2)0" 

X ~ 2p/2(s + t)P D (21/2eT) 
£." I p- 1/2 • 

p=o p. 

This may be compared with Eq. (15) to obtain 

I = (rla)I/4a(m+ n)/2eo"/2 m,n 

(18) 

(19) 

X ~ 1 D (2 1/ 2eT) 
£." I( _ )'( _ )' m+n-2p-1/2 , p = 0 p. m p. n p. 

(20) 
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where the summation automatically terminates at the lesser 
of m and n. In terms of the original parameters a and b, the 
overlap integrals are expressed by 

Im,n (rla)'/4a<m+n)/2eb '/4a 

X f 1 D (_b) 
p=op!(m-p)!(n-p)! m+n-2p-1/2 a l /2 ' 

(21) 

In order to find recursion relations for the other inte
grals of interest I expand x 2fn (x) in terms ofLFG polynomi
als, using the recurrence relation Eq. (3.3) of Ref. 2. This 
may be rewritten as 

xYn(x) =fn I (x) -.!!...fn(x) + n + Ifn+1 (x). (22) 
a a 

[The same result may be obtained using Eq. (14) together 
with AS22.7.13.] Hence 

b 
Im,n,p = Im,n -I,p I - -Im,n,p-I 

a 

n+l + --Im,n + I.p- I' 
a 

(23a) 

=1 m- J,n,p 
b m + 1 

I --Im.n.p-I +---lm+l.n,p_I' 
a a 

(23b) 

where I m.n.p = 0 if either m < 0 or n < O. By repeated itera
tions of Eq. (23a) or Eq. (23b), any of the integrals 
I m.n.p' J m,n' or J m,n,p may be expressed as a linear combina
tion of integrals of the form I m.n ==1 m,n,O' evaluated in Eq. 
(21) above. 
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Sufficient conditions are given for the existence of a Wiener-Hopf factorization of the 
scattering operator for the 3-D Schrodinger equation with a potential having no spherical 
symmetry. A consequence of this factorization is the solution of a related Riemann-Hilbert 
problem, thus providing a solution ofthe 3-D inverse scattering problem. 

I. INTRODUCTION 

Consider the Schrodinger equation in three dimensions 

!:J..¢(k,x,B) + k 2¢(k,x,B) = V(x)¢(k,x,B), (1.1) 

where !:J.. is the Laplacian, xER3 is the space coordinate, BES 2 

is a unit vectorin R3
, and k 2ER is energy. The potential V(x) 

is assumed to decrease to zero sufficiently fast as lxi- 00. 

However, we do not assume any spherical symmetry on the 
potential. As Ixl .... 00, the wave function ¢(k,x,B) behaves as 

¢(k,x,B) = eikfi-x + e;:;1 A (k, I:' ,B ) + o( I!') , 
( 1.2) 

whereA(k,B,e') is the scattering amplitUde. The scattering 
operator S(k,B,B') is then defined by 

S(k,B,B') = ~(B - B') - (kI21Ti)A(k,e,B'), (1.3) 

where ~ is the Dirac delta distribution on S2. In operator 
notation (1.3) is written as 

S(k) = I - (kI21Ti)A(k), 

where the operators are defined on L 2(S2), the Hilbert 
space of complex-valued, square-integrable functions on the 
unit sphere S 2 in R3 with the usual inner product < . , . ). 

The direct scattering problem is to obtain S(k,e,e') 
when Vex) is given. The inverse scattering problem, how
ever, is to recover Vex) when S(k,B,B') is known. Since the 
main source of information about molecular, atomic, and 
subatomic particles consists of collision experiments, solving 
the inverse scattering problem is equivalent to determining 
the forces between particles from scattering data. 

For one-dimensional and radial SchrOdinger equations, 
the inverse scattering problem is fairly well understood (at 
least for certain classes of potentials).1 In higher dimen
sions, however, the situation is quite different. The solution 
methods developed in higher dimensions include the New
ton-Marchenko method,2-4 the Gel'fand-Levitan meth
od,2-s the a method,6-9 the generalized Jost-Kohn meth
Od,IO-I3 and a method that uses the Green's function of 
Faddeev. 1

4-16 There are still many open problems in multidi
mensional inverse scattering, and the methods developed are 
still far from being complete. A comprehensive review of the 
methods and related open problems in multidimensional in-

verse scattering can be found in Newton's recent book17 or 
in Ref. 1. 

The principal idea behind both the Newton-Marchenko 
and Gel'fand-Levitan methods is to formulate the inverse 
scattering problem as a Riemann-Hilbert boundary value 
problem, to transform this Riemann-Hilbert problem into a 
nonhomogeneous integral equation where the kernel and the 
nonhomogeneous term contain the Fourier transform of the 
scattering data, and to obtain the potential from the solution 
of the resulting integral equation. In this paper we present a 
solution of the 3-D inverse scattering problem by establish
ing a Wiener-Hopffactorization for the scattering operator 
and thus solving the corresponding Riemann-Hilbert prob
lem. The usual theory of Wiener-Hopf factorization, how
ever, deals with scalar functions and square matrix func
tions. Here, we need the Wiener-Hopf factorization of an 
operator function in an infinite-dimensional setting, and for 
this we draw on some results by Gohberg and Leiterer. 18 

The present paper is organized as follows. In Sec. II we 
define the class of potentials (which we will name the New
ton class) for which corresponding scattering operators 
have a Wiener-Hopf factorization. In Sec. III we give some 
estimates on the scattering amplitUde and its derivative and 
establish the Holder continuity of the scattering operator. In 
Sec. IV we define the Wiener-Hopf factorization for opera
tor-valued functions and prove its existence for scattering 
operators corresponding to potentials in the Newton class. 
In Sec. V we solve a related Riemann-Hilbert problem using 
the Wiener-Hopffactorization ofthe scattering operator. In 
Sec. VI the solution of the inverse scattering problem is giv
en. Also in this section, for potentials in the Newton class 
having no bound states, we give the necessary and sufficient 
conditions for the existence and uniqueness of the Jost oper
ator in terms of the partial indices of the scattering operator. 
In Sec. VII we summarize the main results of the paper and 
give the conclusion. 

II. ESTIMATES ON THE SCATTERING OPERATOR 

We first identify the class of potentials for which all of 
the results in this paper are valid. Except for the third condi
tion given in the following definition, these conditions are 
standard assumptions on the potential. 17 The second condi-

2172 J. Math. Phys. 31 (9), September 1990 0022-2488/90/092172-09$03.00 @ 1990 American Institute of Physics 2172 



                                                                                                                                    

tion is much weaker than the usual assumptions. 17 The third 
condition is needed only twice: first to establish a uniform 
operator bound for the derivative of the scattering ampli
tude, and second to use an interpolation argument. Note that 
all four conditions used below are only sufficient conditions 
and might possibly be weakened. 

Definition 2.1: A potential Vex) is said to belong to the 
Newton class if Vex) is real valued and measurable and sat
isfies 

(i) 3a,b>Osuch that 

( dxIV(x)I(IXI + Iyl +a)2<b, VyeR3. (2.1) 
JRJ Ix - yl 
(ii) 3c > 0, s> ! such that V xER3 

W(x) I <cl(l + IxI2)5. (2.2) 

(iii) 3r>Oand{3E(0,1] such that 

( dxlxlPI V(x)l<r. (2.3) JR3 
(iv) The point k = 0 is not an exceptional point. 19 This 

condition is satisfied if at zero energy there are neither bound 
states nor half-bound states. 

Remark 2.2: If Vex) satisfies (2.1), we have 

{ dxW(x) I < 00, JR3 

{ dx W(x) I < 00, VyeR3, 
JR3 Ix-yl 

{ dx W(x) I < 00, VyeR3, 
JR3 Ix _ ylZ 

Ii d d 
W(x) V(y) I 

x y < 00, 
R'xR3 Ix yl 

IWIIR = (I ( dx dy W(X) V(y) I )112 < 00. 
JRJXR' Ix _ Yl2 

The last integral defines the Rollnik norm of the potential. 
The real potentials with a finite Rollnik norm make up the 
Rollnik class. The number of bound states nB for potentials 
in the Rollnik class is finite20.21 and nB<1I VII~/( 16~). 

Remark 2.3: In (2.2), whenever s>1, the potential 
VeL 2 (R3

). If s>!, there are no nonzero real exceptional 
points and hence no positive-energy bound states.22 

The kernel of the scattering operator A ( k) has the rep
resentation 

A(k,(),()') = __ 1_ ( dx V(x)e- ik8' x 't/J(k,x,()'), 
417" JR3 

(2.4) 

where 't/J( k,x,() is the solution of the Schrodinger equation. 
The 3-D Lippmann-Schwinger equation corresponding to 
the SchrOdinger equation satisfying (1.2) is given by 

. 1 i eik Ix - yl 
't/J(k,x,() = e,kfJ-x - dy V(x)'t/J(k,y,(). 

417" R' Ix - yl 

Iterating (2.5) three times, we obtain 

't/J, (k,x,() = eik8
.
x

, 
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(2.5) 

1 1 eiklx-yl 
't/Jj(k,x,() = - - dy V(y)'t/Jj_, (k,y,(), 

417" R' Ix - yl 

j=2,3, 
3 

't/J4 (k,X,() = 't/J(k,x,() - 2: 't/Jj(k,x,(). 
j=' 

Then we can write (2.4) as" 

1 4 
A (k,(),()') = - 2: Aj(k,(),()'), (2.6) 

417" j=' 

where 

j 1,2,3,4. (2.7) 

Proposition 2.4: If the potential Vex) satisfies the first 
and fourth conditions in the Newton class, the correspond
ing scattering amplitUde A (k) is a continuous operator func
tion in kER on L 2(SZ). 

Proof: From (2.7) we obtain the estimates 

lA, (k,(),()') 1< { dxW(x) I, JR3 

IAz(k,(),()')I< 1 I { dxdy W(x) V(y) I , 
417" JR'XR3 Ix - yl 

IA 3 (k,(),()')I<_1- { dxW(x) I 
(417")2 JR' 
x{ { dy W(y) I [{ dz W(z) I ]}, 

JRJ Ix - yl JR' Ix - zl 
and hence, using Remark 2.2 and Lebesgue's dominated 
convergence theorem, (2.1) is sufficient to conclude that 
Aj (k) is continuous for j = 1,2,3 in the operator norm on 
L 2(SZ). The continuity of A4 (k) follows 17 under the suffi
cient condition (2.1 ) and the fourth condition in the Newton 
class. • 

The next result is due to Weder.23 A proof convenient to 
our present problem is provided by Newton. 17 

Proposition 2.5: If the potential Vex) satisfies (2.1) and 
(2.2) with s > 1, and the fourth condition in the definition of 
the Newton class, 3C>Osuch that IIkA (k)Ii<C/(l + Ik I> 
for all kER, where the norm is the operator norm on L z (S z). 

The following proposition generalizes Proposition 2.5 
under a much weaker condition. 

Proposition 2.6: If the potential Vex) satisfies (2.1) and 
(2.2) with! <s < 1, and the fourth condition in the definition 
of the Newton class, 3E>0 such that IIkA(k) II 
<E 1 (1 + I k I) 2 - 25 for all kER, where the norm is the opera
tor norm on L 2(S2). 

Proof: When I k I < 1, using (1.3) and the unitarity of 
S(k) we obtain 

IIkA(k) Ii <21T(IIS(k)II + 1)<417"'22
-

251(1 + Ik 1)2 25. 

When I k I;> 1, we proceed as follows. According to the 
lemma due to Vega,24 VgeL 2(S2), we have 

[L, 4xl(ut ( - l)g)(x)1 2(l + Ix12) -s)'/\cllgll, 

Vs>!, 
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where c is a constant and 

Replacing x by lex in Vega's lemma and using Ik 1>1, we 
obtain 

<c2I1gI12/IkI3-2S<23-2Sc21IgI12/(1 + Ikl)3-2s. (2.8) 

Next, we apply the representation for the scattering ampli
tude 17,23 

A (k) = - (1/41T)U(k) V1I2[1 - L(k)] - IjVI1I2ut (k), 
(2.9) 

where u(k) is the adjoint of ut (k), Vis the potential V(x), 
V 112 = sgn ( V) I V 1112, and L (k) is the operator whose ker
nel 

L(k,x,y) = - (1/41T)jV(x)ll12eiklx-yIV(y)I12llx_yl, 

is closely related to the kernel of the Lippmann-Schwinger 
equation (2.5). It is known that [I - L(k)] -I is uniformly 
bounded in k in operator norm. 17 Hence, if V(x) satisfies 
(2.2) with s>!, using (2.8) and (2.9) we obtain 
IlkA (k) II <E 1(1 + Ik 1)2 - 2s, for some constant E. • 

The choice {3 = 1 in the next three propositions may 
seem to be a step backward at first; however, using the inter
polation in Proposition 2.10, the results of Propositions 2.8 
and 2.9 will be strengthened to include (3E(O,I]. The next 
proposition gives the uniform boundedness of the derivative 
of the scattering amplitude. 

Proposition 2. 7: If the potential V(x) satisfies (2.1) and 
(2.3) with {3 = I, and the fourth condition in the definition 
of the Newton class, 3B > Osuch that IldA (k)ldk II <B forall 
kER, where the norm is the operator norm on L 2(S2). 

Proof From (2.7) we obtain by direct computation 

I 
aAI (k,(),()') I < r dxlxV(x) I, 

ak JR3 

I 
aA2 (k,(),() ') 1<_1 r dyl V(y) I 

ak 217' JR3 

x[ r dX( Ixl + Iyl )2 IV(X)I], 
JR3 Ix - yl 

I aA3 (k,(),() ') 1<2 r dyl V(y) I {r dzjV(z) I 
ak JR3 JR3 

x r dx jV(X)I} +2JdyI V(y)1 
JR3 Ix -zl 

x{r dXIV(X)I[r dz IZV(z)I]}, 
JR3 JR3 Iz - xl 

and hence, using Lebesgue's dominated-convergence 
theorem, the first and third conditions in the Newton class 
are sufficient for the differentiability of A j (k) with respect to 
kin the operator norm onL 2(S2) and the uniform bounded
ness of its derivative for kER, for j = 1,2,3. The uniform 
boundedness IIdA4 (k)ldk II<B4 has already been estab
lished 17 using the first and fourth conditions in the definition 
of the Newton class. Note that in the above proof, the only 
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place where we used (2.3) was the bound on IIdAI (k)ldk II. 
• The Mobius transformation h-~5 = (k - i)/(k + i) 

maps the extended real axis Roo onto the unit circle T, the 
upper-half complex plane C + onto the unit disk T + , and the 
lower-half plane C - onto the exterior of the unit disk T - , 
where 00 is considered to be a point of T- . Let 8(5) = S(k) 
under this transformation, and let us adopt this notation 
throughout the paper. 

Let r be a Borel set in the complex plane C. Consider an 
operator-valued function w:r -+2'(L 2(S2», where 
2'(L 2(S2» is the space of bounded linear operators acting 
on L 2(S2). Then the quantity III Willa' which is given as 

IIIWllla=supIIW(t)II+ sup IIW(tI)-W(t2)1I, 
IEr t,#t2Er It I - t2 1

a 

where 11'11 is the operator norm on L2(S2) and aE(O,l], 
defines a complete norm on the Banach space 
)!t"a [r;2'(L 2(S2»] of Holder-continuous operator func
tions l8,25 with exponent a. 

Proposition 2.8: The 8(5) is Holder continuous on the 
unit circle T with exponent! if the potential V(x) is in the 
Newtonclasswiths> 1 in (2.2) and{3= 1 in (2.3). 

Proof We have to show that 3M>0 such that 
118 (51) - 8(52) II <M 151 - 521 114 for all 51 ,52ET. Using 

118(51 ) - 8(52 ) II = (1/217') Ilkl A (kl ) - k2A (k2 ) II 
and 

51 - 52 = 2i(kl - k2 )/(kl + i) (k2 + i), 

we have 

118(51) -8(52)11 =_1_J... (k2 + 1) £12 (k 2 + 1)£12 
151 - 52 IE 217' 2E I 2 

X Ilk2A(k2) - klA(kl )lI/lkl - k21E. 

Because of the symmetry in kl and k2' it is sufficient to show 
that A. (k,~) is bounded by a constant independent of k and ~ 
for all ~ > 0 and - 00 < k < 00, where 

A.(k,~) = (k 2+ 1)EI2[(k+~)2+ 1]E12 

X lI(k + ~)A(k +~) - kA(k)II(1/~E). 

In our proof we will use Propositions 2.5 and 2.7 and the 
constants C and B given there. 

When Ik I<l<~, using k 2 + 1<2, (k + ~)2 + 1<5~2, 
and 

Il(k + ~)A(k +~) - kA(k)11 

<1I(k+~)A(k+~)1I + IlkA(k)II<2C, 

we obtain A. (k,~) <2 ·lOE12C. 
When Ik 1<1, ~<1, using k 2 + 1<2, (k + ~)2 + 1<5, 

lI(k + ~)A(k +~) - kA(k)W - E«2C)I- E, 

and 

II (k + ~)A(k +~) - kA(k)IIE 

«IIA(k+~)11 +2(lk l +~)~~Xll dAd~k) Ilr~E 
«C+4B)E~E, 

we obtain A.(k,~) < lOE12(2C) 1- E(C + 4B)E. 
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When 1< Ik 1<8, usingk 2 + 1<2k 2, (k + 8)2 + 1<582, 
and 

lI(k+8)A(k+8) -kA(k)II<2C/(1 + Ikl), 

we obtain A(k,8)<2C'lOE/2[ Ik IE/(1 + Ik I)]. 
When 1<8<lk I, using 

1I8E<1,k 2+ 1<2k2,(k+8)2+ 1<5k2, 

and 

lI(k+8)A(k+8) -kA(k)II<2C/(1 + Ikl), 

we obtain A(k,8) <2ClOE/2[ Ik 12E/(1 + Ik 1>]. 
When8<1<lk l,usingk 2 + 1<2k2,(k + 8)2 + 1<5k2, 

lI(k+8)A(k+8) -kA(k)W-E 

«2C)I-E/(1 + Ik I)I-E, 

and 

II (k + 8)A (k + 8) - kA (k) liE 

<8
E
(IIA(k + 8)11 + 2(lk I + 8)~~xll d~~) lit 

<8E(C + 4B)Elk IE, 

we obtain 

A(k,8) < (2C) 1- E'1O€l2( C + 4B)E[ Ik 13E/( 1 + Ik I) 1- E]. 

Hence, wheneverO<E<!, wehaveA(k,8)<M, whereM 
is a constant independent of k and 8. • 

Under weaker assumptions on the potential, we can 
modify Proposition 2.8 to obtain the following result. 

Proposition 2.9: The S(s) is Holder continuous with ex
ponent 2( 1 - s)/(5 - 2s) if the potential Vex) belongs to 
the Newton class with some SE(P) in (2.2) and f3 = 1 in 
(2.3). 

Proof The only place in the proof of Proposition 2.8 
where we have used Proposition 2.5 are the three cases 
1<lk 1<8, 1<8<lk I, and 8<1<lk I. In these three cases, we 
must use the result in Proposition 2.6 instead of the result in 
Proposition 2.5. This is accomplished by replacing 
2C/(1 + Ikl)by2E/(1 + Ikl)2- 2SintheproofofProposi
tion 2.8. We have the following. 

Using 

II(k+8)A(k+8) - kA(k) II <2E/(1 + Ik 1)2-2s, 

we obtain A(k,8)<2E'lOE12 [lk IE/(1 + Ik 1)2-2S] when 
l<lk 1<8, and 

A(k,8) <2E'lOE/2[1k 12E/(1 + Ik 1>2 - 2s], 

when 1<8<lk I· 
When 8<1<lk I, we use 

II(k+8)A(k+8) -kA(k)IIE 

and 

<8
E
[IIA(k + 8)11 + 2(lk I + 8)~~XIl dAd~k) II r 

<8E(E + 4B)Elk IE, 

(2E)I-E 
II(k+8)A(k+8) _kA(k)III-E< (1 + Ikl)(\-E)(2-2S)' 

to obtain 
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A(k,8) < (2E) 1- E'lOE/2(E + 4B)E 

XlkI 3E/(1 + Ik l>(I-E)(2-2S). 

Hence, whenever 0<£<2(1 - s)/(5 - 2s), we have 
A (k,8) <M, where M is a constant independent of k and 8 .• 

Proposition 2.10: The A I (k) defined in (2.7) is Holder 
continuous with exponent f3 whenever the potential Vex) 
belongs to the Newton class with the constant f3 in (2.3). 

Proof From (2.7) we have 

AI (k,(),()') = r dx V(x)eik(8- 8')·x. 

JR3 

Consider the operator ff: V(x)~<AI (k)f,g), for some 
fixedf,gEL 2(S2); i.e., consider 

(ffV) (k) = f f r dx d() d()' Vex) 
JR3 XS 2 XS 2 

Xeik(8- 8')'Y«() g«() '), 
where the bar denotes complex conjugation. The operator 
ff is linear from L I(R3;dx), the space of Lebesgue integra
ble functions with respect to measure dx, into 2 0 , the Ban
ach space of bounded continuous functions on R. The same 
operator ff mapsL I(R3;(1 + Ixl )dx) into 21 , the Banach 
space of bounded Holder-continuous functions on R with 
exponent 1. An application of an interpolation theorem pre
sented by Krein et al. (Theorems III.3.5 and III.3.6 of Ref. 
25) leads to the result that ff maps L I(R3;(1 + Ixl>Pdx) 
into~, where 

~ = {hEJY'p:lh(k l ) - h(k2)1 = o( Ikl - k21P) 

as Ikl - k2 1--0}. 
Since this result is true uniformly inf,g on bounded sub

sets of L 2(S2), Adk) belongs to ~ [R;.2"(L 2(S2»]. 
Hence, A I (k) is HOlder continuous with exponent f3 when
ever the potential Vex) belongs to the Newton class wheref3 
is the constant in (2.3). Note that, strictly speaking, in order 
to apply Krein's result, one must restrict the function 
(ffV)(k) to kEf, where feR is a compact interval, and 
observe that all the norm bounds are independent off to pass 
to the case where (ff V) (k) is considered for all kER, which 
is the case here. • 

Using Proposition 2.10, we improve the results of Prop
ositions 2.S and 2.9 to obtain the following result that will be 
used in Sec. V. 

Theorem 2.11: If the potential V(x) belongs to the New
ton class with some f3E (0,1] in (2.3), then on Mobius trans
formation the corresponding scattering operator S(s) be
longs to 2J-l [T;.2"(L 2(S2»], where J-t = f3 /2(1 + f3) if 
s> 1 in (2.2) and J-t = f3(1 - s)/(f3 - S +~) if SE(P) in 
(2.2). Here, 2J-l [T;.2"(L 2(S2»] is the Banach space of 
HOlder-continuous operator functions on the unit circle T 
with exponent J-t. 

Proof' Using (1.3) and (2.6) we have 

1 4 
S(kl ) -S(k2) =--. I [kIA/kl) -k2 Aj (k2}]· 

SrI j= I 

As mentioned at the end of the proof of Proposition 2.7, the 
only place where we used (2.3) was in the uniform bounded
ness of IIdAI (k)/dk II. Therefore, from theproofofProposi
tion 2.S, we obtain that forj = 2,3,4, the operator kAj(k) is 
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Holder continuous of exponent! even for /3 = 0 in (2.3). 
Hence, to prove the theorem, it is enough to redo the proof of 
Proposition 2.8 only for A I (k) and only in two cases; name
ly, when Ik 1< 1, 8< 1 and when 8< 1 < Ik I; i.e., it is enough to 
show that 

Al (k,8) = (k 2 + I)EI2[ (k + 8)2 + l]d2 

X II (k + 8)AI (k + 8) - kAl (k) II (118E) <M, 

for €</312(1+/3) if s>1 in (2.2) and 
€</3(1 - s)/(/3 - s +~) if SE(P) in (2.2), where M is a 
constant independent of k and 8. Note that, whenever the 
potential V(x) satisfies (2.3), from Proposition 2.10 we 
have IIAI (k + 8) - Al (k)II<N8P, where Nis a constant in
dependent ofk and 8. We will do the case whens> 1 in (2.2) 
first. 

When 8<1,lk 1<1, using k 2 + 1<2,(k + 8)2 + 1<5, 

II(k + 8)AI (k + 8) - kAI (k)11 

<lkl'IIAI (k+8) -AI (k)11 +811AI (k+8)11 

< Ik IN8P + 8C< (N + C)8P, 

we have Al (k,8) < IOd2 (N + C)8P- E. 
When8<1<lk l,usingk 2 + 1<2k2,(k + 8)2 + 1<5k2, 

II(k + 8)AI (k + 8) - kAl (k)W -ElP 

and 
«2C/(1 + Ik I) )1-dP, 

lI(k + 8)AI (k + 8) - kAdk)lldP«2Ik IN8P)EIP 

+ (28C)EIP«2Ik 18)EIP(N EIP + CdP), 

we have 

Al (k,8)<2'101 - dP(NdP + CEIP) 

x8E1P - Elk 12EHIP 1(1 + Ik I) 1- ElP. 

Thus, whenever €</3 12( 1 + /3), Al (k,8) is bounded by a 
constant independent of k and 8, and the proof for s> 1 is 
complete. 

If ~ < s < 1 in (2.2), we basically have the same proof 
with only two minor modifications, which amount to replac
ing the denominator (1 + I k I) by (1 + I k I ) 2 - 25 and the 
constant C by E above. As a result, we obtain the sufficient 
condition 

2€ + €1/3<2(1 - €//3) (1 - s), 

for the uniform boundedness of Al (k,8). Hence, we must 
have 

0< €</3(1 - s)/(/3 - s + ~), 

which completes the proof. 

III. RIEMANN-HILBERT PROBLEM 

• 

In the Schrodinger equation, k appears as k 2 and hence 
t/J( - k,x,O) is a solution whenever t/J(k,x,O) is. These two 
solutions are related to each other as2 

t/J(k,x,O) = ( dO' S(k, - O,O')t/J( - k,x,O'). (3.1) JS2 
Define 

f( k,x,O) = e - iklJ-xt/J( k,x,O). (3.2) 
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If the potential satisfies (2.1) and if there are no bound 
states, for fixed x and 0, the functionf(k,x,O) has an analytic 
extension in k to C + and f(k,x,O) = 1 + O( 1I1k I) as 
Ik 1-+ 00 there.2 Similarly,J( - k,x,O) has an analytic exten
sion in k to C - . Hence, using (3.1 ), we obtain the Riemann
Hilbert problem 

f(k,x,O) = ( dO' e - ik()'xS(k, - 0,0') 
JS2 
xe-ik()"Xf( - k,x,O'). (3.3 ) 

Analogously, in the absence of bound states, we have the 
associated operator Riemann-Hilbert problem 

F(k,x,O,O') = ( dO" e - ik()-xS(k, - 0,0") JS2 
Xe-ik()"'XF( - k,x, - 0", - 0'), (3.4) 

where, for fixedx,O,O', the operator F(k,x,O,O') has an ana
lytic extension in k to C + and F( k,x,O,O ') 
= 8(0 - 0') + O( 1I1k I) as Ik 1-+ 00 there. Similarly, 

F( - k,x,O,O') has an analytic extension in k to C-. 
For fixed x,O, and 0', let X (k,x,O,O ') denote both the 

analytic extension in k of F(k,x,O,O') - 8(0 - 0') to C + 

and the analytic extension of F( - k,x, - 0, - 0') 
- 8(0 - 0') to C-. Then X(k,x,O,O') is a sectionally ana

lytic operator-valued function of k in the complex plane with 
a jump on the real axis. For kER, define 

and 

X+ (k,x,O,O') = lim X(k + i€,x,O,O') 
E" ..... O+ 

= F(k,x,O,O') - 8(0 - 0 '), (3.5) 

X_ (k,x,O,O') = lim X(k-i€,x,O,O') 
E_O+ 

= F( - k,x, - 0, - 0 ') - 8 (0 - 0'), 
(3.6) 

G(k,x,O,O') = e - ik()'xS(k, - 0, - O·')eik()··x. (3.7) 

Then, in operator notation, we can write (3.4) as 

X+ (k) = G(k)X_ (k) + [G(k) - I], (3.8) 

where we suppress the x dependence; note that x enters (3.8) 
only as a parameter. The operators X + (k), X _ (k), G(k), 
and I all act on L 2(S2). Let i be the constant function on 
this space defined as i (0) = 1, V OES 2. Let us define 

X+ (k) =X+ (k)i =f(k,x,O) -1, (3.9) 

X_ (k) =X_ (k)i, (3.10) 

wheref(k,x,O) is as in (3.2). Then we can write (3.3) in 
vector form as 

x + (k) = G(k)X _ (k) + [G(k) - I] i. (3.11 ) 

If there are bound states, the extension off(k,x,O) in k 
to C + becomes meromorphic with simple poles on the 
imaginary axis. A pole at k = ir corresponds to a bound 
state of the Hamiltonian with energy - y2. It is possible to 
remove these simple poles from the Riemann-Hilbert prob
lem by a reduction method.4 Assume there is a bound state 
corresponding to a pole at k = ir. Using a suitable orthogo
nal projection B, we form the rational function 
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n (k) = I - B + [( k + iy) / (k - iy) J B. 

For the operators X + (k), X _ (k), and G(k), we then de
fine the corresponding reduced operators 

xr~d (k) = n(k) -IX + (k) + [n(k) -I - I], 

xr':d(k) = n(k)X_ (k) + [n(k) - I], 

Gred(k) = n(k) -IG(k)n(k). 

Thus we have 

xr~(k) = n(k) -IX + (k) + [n(k) -I - I] i, 
xr:d(k) = n(k)X _ (k) + [ll(k) - I] 1. 

(3.12) 

(3.13) 

(3.14 ) 

(3.15 ) 

As a result, xr~ (k) and X r~ (k) do not have a pole at 
k = iy, and xr~(k) and xr~(k) do not have a pole at 
k = - iy. If there is more than one bound state, this proce
dure must be repeated to remove the finitely many poles 
corresponding to the bound states; the details can be found in 
Ref. 4. This eventually leads to the operator Riemann-Hil
bert problem 

xr~d(k) = Gred(k)xr.:d(k) + [Gred(k) - I], (3.16) 

and the vector Riemann-Hilbert problem 

xr~(k) = Gred(k)xr~(k) + [Gred(k) - 1]1. (3.17) 

Once the reduced Riemann-Hilbert problems (3.16) and 
(3.17) are solved, the solutions of the original Riemann
Hilbert problems (3.8) and (3.11) can be obtained using 
(3.12), (3.13), (3.14), and (3.15). Hence, in the following 
sections we will give the solutions of both the operator and 
vector Riemann-Hilbert problems assuming that X + (k) 
and X _ (k), and similarly X + (k) and X _ (k), have ana
lytic extensions to C + and C - , respectively. 

IV. WIENER-HOPF FACTORIZATION OF THE 
SCATTERING MATRIX 

The usual theory for the existence ofWiener-Hopffac
torizations deals either with scalar functions26 or with ma
trix functions. 27

-
3o In our case we study the Wiener-Hopf 

factorization of operator-valued functions. Hence, we must 
study Wiener-Hopffactorization in an infinite-dimensional 
setting31 and use results on the existence of Wiener-Hopf 
factorizations of operator functions. 18.32.33 

Bya (left) Wiener-Hopf factorization of an operator
valued function G:R"" - Y(L 2(S2», we mean a represen
tation of G(k) in the form 

G(k)=G+(k)D(k)G_(k), kER"", (4.1) 

with 

m (k-i)pj 
D(k) = Po + L --. Pj , 

j= I k + I 
where 

(i) G + (k) is continuous in C + in the operator norm on 
Y(L 2(S2» and boundedly invertible there. Similarly, 
G _ (k) is continuous in c- in the operator norm and boun
dedly invertible there; 

(ii) G + (k) is analyticin C + and G _ (k) is analytic in 
C-; and 

(iii) G + (00) = G _ (00) = I. 
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The projections PI , ... ,P m are finite in number, are mutually 
disjoint, and have rank one, while Po = I -l:j': I ~. The 
(left) partial indices PI , ... ,pm are nonzero integers. In the 
absence of partial indices, we have D(k) = I, in which case 
the Wiener-Hopf factorization is called (left) canonical. 
The partial indices depend neither on the choice of the fac
tors G + (k) and G _ (k) nor on the choice of the projections 
PI'" . 'Pm' If the factorization is (left) canonical, the factors 
G + (k) and G _ (k) are unique, as one sees by applying 
Liouville's theorem. 

In the same way, we define a right Wiener-Hopffactori
zation, right partial indices, and a right canonical factoriza
tion by interchanging G + (k) and G _ (k) in (4.1). The 
right indices may be different, both in number and in value, 
from the left indices, but the sum of the right indices coin
cides with the sum of the left indices. This sum is called the 
sum index ofG(k). 

By using the Mobius transformation defined above 
Proposition 2.8, we can define the left and right Wiener
Hopffactorizations of operator functions on the unit circle T 
in the complex plane. The left and right partial indices are 
invariant under this Mobius transformation. 

Remark 4.1: If G(k) has a left Wiener-Hopffactoriza
tion of the form (4.1) with left partial indicespl> ... ,Pm' then 
taking the inverses of both sides of (4.1) converts it into a 
right Wiener-Hopf factorization of G( k) - I with right par
tial indices - PI , ... , - Pm' On the other hand, if we consider 
the right Wiener-Hopffactorization 

A A A 

G(k) = G _ (k)D(k)G + (k), kER"" , (4.2) 

with 

A A n, (k-i)PY"c 
D(k) =Po + L --. ~, 

j= I k + I 
and take the adjoints on both sides of ( 4.1) with k replaced 
by its complex conjugate k, we convert it into a right Wie
ner-Hopf factorization of G( k) t with right partial indices 
- PI , ... , - Pn,· Hence, if G(k) is unitary for every real k, 

which is the case in inverse scattering theory, the sets ofleft 
and right partial indices ofG(k) necessarily coincide. More
over, the projections and factors' appearing in (4.1) and 
( 4.2) are related by 

pj=(pj)t forj=I, ... ,m; and G±(k)-I=G:r-(k)t. 

In the remainder of this section we will only consider left 
Wiener-Hopf factorizations, though our results can also be 
derived for right Wiener-Hopffactorizations. 

Theorem 4.2: If the potential Vex) is in the Newton 
class, the operator function G(k) defined in (3.7) has a left 
Wiener-Hopf factorization. 

Proof According to Theorem 6.1 (or 6.2) of Ref. 18, it is 
sufficient to show the following: 

(i) G(k) is boundedly invertible for every kERoo; 
(ii) G(k) is a compact perturbation of the identity for 

every kERoo; and 
(iii) G(t)EJY'a [T;2'(L 2(S2»] for some aE(O,1), 

where G(t) is the Mobius transform of G(k), as explained 
above in Proposition 2.8. 

Under these conditions there exists a left Wiener-Hopf 
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factorization of G(t) with respect to the unit circle T that is 
given by 

G(s) = G + (s)D(s)G _ (s), 

where 
m 

D(s) = Po + L SP1Pj , 

j=1 

G+ (s)eJYa [T+;.2"(L 2(S2»] and is invertible there, 
G _ (s)eJYa [T- ;.2"(L 2(S2»] and is invertible there, and 
G + (s) and G _ (t) are analytic in T + and in T - , respec
tively. The inverse of the Mobius transformation given above 
Proposition 2.8 then yields a left Wiener-Hopffactorization 
for G(k) of the type (4.1) where the Mobius transformed 
factors G + (s) and G _ (s) as well as their inverses are 
Holder continuous of exponent a in the operator norm in 
T + and T - , respectively. 

First, note that we can use (3.7) to write 

G(k) = U(k)QS(k)QU(k)t, 

where 

(4.3) 

(U(k)f)(O) = e- ik8-xj(O), (Qf)(O) =f( - 0), 

so that G(k) is unitarily equivalent to S(k). Hence, G(k) is 
boundedly invertible for every kER"". 

Next, sinceA(k,O,O') is bounded and continuous in all 
three variables, it is Hilbert-Schmidt and hence compact as 
an operator on L 2(S2) for every real k. As a result, 

1- G(k) = - (k/21Ti)U(k)QA(k)QU(k)t 

is compact for every real k, and thus G(k) is a compact 
perturbation of the identity. 

Moreover, using (4.3) as well as the unitarity of U(k) 
and Q, we have the estimate 

IIG(kl ) - G(k2) 11<11 U(k l ) - U(k2) lI'IIS(kl ) II 
+ IIS(kl ) - S(k2) II + IIS(k2 ) II 
'1\U(kl)t - U(k2 )tll· 

Because U(k) has a k derivative whose operator norm is 
uniformly bounded in k for every x, it is Lipschitz contin
uous in the operator norm with a Lipschitz constant inde
pendent of kER. Further, according to Theorem 2.11 we 
have S(s)eJYl' [T;.2"(L 2(S2»] for some JlE(O,l). Hence, 
G(s)eJYl' [T;.2"(L 2(S2»] for some positive Jl. 

Thus all three conditions needed to apply the above 
mentioned Gohberg-Leiterer result are satisfied, and the 
proof is complete. • 

Remark 4.3: Using the symmetry relation 
G( - k) = QG(k) - IQ, we can prove that it is possible to 
choose G + (k) and G _ (k) in (4.1) such that 

G±(-k)=QG~(k)-IQ. (4.4) 

Indeed, from (4.1) and using D( - k) = D(k) - I we have 

G(k) - 1= G _ (k) - ID(k) - IG + (k) - I 

= QG + ( - k)D(k) - IG _ ( - k)Q, 

so that 

G + (k) - IQG _ ( - k)D(k) 

= D(k)G _ (k) - IQG + ( - k). (4.5) 
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If the factorization (4.1) is canonical, i.e., if D(k) =1, Liou
ville's theorem gives (4.4) directly from (4.5). If (4.1) is not 
a canonical factorization, we obtain 

«k + i)/(k - i)y,-p'PrG + (k) -IQG _ ( - k) -Ips 

= PrG _ (k)QG + ( - k)Ps' 

where Pr and Ps are two of the projections appearing in D( k) 
with r, se{O,I,2, ... ,m}. Ifpr<Ps' both sides of the last equa
tion are equal to PrQPs' due to Liouville's theorem. If 
Pr >Ps' however, we have 

PrG + (k) - IQG _ ( - k) - Ips 

= [<prs(k)/(k+i)P,-P']PrQPs' (4.6) 

PrG _ (k)QG + ( - k)Ps 

= [<Prs(k)/(k - i)P'-P,] PrQPs' (4.7) 

where <Prs (k) is a polynomial of degree (Pr - Ps) with lead
ing coefficient 1. Using the procedure in Ref. 31, we can 
multiply G ± (k) by suitable rational functions and there
fore change our original factorization (4.1) in such a way 
that both sides of (4.6) and (4.7) reduce to PrQPs. Then, 
using l::."= OPr = l:;'= OPs = I, we find (4.4) for this modi
fied factorization. 

V. SOLUTION OF THE RIEMANN-HILBERT PROBLEM 

In Sec. IV we have derived the existence of a Wiener
Hopf factorization of the operator function relevant to the 
Riemann-Hilbert problems (3.8) and (3.11). This result 
was obtained under the assumption that the potential Vex) 
belongs to the Newton class. In this section we will use the 
factorization (4.1) to obtain the solutions of the Riemann
Hilbert problems (3.8) and (3.11). During the process the 
variable x enters as a dummy variable, which may affect the 
partial indices and the factors in (4.1) and hence the unique 
solvability properties of (3.8) and (3.11) and the explicit 
form of their solutions, but does not affect the way in which 
the solution itself is obtained. Therefore, to simplify our no
tation we suppress the x dependence of all vectors, operators, 
and partial indices. 

Starting from the Wiener-Hopf factorization (4.1) of 
G(k), we define 

and 

D_ (k) =Po + L Pj + L (k-Z:)Pjpj , 

Pj>O Pj<O k + Z 

where PI , ... ,P m are the mutually disjoint, rank one projec
tions appearing in the diagonal factor D(k) and 

Po = I -l:j= I~' 
Using (4.1), let us write (3.11) in the form 

X + (k) = G + (k)D + (k)D _ (k)G _ (k)X _ (k) 

+ [G+ (k)D+ (k)D_ (k)G_ (k) -1]1, 
(5.1 ) 
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where 1 is the function in L 2(S2) as defined above (3.9). 
Then 

D + (k) - IG + (k) - IX + (k) 

= D _ (k)G _ (k)X _ (k) + [D _ (k)G _ (k) 

- D + (k) -IG + (k) - I] 1. (5.2) 

Premultiplying both sides by Po yields 

PoG + (k) -IX + (k) + PoG + (k) -II 
= PoG _ (k)X _ (k) + PoG _ (k) 1. (5.3 ) 

The left-hand side of (5.3) is analytic in C + , the right-hand 
side is analytic in C - , and both sides tend to Po 1 as k -+ 00 

from the appropriate half-plane. Hence, by Liouville's 
theorem, 

PoG+ (k)-IX+ (k) =Po[I-G+ (k)-I]1 (5.4) 

and 

PoG _ (k)X _ (k) = Po [I - G _ (k)] 1. (5.5) 

Similarly, premultiplying both sides of (5.2) by (k - i)PlPj 
with Pj > 0 and using Liouville's theorem, we obtain 

PjG + (k) - IX + (k) = Pj [I - G + (k) -I] 1 

+ [97j (k)/(k + i)Pl] 1Tj (5.6) 

and 

IjG _ (k)X _ (k) = -IjG _ (k) 1 + [97j (k)/(k - i)Pl] 

X1Tj + [(k+i)/(k-i)Ylljl. (5.7) 

Here, 1Tj is a fixed nonzero vector in the range of Pj , and 
97j (k) is an arbitrary polynomial of degree less than Pj' Next, 
premultiplication of both sides of (5.2) by Pj with Pj < 0 and 
yet another application of Liouville's theorem yield 

PjG + (k) -IX + (k) = Ij [I - G + (k) -I] i (5.8) 

and 

PjG _ (k)X _ (k) 

= -IjG_ (k)l + [(k+i)/(k-i)YjPj 1. (5.9) 

provided the second term on the right-hand side of (5.9) is 
analytic a! k = - i. Because Pj < 0, the latter happens if and 
only if Pj 1 = O. 

Finally, adding (5.4), (5.6), and (5.8) together as well 
as (5.5), (5.7), and (5.9), and using Po 

+ ~Pj>olj + ~Pj<oPj = I, we obtain 

X + (k) = [G + (k) - I] 1 + G + (k) L 97/
k

) 1Tj 
Pj>O (k + ilj 

(5.10) 

and 

X _ (k) = [G _ (k) - I - I] i + G _ (k) - I 

~ 97j (k)1Tj + [(k + ill - (k - i)Pj] p) 
X~ , 

Pl>O (k - ill 
(5.11 ) 

provided Pj i = 0 whenever Pj < O. Hence, if these 
( - ~Pl<OPj) linear constraints on Pj for Pj < 0 are satisfied, 
there is a (~Pl>OPj) parameter family of solutions to (3.11), 
and these solutions are given by (5.10) and (5.11). 
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We can summarize the above results as follows. 
Theorem 5.1: Let Vex) be a potential in the Newton 

class. Then the Riemann-Hilbert problem (3.11 ) has a solu
tion, if and only if Ij 1 = 0 whenever Pj < O. In that case the 
solutions are given by (5.10) and (5.11), where 97j (k) is an 
arbitrary polynomial of degree less than Pj associated with 
eachpj>O. 

The solution of the operator Riemann-Hilbert problem 
(3.8) is obtained in the same way as the vector Riemann
Hilbert problem (3.11) is solved using (5.1) through 
(5.11). The solution of (3.8) is given by 

and 

X + (k) = G + (k) - I + G + (k) L 97j (k) Pj 
Pl>O (k + i)Pj 

(5.12) 

X_ (k) = G _ (k) -I - I + G _ (k)-I 

~ 97j(k) + [(k + i)Pl - (k - i)Pj] 
X~ p., 

Pj>O (k _ i)Pl ] 
(5.13) 

provided there are no negative partial indices. If there are 
any negative partial indices, the solution does not exist. Due 
to the presence of97j (k) in (5.12) and (5.13), the solution is 
not unique unless there are no positive partial indices. 

Note that, when there are no bound states, for x = 0, the 
operator [I + X + (k)] becomes related to the 3-D Jost op
erator used in the 3-D Gel'fand-Levitan inversion meth
od?-4 Hence, we obtain the following result. 

Corollary 5.2: If the potential Vex) belongs to the New
ton class with no bound states, the Jost operator exists if and 
only if there are no partial indices of the scattering operator. 
In that case the Jost operator is given by 

J(k) = QS + (k)Q, (5.14) 

whereS + (k) is the operator that is given by G + (k) evalu
ated atx = O. 

VI. SOLUTION OF THE INVERSE PROBLEM 

Once the Riemann-Hilbert problem posed in (3.11) is 
solved by the Wiener-Hopf factorization method given in 
Sec. V, weobtainj(k,x,B) given in (3.2) using (3.9). Ifthere 
are no bound states, from the Schrodinger equation ( 1.1 ) we 
then obtain the potential as 

(a + 2ikB'V)X + (k,x,B) 
Vex) = . (6.1) 

1 + X + (k,x,B) 

Note that the right-hand side of this equation contains Band 
k whereas these two variables are absent from the left-hand 
side. Hence, the solution of the Riemann-Hilbert problem 
will lead to a potential only if the right-hand side of (6.1) is 
independent of Band k. Below, we show that if the so-called 
miracle condition2 occurs, the right-hand side of (6.1) is 
independent of Band k and becomes equal to a potential 
function of x. 

Let the Fourier transform of X + (k,x,B) be given by 

7](a,x,B) =_l_f+co dkX+ (k,x,B)e- ika• (6.2) 
21T - co 
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Since X + (k,x,O) = O( 1I1k I) ask-- ± 00 and is analytic in 
k in C +, we have 'T](a,x,O) = 0 for a < O. The function 
'T](a,x,O) plays a major role in the 3-0 Newton-Marchenko 
inversion theory. 2 In case the Riemann-Hilbert problem 
(3.11) has a unique solution, 'T](a,x,O) satisfies the equa
tion2 

[t1 - 2 :a O'V - Vex) ]'T](a,x,o) = 0, 

where the potential is obtained as 

Vex) = - 20'V lim 'T](a,x,O), 
a ...... 0 + 

(6.3 ) 

(6.4) 

provided the right-hand side of (6.4) is independent of O. 
The 0 independence of the right-hand side of (6.4) is known 
as the "miracle" condition of Newton. 2 

From (6.2) we have 

ikX + (k,x,O) = - lim 'T](a,x,O) 
a .... 0 + 

- da eika 
- 'T](a,x,O). i '" a 

o aa (6.5) 

Hence, using (6.2), (6.4), and (6.5), we obtain 

[t1 + 2ikO·V - V(x)]X + (k,x,O) 

= Vex) + ('" da eika [t1 - 2 ~ O'V Jo aa 
- VeX) ]'T](a,x,O). 

Thus (6.1) is equivalent to (6.3) and (6.4) in the absence of 
bound states. 

If there are any bound states, the above procedure can be 
modified to prove that the potential Vex) is obtained from 
(6.1) if and only if (6.3) and (6.4) hold true. 34 

VII. CONCLUSION 

In this paper we have established the following results. 
If the potential Vex) belongs to the Newton class defined in 
Sec. II, the corresponding scattering operator has a Wiener
Hopf factorization. The related Riemann-Hilbert problem 
(3.11) can be solved by using these factors. The related oper
ator Riemann-Hilbert problem (3.8) is also solvable by us
ing the Wiener-Hopf factors. A consequence of this is the 
following. For potentials in the Newton class with no bound 
states, the Jost operator (as defined in Ref. 2) exists if and 
only if the corresponding scattering operator does not have 
any partial indices. If and only if Newton's miracle condition 
is satisfied, the solution of the Riemann-Hilbert problem 
leads to a potential. 

The physical interpretation of the partial indices of the 
scattering operator is an open problem. It is known that the 
total index is related to the total number of bound states of 
the potential, but the relationship of each partial index to the 
bound states or to any physical parameters is presently not 
known. 

A simple condition34 that guarantees the unique solv
ability of the Riemann-Hilbert problems (3.8) and (3.11) is 
given bymaxkER IIS(k) - III < 1, where the norm is theoper
ator norm on L 2(S2). When this happens, the scattering 
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operator S(k) has neither positive nor negative partial in
dices. 

The results presented in this paper remain valid for any 
real, measurable potential V(x) on Rn with n>2 without real 
exceptional points that lead to a scattering operator S(k) 
such that S(k) - I is compact for all keR and that 
S(s) = S(i( 1 + 5)/( 1 - 5» is Holder continuous in seT. 
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Quantum scattering is developed for impurities in potentials that tend to a periodic function in 
one direction and a constant in the other. Two new technical results are obtained for Hill's 
equation. Analytic, asymptotic, and spectral properties are established for solutions of the 
Schrodinger equation for step-periodic potentials, with and without impurity. The properties 
have all been used in Marchenk<>-Newton inverse scattering. Results apply feasibly to electron, 
photon, and phonon propagation in layered media. 

J. INTRODUCTION 

This scattering paper contributes to a novel line of in
quiry in inverse scattering. The goal is inverse scattering for 
Schrodinger operators whose spectra are interesting. 

The one-dimensional Schrodinger equation 
[-J; +p(x) +q(x) -A ]/=0 (1.1) 

represents a localized impurity q, which vanishes as 
x ..... ± 00, in a background p. The seminal inverse problem, 
which has been studied voluminously,I.2 has vacuous back
groundp=O. 

The background operator for the seminal problem is 
- J;. Its spectrum [0, + 00) and continuous spectrum are 

identical. The localized impurity q does not affect the contin
uous spectrum, but is responsible for the point spectrum of 
the full operator, whose potential is p + q. Data are mea
sured over the spectrum of the full operator. 

The next more complicated Schrodinger operator3 

- J; + p + q has a localized impurity q in a Heaviside step 
background p = lVoIH(x), where lVol is constant, 
H(x <0) =0, and H(x>O) = 1. The background operator 
- J; + P has no point spectrum, though the impurity can 

introduce bound state eigenvalues at negative energies A. 
The continuous spectra of background ( - J; + p) and full 
( - J; + p + q) operators are identical. The continuous 
spectrum [0, + 00) has multiplicity4 one in [0,1 Vol) and 
multiplicity two in [I Vol, + 00). Data on the multiplicity
two part consist of four scattering coefficients, correspond
ing to reflection and transmission of waves incident from left 
and right. Data for multiplicity-one regions have fewer scat
tering coefficients, which correspond to total reflection of 
waves incident from x = - 00. Also measured are eigenval
ues, which form the point spectrum, and physical data about 
normalization of L2 eigenfunctions. 

We see that spectra support data. As spectra become 
more interesting, so does the nature of data. 

Periodic backgrounds were studied next. Firsova5 and 
Newton6 solved independently, and with different methods, 
inverse problems for localized impurities q in periodic back
grounds p, for which the Schrodinger equation is 
(-J;+p+q-..1,)/=O with p(x+ 1) =p(x). The 
spectrum, and hence the data, has interesting structure. The 

.) Current address: Applied Mathematical Sciences, Ames Laboratory, 
United States Department of Energy, Ames, Iowa 50011. 

continuous spectrum has multiplicity two and consists of 
infinitely many intervals, called bands, each with finite, non
zero length. Intervals between bands are called gaps. Bands 
and gaps alternate as one traces toward + 00 along the axis 
of real A. There is one more gap, which is a ray of real ener
gies A extending toward - 00. The point spectrum of the 
periodic-background operator is empty, but for a large class 
of impurities 7 the point spectrum of - J; + p + q is un
bounded and each gap of sufficiently high energy has at least 
one bound state. 

This paper is about localized impurities q in step-period
ic backgrounds p(x) = p(x + 1 )H(x), which are periodic 
for x > 0 and constant for x < O. The spectrum of - J; + p 
combines features of periodicity and step. The step-periodic 
case has bands and gaps, a nonempty point spectrum, and a 
continuous spectrum with intervals of multiplicity two and 
of multiplicity one. This paper develops theorems on analy
ticity and asymptotics used8 in Marchenk<>-Newton inverse 
scattering. 

Physical applications further motivate the step-periodic 
problem. Widely known techniques, which are reviewed in 
Ref. 9, show electromagnetic (photon) and acoustic 
(phonon) propagation in one dimension are modeled exact
ly by the Schrodinger equation. Schrodinger models of peri
odically layered media have periodic potentials, so bands 
and gaps are expected. There is experimental evidence lO for 
bands and gaps in photon and phonon spectra of periodically 
layered materials, establishing that the Schrodinger model 
plausibly is applicable. 

The infinitude of bound states5
-

7 for impure periodic 
potentials without steps has two inconvenient practical con
sequences, which are significant because the Schrodinger 
model plausibly is applicable. One inconvenience is numeri
cal: An infinite process5

•
6 is needed in inverse scattering to 

remove from data for p + q the effect of infinitely many 
bound states. A more basic objection is that materials less 
than infinitely thick-for which step-periodic potentials are 
more realistic 11 models-should have only finitely many 
bound states. Theorems 3.1 and 4.1 show that pure and im
pure step-periodic potentials, unlike many impure periodic 
potentials, have finitely many bound states. Finiteness is an 
advantage. 

This paper's main goal is to find a functional 12 S matrix, 
A A 

called S, such that S - I has a Fourier transform. The trans-
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form is used8 in inverse scattering, as are the other results in 
this paper. Other results include equivalence of bound states 
and zeros of Wronskians, and theorems on analytic and 
asymptotic properties ofWronskians, Jost solutions, scatter
ing solutions, regular solutions, and the Jost matrix. 

I know of three papers about step-periodic or similar 
potentials. Pavlov and Smimov ll show that one reflection 
coefficient for a step-periodic potential (without impurity) 
is approximated well by a reflection coefficient for a large 
finite number of repeated layers. Hinton, Klaus, and Shaw13 

use an interesting generalization of the W ey I function m [see 
(2.3) J to study half-bound states for a Schrodinger equation 
whose background p is periodic on the half-line [0, + (0), 
whose impurity q is supported on [0, + (0), and whose 
wave functions obey the boundary condition f(O) = O. 
Gesztesyl4 studies the spectrum and scattering coefficients 
for two adjoined semi-infinite crystals. 

II. PERIODIC POTENTIALS 

The Schrooinger equation [- a; + p(x) + q(x) 
- A ]f = 0, for a localized impurity q embedded in a back

ground p that is constant on the left 
[p(x)H( - x) =AoH( - x) J and periodic on the right 
[p(x)H(x) =p(x + l)H(x)], will be studied in stages. 
This section is the first stage, whose Schrodinger equation 
[-a;+Pa(x)-A]f=O has a potential 

Pa (x + 1) =Pa (x) that is a periodic extension of p: 

Pa H(x) =pH(x). The Schrodinger equation with a periodic 
potential is called Hill's equation. There is a voluminous li
teraturel5 on Hill's equation, from which excerpts form the 
bulk of this section. The section ends with two new lemmas 
on Hill's equation. 

The following abbreviations are used throughout: 
Z={integers}, R={real numbers}, C={complex 
numbers}, C+ ={ZEC: Imz>O}, "on Rx" means VXER, 
and [a,b J.,t ={A: AE[a,b n. The symbol 3 means such that 
and "e.p." means except in pathological cases and alludes to 
sets of measure zero. The phrase AEC: , in context of the 
definition u=/T, means 3UEC + 3A = cr. The symbol T 

means transpose, * means complex conjugate, 
l=(l,l)T,f'(A,x)=ax /' and the Wronskian 
W[ f,g J =fg' - j'g. The phrases s analytic, s meromorphic, 
and s entire mean analytic, meromorphic, and entire as func
tions of s. An s simple pole has the form (s - so) - I. 

Hill's equation has regular solutions Y = ( YI' Y2) T de
fined on CO' XRx by boundary conditions 

y(x = 0) = (1,0) T, y'(x = 0) = (0,1) T, 

s= {q, 
u, 

AO<O = {~A -Ao, 
Ao>O /T, 

AO<O, 

Ao>O, 
(2.1) 

where Ao is defined in this section's first sentence. The zero of 
energy (A) is defined, following custom, as the lowest energy 
that is still in a band. The regular solutions Y have analytic 
continuations which are u entire with asymptotics 

YI = cos ux + O(u-Ielvxl), 

Y2 = u-Isin ux + O(A - le1vxl ) 

as lul- 00 with 1m u = v fixed. 

(2.2) 

Weyl functions 
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m = (m l,m2) T, quasimomentum K, and other x independent 
quantities E = (E"Ez) T and {; = ((;"{;2) T are defined on CO' 
by 

E=Y(X= 1), (;=y'(l), 

K=COS - I [(E I + {;2)/2], (2.3 ) 

mj = (e± iK - EI )/E2 = (;I/(E, _ e+ iK
). 

From among branches 16 of cos - , , use the one that satisfies 
cos - I 1 ==0. Then the well-established fact that 
(EI + {;2)/2 = 1 at A = 0 implies K = 0 there. 

The map K separates R;\ into infinitely many bands fJJ 
and gaps Y, illustrated in Fig. 1. (Let fJJ Y == fJJ U Y . ) Each 
band is an inte.rval [mr,(n + 1 )11'] CRK with nEZ. Bands in 
C.,t and CO' also are closed intervals of nonzero length. In C.,t, 
the gaps are ( - 00,0) and the open real intervals between 
bands. Gaps are symmetric across RK and their lengths go to 
zero as IRe KI- 00. Lengths of gaps in C.,t and CO' also go to 
zeroasA t + 00. 

The map Hrom C.,t ontoC: UR: is trivial. The map K: 

CO' -CK sends one imaginary axis onto the other, fJJ 0' onto 
RK, and C! into CK±, respectively. The mapKis one-to-one in 
fJJ and [0, + i 00 ] K' and in gaps is described by paths in Fig. 
1. The map is analytic (without poles) in 
~ut == C" " ( Y n R" ), its symmetry properties follow direct
ly from Schwarz's reflection principle, and it has an inverse 
in~ut. 

Boundary values (2.1) andasymptotics (2.2) show that 
Y is a periodic-potential analog of trigonometric solutions of 
the Schrodinger equation with potential zero. Quasimomen
tum K will be used to describe a periodic-case analog of expo
nential solutions. 

Bloch solutions,8 = ( ,81,,82) T are defined on CK X Rx as 
_ A T 

,8=y l l + (m l ,m2 ) Y2. (2.4) 

The solutions have simple x dependence: 17 
3S(K,X) = (SI,Sz)TELcr> (fJJXRx )3 

,81=eiKXSI , ,82 = e- iKXs2, S(x+l)=S(x) (2.5) 

in CK XRx. The solutions have useful properties: 18 

c_ 
( 

c., 

c .. 

FIG. I. The spectrum for a step-periodic potential. The thicker intervals, 
lines, and ray represent gaps. Bands are complements in R of gaps. The solid 
path in CA maps onto solid and dashed curves in C" and CK • 

Thomas M. Roberts 2182 



                                                                                                                                    

{3(x = 0) = 1, {3'(0) = m, 

m: [g -R, {3: [g XRx -R, 

y: {u,iu: oER}XRx -R, 

Wa == W [ {31>{32] = {31{3 ~ - /3 ;/32 = - 2i(sin K)/c2' (2:6) 

and 5 = i + O(K - I ) as IKI t 00 in ~ut. Bloch solutions and 5 
are K analytic in ~ut, each zero of C2 is in a finite-length gap, 
and there is precisely one zero in each gap of finite length. 19 
Also, {3 and 5 have finite boundary values on g; [g, except 
for u simple20 poles where £2 = O. 

The operator - a; + Pais self-adjoint, so its L 00 states 
are at real A. Equation (2.5) and Fig. 1 show /3EL"" when 
KEg;. In the interior of Y, 1m K> 0; so /31 blows up and 
{32-0 exponentially asxl - 00, and/32 blows up and/3I-0 
exponentially as xl + 00. 

For each KEg;, Bloch waves in (2.5) represent exponen
tial traveling waves modulated by periodic functions 5. The 
wave {31 travels toward x = + 00 and P2 travels toward 
x = - 00. 

The following lemmas are used later. Proofs are append-
ed. 

Lemma 2.1:. At each A. for which C2 (A.) = 0, 
3n(A.)EZ3K(A) = n1T + Hm K and ( - 1)n J"£2> O. 

Lemma 2.2: (e2 sign K)sin K> 0 in Int g;. 

III. STEP·PERIODIC POTENTIALS 

This section is about the Schrodinger equation with 
step-periodic potential 

Case An < 0 

C, ( 
g" 

g, B, g, B, g, g, B, g, B, g, 

Case ..\11 > 0 and ),,, ( 9 

c, ( 
g" C. ~ C. 

g, G, B, g, 

Case ,\" > 0 and ..\" ? 8 

C, 
( 

C, ~ C. 

g, G, G, g" G, G, g" {l, B, g, 

1,--"1 

FIG. 2. The threshold Ao affects mUltiplicity. One consequence: Theorems 
3.1 and 4.1 allow bound states in Int ~ 0 only. Hence, if Ao < 0 then no 
bound state is in R,,; but if Au> 0 then bound states in R, are possible. 
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( - a; + P - A)/ = 0, 

Pb(X)==p==AoH( -x) +PaH(x), (3.0 

for any constant AoER and real valued, periodic Pa without 
impurity. This section has definitions and straightforward 
facts about spectrum. A theorem about bound states is prov
en. The section ends with statements on analyticity and 
asymptotics. 

Eight solutions of (3.1) will be used later. They are 
modified regular solutions Y = (YI, Y2) T, modified expo
nential solutions ;-p = (;-P1';-P2) T, modified Bloch solutions 
B = (B I,B2) T, and Jost solutions 1/; = (1/;1,1/;2) T: 

Y I == cos~xH( -x) +yIH(x), 

Yz==~-Isin ~xH( - x) + Y2H (X) , 

;-PI ==eic;x H( - x) + (YI + i~Y2)H(x), 
(3.2) 

;-P2==e- iC;XH( -x) + (YI-i~Y2)H(x), 
B== d cos ~x + m~ - I sin ~x)H( - x) + /3H(x) , 

1/;1==BI , 1/;2==e- iC;XH( -x) + (YI-i~Y2)H(x). 
Boundary values are Y(x = 0) = (1,0) T, Y' (0) = (0,1) T, 

;-P(O) = 1, ;-p' (0) = (i~, - i~) T, 1/;(0) = 1, and 
1/;'(0) = (m l , - i~) T. Jost solutions can be written as travel
ing waves 

1/;1 = (T?) - I (eiC;X + R? e - i<;X)H( - x) + PI (x)H(x), 

tP2 = e- iC;XH( - x) + (n) - '(R ~{31 + {32)H(x), 

T?==-2j~/W, T~==WalW, (3.3) 

R? == (m, - i~)/W, R ~ == (m2 + i~)IW, 
W==Wb==W[tPl,tP2] = - (m l +i~). 

The Jost solution tPl represents a wave incident from 
x = - 00 that scatters from P; tPz is incident from x = + 00. 

The traveling-wave interpretation makes sense in some, but 
not all, of the spectrum. 

The whole spectrum is described in Fig. 2 and Table I, 
whose contents are justified in the appendix. In the figure 
and table, subscripts on g; and Y denote multiplicity of the 
continuous spectrum. Also, an energy A is said to be above 
threshold iff A > Ao' where Ao is defined in the first paragraph 
of Sec. II. The table shows, for example, that g; 2 and the 
bands above threshold are identical and have ~, KER. 

The motive for defining s [see (2.1 ) ] can be understood 
now: This paper develops theorems used8 in inverse scatter
ing with the Marchenko-Newton equation. The equation 
comes from Fourier transformation of scattering data on the 
continuous spectrum g; U ;; \. The transform involves inte
gration over a variable that should be real in g; U [g 1 when 
Ao<O and when ,.1.0> O. Variables K, (T, and ~ are not always 

TABLE I. The spectrum of - a~ + p. The continuous spectrum is 
~2U~ ,U[1,. The point spectrum is ~ on{A:W(A) = o} = {bound state 
energies}. The threshold Ao is the value of p(x) for x < O. An energy A. is 
below threshold iff A < Au, 

Above threshold (~R) 
Below threshold (<; = i\<;\) 

~and ~ap 
(KER) (K=mT+iImK,ImK>O) 
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real in f!lJ U ff l ; s and A are. I use s because sx is dimension
less. The Fourier transform with respect to s unites diverse 
types of scattering data. 

The caption of Table I says every bound state energy is a 
zero of the Wronskian W of Jost solutions 1/11 and 1/12' The 
converse is true: 

Theorem 3.1: The following are true e.p.21 Equation 
(3.1) has a bound state at energy A iff W(A) = O. The zeros 
of Win C/ U R. are in Int ff 0' are finite in number, and are s 
simple. 

Proof The proof has three parts. The first part is about 
Int ff 0 and the equivalence of bound states and zeros of W. 

If Wwere to have a zero in C/ \ [imaginary axis] then 
(A2) would be a solution of (3.1). The solution would be in 
L2 ( - 00,(0) and - a; + p would have a nonreal eigenval
ue, contradicting self-adjointness. Therefore, zeros of Ware 
in f!lJ ff -= f!lJ U ff. 

In f!lJ 2: If 1m W, which equals - Im[i~ + (eiK - EI)/ 
E2 ], vanishes then Table I implies (sinK)/(~E2) = - 1, 
which would contradict Lemma 2.2 because Figs. 1 and 2 
show sign K = sign ~ in f!lJ 2' So W has no zero in Int f!lJ 2' 

In f!lJ I' in ffl' and at points K = n'rr that are above 
threshold, Table I shows that either m I or i~ is real and the 
other is not.22 Therefore, the zeros of Ware in the closure of 

ff o' 
At endpoints of ff ootype gaps, either ~ = 0 or K = mr: 

Use (2.3) to examine what ml + i~ = 0 would imply in 
those two cases. If t; = 0, then W = 0 and (2.3) imply 
EI (t; = 0) = e iK = exp{i cos - I [(EI + ~2)/2 n, which oc
curs at t; = 0 only pathologically because the 0' entire func
tions EI and ~2' defined in (2.3), are independent of the 
threshold (Ao) at which t; = O. If K = ntr, then W = 0 and 
(2.3) imply EI (K = ntr) = ( - 1)n - 1t;IE2' which happens 
only pathologically. Thus, at each of the finitely many end
points of ff 0 it is pathological if W = O. It is pathological 
also if W = 0 at any of the finitely many endpoints. So the 
zeros of Win C/ URs are in Int ff 0' e.p. 

Equivalence of bound state energies and zeros of W fol
lows from the previous sentence, Table I, and sentences sur
rounding (A2). 

The proof's first part is complete. The second part is 
about finiteness. 

Functions K and e iK are s analytic in an open set contain
ing the gap (0, + ioo ) •. Equations (2.1) and (2.3) then 
show W= - (m l + it;) issanalyticinanopensetthatcon
tains (0, + i 00 ) s but not necessarily s = O. Thus, if there are 
infinitely many zeros of Win (0, + i 00 ) s then they accumu
late at s = 0 or at s = + i 00. If they accumulate at s = 0, 
then W(s = 0) = 0 means either Wet; = 0) = 0 (if Ao < 0) 
or W(K = 0) = 0 (if Ao> 0): each case is shown three para
graphs above to be pathological. If zeros of - m I + it; accu
mulate at s = + ioo then (3.4) is contradicted. [Equation 
(3.4) is written after the present proof, but the straightfor
ward proof of (3.4) is independent of Theorem 3.1.] So 
there are only finitely many zeros of Win (0, + ioo )s' e.p. 

Let fbe eiK restricted to Cs+ U Rs. Then f is analytic in 
Cs+ because K is. Each finite-length ff 0 gap is in Rs. (See Fig. 
2.) The function f is real on each of those gaps because 
Re K = ntr on all gaps. Schwarz's reflection principle showsf 
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has an analytic continuation across the gaps23 so W does too. 
There are only finitely many gaps in ff 0' so if W has infinite
ly many zeros then they accumulate at a gap's endpoint and 
W = 0 at that endpoint, which happens only pathologically. 
So W has finitely many zeros, e.p. 

The proof's second part is complete. It remains to show 
that the zeros of Ware s simple. Simpleness follows from an 
argument that parallels Ref. 24, with details in Ref. 8. • 

Statements on analyticity and asymptotics complete the 
section. 

It is noted after (2.6) thatpiSKanalyticin ~ut.Toshow 
Pis s analytic in C/ one need only note the preimage of C/ 
is in ~ut and prove 3as K in the preimage. Use (2.3) to 
evaluate au cos K and obtain auK 
= - (sinK)-lau[(EI +~2)/2], which exists in ~ut be-

cause E and ~ are 0' entire. So 3as K when Ao < O. For Ao > 0 
note ~ = cr - Ao implies a,O' = t;/O', which exists in Cs+ 

because R + is the branch cut of~. (See Fig. 2.) Therefore P 
is at worstsmeromorphic in C/ . Equations (2.3) and (2.4) 
show that the only possible poles of P occur when E2 = O. 
Lines following (2.6) imply the only possible poles of pare 
in ff C Rs. So P is s analytic in C/. Equation (3.2) shows 
that B, 1/1, and Yare s analytic in C/ and that E21/11' 1/12' E2B I , 

B2, and Yare s continuous (without poles) on C/ U Rs. 
Reference 15 has statements about asymptotics in terms 

of K and O'. It is easy to introduce t; = ~(? - Ao into the state
ments and thereby introduce s. As lsi t 00 in C/ URs ' 

K = S + O(S-I ) = 0' + 0(0'- I). (3.4a) 

As lsi t 00 with 1m s = 1'>0 fixed: 

YI = cossx + O(S-leITXI), EI = cos S + O(s - leT), 

Y2 = s- (sinsx + 0(S-2eITXI), 

Y; = - s sin sx + O(eITXI ), 

€2 = s- ( sin s + O(s- 2eT), 

~I= -ssins+O(eT), 

Y; = cos sx + O(S-leITXI), ~2 = cos S + O(s - leT), 

(3.4b) 

Reference 25 has a result for s asymptotics of 1/1 which 
will be generalized to account for poles of P on the unbound
ed sequence of energies at which E2 = O. Equations (2.3) and 
(2.4) imply €z/:1=E2Yll + [X(K,X= 1) -E I ]Y21, where 
X(K,x)-=diag{iKx,e-iKx}. Use (3.4) to show 
Ez/:1 = [1 + O(S-I ) ]S-I (sin s)X(s,x) i on Rx as lsi t 00 in 
Cs+ UR., whereX(s,x) = diag{eisx,e- isx}. Similarly, 

E2 1/11 = [1 + O(s - I)]S - I (sin s)eisx, 

1/12= [1+0(s-I)]e- iSX (3.5) 

on Rx as lsi t 00 in Cs+ U Rs. Equations (3.2) and (3.4) imply 
1/12 = - ise - iSX[ 1 + O(s- I)]. Then - €2(m l + it;) 

= E2W = €21/1ltP2 - E2tP; 1/12 and (3.4) and (3.5) yield 

E21/1; = i(sin s)eiSX [ 1 + O(s - I)], 

1/12 = - isr isx[ 1 + O(S-I)] (3.6) 

on Rx as lsi t 00 in C/ URs. 
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IV. STEP-PERIODIC POTENTIALS WITH IMPURITY 

A. Jost solutions 

Lemma 4.1 defines Jost solutions '1', Lemma 4.2 gives s 
asymptotics of '1', and a discussion of x asymptotics follows. 
The lemmas' proofs are appended. 

Lemma 4.1: Let (1 + Ixl)qELI(Rx )' qEL2(Rx ), and 
g(x',x) = [tPl (X')tP2(X) - tPl (X)tP2(X') )/W. Then 3!'I' 
= ('I'I,'I'2)T3 

'1'1 = tPl - f" dx' g(x',x)q(x')'I'I(X')' 

'1'2 = tP2 - J~ "" dx' g(x,x')q(X')'I'2(X') (4.1) 

in C,+ URs XRx. Moreover, E2'1'\ and '1'2 are s continuous 
(without poles) on C,+ U Rs X Rx, are s analytic on 
C + XR and are solutions of the full Schrodinger equation s x' 
(1.1). 

Lemma 4.2: We have 'I' = [1 + O(s- I )]tP and 
'1"= [1 +O(s-I)]tP'onRx as Islloo inC'+URs' 

Spacial asymptotics 

'l'1-+(lITI)ei~X+ (RI/TI)e-i~X asx~ - 00, 

'1'1-+/31 
'1'2 -+ e - i~x 

'1'2-+ (R2/T2)/31 + (1IT2)/32 

as xl + 00, 

as x~ - 00, 

as xl + 00 

(4.2) 

define transmission (Ti ) and reflection (R i ) coefficients 
wherever (4.2) makes sense. Asymptotics (4.2) do not de
fine RI/TI below threshold (where q = *1) because e - i"x 
vanishes as xl - 00 and ei"x does not. However, lITI is de
fined below threshold as well as above. Similarly, R21T2 is 
not defined in gaps but lIT2 is defined on &J f1. Thus, Ti and 
R . are defined on &J f1 , except R I is not defined in &J I' R 2 is 
n~t defined in [11' and RI and R2 are not defined in [10' 

Asymptotics (4.2) show - a~ + p + q has the same 
spectral structure as - a ~ + p. That is, - a ~ + P + q has 
eigenvalues in [10 only, has [11 U &J I as its continuous spec
trum of multiplicity one, and has &J 2 as its continuous spec
trum of multiplicitytwo. The prooffollows from ( 4.2) in the 
same way that Table I follows from (3.3). 

Evaluate x independent Wronskians W [J,g] 
= fg' - f'g and currentsj[ 11 =f*f' - ff*' to get relations 
among Ti and Ri . Then use (4.2) to evaluate 

W['I'I(X~ - 00),'I'2(X~ - 00)] 

= W['I'I(xl + 00),'I'2(xl + 00)] 

and obtain 

We=W['I'I,'I'2] = -2iqlTI = WaIT2, 

Wa = - 2i(sin K)/E2. (4.3) 

Similar evaluations of W['I'I,'I'n,j['I'd, andj['I'2] show 
that 

2185 

- 2iqT2 = Wa T I, - 2iqT,!R, + Wa TIR '! = 0, 

[Wal( -2iq)]ITII2+ IRII2= 1 

= (- 2iq/Wa)IT21

2 + IR212 (4.4) 
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IR21 = 1, R2 = T2IT! = TIITf; 

in &J I; and 

IRd = 1, R\ = T\/Tf = - T2IT! 

(4.5) 

(4.6) 

in [11' Equations (4.4 )-( 4.6) are analogs ofSmatrix unitar
ity in the p=O case. 

Equations (3.3) and (4.3) relate transmission coeffi
cients for p and p + q: 

T T W 2iq 
I 2 - 'TI = 

T? = T~ - We ' - We ' 
(4.7) 

Equation (4.1) implies 

'1'1 -+ tPi [ 1 + W - J: "" dx' tP2q'l' I ] 

- tP2 W -\ J: "" dx' tPIq'l' I' 

asx~ - 00. Then 

We = 1 + W -If"" dX'tPIq'l'2 
w -"" 

= 1 + W - J: "" dx' tP2q'l'l (4.8) 

is obtained by substituting (3.3), equating coefficients with 
(4.2), and using (4.7) to get the first equality. The second 
equality comes from similar treatment of '1'2 (xl + 00). 

Collecting scattering data in a matrix that has a Fourier 
transform is this paper's main goal. The matrix must have 
good s asymptotics if its transform is to exist. A straightfor
ward collection of Ti and RiO as is used in the seminalp=O 
case, does not have good asymptotics, as (4.4 )-( 4.6) and 
the patchwork state of definitions [( 4.2)ff.] show. The ratio 
W IWof Wronskians, which is related to scattering coeffi
ci:nts by (4.7), simplifies s asymptotics greatly. The ratio 
has a role, as crucial as that of s, in unifying diverse data. 

Theorem 4.1: The following are true e.p. The quotient 
We I W is s merom orphic in Cs+ and s continuous (with 
poles) on Cs+ U Rs. The poles in Cs+ U Rs of Wei Ware the 
zeros of Wand are s simple. The zeros in C,+ U Rs of We are 
in Int [10' are finite in number, and are s simple. Equation 
( 1.1 ) has a bound state of energy 
A iff We (A) = O. Also WelW = 1 + O(S-I ) as lsi 1 00 in 
Cs+ URs • 

Proof The proof has four parts. The first is about analy
ticity, continuity, and poles. 26 

Meromorphism and continuity follow from (4.8) and 
Lemma 4.1. The quotient WJW has a pole at each zero of 
W, except in the pathological case that one of the finitely 
many zeros of the q-dependent We = W[ 'I' I' 'I' 2] coincides 
with one of the finitely many zeros of q-independent 
W = W[tPI,tP2].27 That WelW has no other pole28 follows 
from (4.3) and Lemma 4.1. Theorem 3.1 shows poles of 
WelW are s simple. 

The proof's first part is finished. The second part is 
about Int [10 and bound states. 

If We were to have a zero in C,+ " &J [1 then '1', ex: '1'2 at 
an energy AEfR. Asymptotics '1'1 ( + 00) and '1'2 ( - 00) 
from (4.2) would then imply 'l'EL2(Rx ), contradicting self
adjointness. So zeros in C,+ U Rs of We are in &J [1. 
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Equations (4.7) and (3.3) would contradict (4.4) at a 
hypothetical zero of We in ~ 2. At a hypothetical zero in 
~): IIJ) 0: 1IJ2, so + 00 asymptotics in (4.2) would imply first 
that IlT2 = 0, then R2 = 0, contradicting (4.5). At a hypo
thetical zero in Y ): IIJ) a: IIJ 2' so - 00 asymptotics in (4.2) 
would imply first that liT) = 0, then R) = 0, contradicting 
(4.6). It is pathological if any zero of q-dependent We coin
cides with any endpoint of the finitely many gaps in Yo. 29 So 
the zeros of We are in Int Yo, e. p. 

Self-adjointness restricts bound state energies to ~ Y 
and (4.2) yields a tighter restriction to Yo. If a bound state 
energy were in Yo at a point where We #0 then both liT) 
and 11 T2 would be nonzero [by (4.3), e. p.] and IIJ) would 
not be proportional to IIJ 2. Therefore, the bound state would 
be a nonzero linear combination of IIJ) and 1IJ2 with no IIJ I 
component, because of - 00 asymptotics in ( 4.2) and no IIJ 2 
component, because of + 00 asymptotics in (4.2 )-a clear 
contradiction. So bound state => We = o. Conversely, at a 
zero of We: IIJ I 0:1IJ2 and SEYo, so x asymptotics in (4.2) 
imply IIJ IEL2(Rx ) is a bound state. Therefore, bound state 
¢:}We = o. 

The proof's second part is finished. The third part is 
about asymptotics and finiteness. 

Lemma 4.2 and (4.3) yield Wei W = 1 + O(s - I). That 
statement and the fact that the (finitely many) zeros of W do 
not accumulate at s = 00 imply zeros of We also do not accu
mulate at s = 00. 

Table I, (2.3), and (3.2) imply",: Yo-R and W: 
Yo .... R. Therefore, (4.1) implies IIJ: Yo .... Rand (4.3) im
plies We: Yo -> R. So We is real valued on Int Yo, which is 
finitely many segments in C/ URs. Schwarz's reflection 
principle shows We has an s analytic continuation across 
each segment ofInt Yo. It follows that zeros of We can accu
mulate only at the finitely many endpoints ofInt Yo, exclud
ings= +ioo. 

It has just been established that there are, at most, coun
tably many zeros of We -a fact which completes the proof in 
the previous part that no zero of We is an endpoint of Yo, 
e.p. Continuity implies zeros cannot accumulate at end
points, e.p. So zeros in C/ URs of We accumulate nowhere 
and are finite in number, e.p. Such finiteness was used in the 
proof's first part, now complete. 

The proof's first three parts are complete. It remains to 
show zeros of We are s simple. 

Apply the technique in Ref. 24 to (- a; 
+ p + q - A)IIJ = 0 and We = W [IIJ I,1IJ2] to show 
30#03 - as We (We = 0) = 2saf~ 00 dx' lIJi. It was just 
shown that We = O=>S#O e.p. [because s = 0 is an end
point of the gap (0, + ioo)s] and that IIJ( We = 0) is real 
valued. So as We (We = 0) #0 e.p. • 

B. Scattering solutions 

Scattering solutions <I> = (<1>1,<1>2) T are defined with 
g+ (x,x') == W -1"'1 [max(x,x') ] "'2 [min(x,x') ] as 

<I> = '" - J: 00 dx' g+ (x,x')q<l> 
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The Fredholm method will show 3! solution <I> to (4.9). It 
will be shown also that <I> solves the full Schrodinger equa
tion (1.1). 

The Fredholm method applies to (4.9) only at those s 
for which f~ 00 dxl- g+ (x,x)q(x) 1< 00. Equation (3.3) 
shows 

l-g+(x,x)1 

= I[m l +iq+ (iq-m l )e- 2i,X]!(2qw>IH( -x) 

+ lSI [W52 + (m2 + iq)51e2iKX ]!( Wa W>IH(x). 

Therefore, if (1 + x)qEL) (Rx) then the Fredholm method 
applies in C/ U Rs' except3° possibly at s poles of g + (x,x). 
Now Wa = - 2i(sin K)IE2, W = - (m l + iq), m· 

. J 

= (e± IK - EI )IE2' and the equation for 1-g+ (x,x) I show 
g + (x,x) can have poles only at energies for which q = 0, 
K = mr, E2 = 0, or W = 0.31 Equation (3.2) and the defini
tion of g + show that poles of g + at E2 = 0, q = 0, and 
K = mr are removable and that g + has a nonremovable pole 
wherever W = o. So the Fredholm method applies to (4.9) 
in Cs+ URs except at zeros of W, which are described in 
Theorem 3.1. 

The Fredholm determinant of the operator 
[1 + ( - g + q) ] in (4.9) is computed by reproducing line
by-line Appendix A of Ref. 32. The result is 

d [ 1 ( +] n T~ We 
etpredholm + -g q) =-=-=-. 

TI T2 W 
(4.10) 

So (4.9) defines <I> in C/ URs except possibly at the (at 
most) finitely many points in Yo where W = o. Also, <I> is s 
meromorphic in C/ with poles at the zeros of We. 

Definition (4.9) shows that <I> solves the full Schro
dinger equation ( 1.1). It follows that <I> I is a linear combina
tion ofllJ I and 1IJ2, and <1>2 is too. The particular linear combi
nations will be determined. 

Take limits as x .... ± 00 of (4.9) to get 

<1>1 XI: 00 "'I - W - I "'2J: 00 dx' "'lq<I>l' 

<1>1 Xl: 00 "'I (1 - W - J: 00 dx' "'2q<l> I ). 
<1>2 Xl: 00 "'2 (1 - W - J: 00 dx' "'lq<I>2). 

xl + CIO 

The + 00 limits of <I> I and IIJ I [see (4.2)], the - 00 limits of 
<1>2 and 1IJ2, and (3.2) imply <1>1 a:1IJ1 and <1>2 0: 1IJ2, with x 
independent constants of proportionality. Use (3.3) to 
match ei,x coefficients of <I> I and IIJ) as xl - 00 and to match 
Pz coefficients of <1>2 and 1IJ2 as xt + 00. The result is 
T~<I>I = TIIIJ) and T~<I>2 = T2I1JZ• It follows from (4.10) 
that 

<I> = WIIJ/We. ( 4.11) 

Define a 2 X 2 matrix S by 

<1>* = S<I>. 

Use (4.10), (4.11), (4.2), and what is known aboutp* and 
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~. in each part of the spectrum to find 8(s) in terms of T;. R;. 
T?, R?, and their complex conjugates. Use (3.3) to show 
T~/T?*= - T~/T~*=R~ in y., T~/T~* 
= - TVT~* = - R ~ in ~., and T~/T~* 
= T~ /T~* = - W * / W in ~ 2' It follows that 

(~ ~), SEYo 

R~( R. or SEY. 
-T. -1 ' 

8(s) = 
R O ( -1 -

T2r SE~. 
2 0 R ' 2 

(4.12) 

T~ (R. T2)* 
T~* T. R2 

, SE~2 

The matrix 8 is called a functional·2 S matrix. 

c. Modified solutions 

This paper develops results needed for deriving a Mar
chenko-Newton equation, which involves Fourier trans
forms of scattering coefficients. It would be convenient if 8 
had a Fourier transform. However, 8 12 = Oin Y. so 8.2-+0 
ass-+ ± 00 from within Y .' but it can be shown that 8 12 has 
different s asymptotics from within ~ 2' So 8 does not have a 
Fourier transform; and worse, there is no s independent ma
trix 80 such that 8 - 80 has a Fourier transform. The matrix 
8 is an inconvenient collection of data. 

A 

A matrix 8, which has a9,. s limit, will be defined. The 
paper ends with a proof that 8(s) - I has a Fourier trans
form in the L2 sense. 

Functions t/J and ~ are solutions of the same Schrodinger 
equation, so 

AA 

t/J= Mt/J 
A 

defines the 2 X 2 matrix M on fl} Y. Use (3.2) to compare 
boundary values of t/J and ~ at x = 0 and obtain 

M= (2i~) -.C~~ m. i~;~m.), 

A (2ir m. - ir) 
M-· = (m. + i~) -." ." . o m. + l~ 

(4.13) 

A 

Equation (3.3) yields det M = (m. + i~)/(2i~) 
= W /( - 2i~). NotethatM-· hasansmeromorphiccon
tinuation into C/ URs • 

Define 

(4.14 ) 

on C/ URs XRx and see from (4.9) that 
A A A 

<I> = t/J - f~ 00 dx' g+ (x,x')qq>. Wronskian algebra (Ref. 
33, p. 2157) (see Appendix) and (4.11) and (4.14) imply 

A A 

W[ct>.,ct>2 J = - 2i~W /We • (4.15) 

Define a new functional S matrix on Rs by 
A A A 

<1>* = 8Q<1>, 

where Q= (? ~). Equation (4.14) implies 

S~ = c$* = M* - .<1>* = M* - ·8ct> = M* - ·8itc$ 
on RsXRx. So 
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( 4.16) 

onRs • 

The vector v == (Y. + is Y2, Y. - is Y2 ) T -whose 
boundary values are v(O) = i and v'(O) = is(1, - 1)T -is 
s analytic on C/ X Rx and s continuous (without poles) on 
C/ UR. XRx because Y is. The Volterra equation 
'Y'(x;;;oO) = v - f~dx' g(x,x')q'Y' has a kernel gq which is A. 
entire, as shown by (AS). The Fredholm method and s anal
yticity of v imply 3!Y(x;;;oO) that solves the integral equa
tion, which 'Y' has the same s analytic and s continuous prop
erties as v. Similarly, 3!'Y' that solves 

'Y'(x) = v - H( - x) [dX' g(x',x)q'Y' 

- H(x) iXdX' g(x,x')q'Y' 

on C/ U Rs X Rx. The regular solution 'Y' is s analytic on 
Cs+ XRx, is s continuous (without poles) on Cs+ URs XRx' 
and solves the Schrodinger equation ( 1.1). The regular solu
tion satisfies Y(O) = t, 'Y" (0) = is(1, - 1) T, and 
W['Y'.,'Y'2J = - 2is-so that 'Y'f = Y2 and y* = QY on 

RsXRx· A AA 

Define a Jost matrixJby 'Y' = J<I>. The equation is one of 
three that are the basis for Newton's inverse scattering meth
od: 

~*=s~ on fl}YXRx ' 

'Y' = Ic$ on C/ UR.XRx' (4.17) 

'Y'* = QY on RsXRx. 

Wronskian algebra (see the Appendix) and relations among 
A A A 

Y, <1>, <1>, and IIJ yield J = - W['Y',IIJJPM /W 
A. O. 

= We W[Y,ct>JP /(21~W), whereP= (-.0)' Use (4.15) to 
show34 

A 

detJ = sWJ(~W), ( 4.1S) 

J= W-· ·M 
A ([IIJ; - isllJ2 ] [isllJ. -IIJ;]) A 

[IIJ; + isllJ2 ] - [isllJ. + IIJ;] x=O 

( 
[c$;-isc$2] [isc$.-c$;]) 

= We (2i~W) - • A A A A • 

[ <1>; + is<l>2] - [is<l>. + ct>;] x = 0 

( 4.19) 
Some terminology for the following theorem: A vector 

or matrix has a pole iff any of its entries has a pole and it has a 
zero iff each of its entries is zero. An x dependent vector has 
an s zero (s pole) iff the vector is zero ( 00 ) for almost every 
x. 

Proofs of Theorems 4.2 and 4.3 are appended. 
Theorem 4.2: The following are true e. p. Functions in 

Table II have poles and zeros only where indicated and are 
otherwise s analytic on C/ and s continuous on C/ URs • 

A 

The matrix 8 is s continuous (without poles) on Rs. All 
tabulated poles and zeros are s simple. 

Theorem 4.3: As lsi f 00 in C/ U Rs: 
A A A 

<I> = [1 + O(s-· ) JX(s,x) 1 and <1>' = [1 + O(s-·)J 
XX'(s,x) i on R;, and J = I + O(S-l). Also, 

A 

8 = I + O(S-l) as S-+ ± 00 in R •. 
This paper's main goal is to find a collection of scatter-
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ing coefficients that has a Fourier transform. Theorems 4.2 
A 

and 4.3 show S - I has a Fourier transform in the L2 sense. 
A 

The matrix S is related to scattering data by 
A A A 

S=MO-1SMQ, with definitions in (4.12), (4.2), and 
(4.13). Also obtained, for step-periodic potentials with im
purity, are matrix equations ( 4.17) and asymptotic and ana
lytic properties (Theorems 4.2 and 4.3) used in Marchenk<r
Newton inverse scattering. 

v. CONCLUSION 

The full SchrOdinger operator - a; + p + q for a lo
calized impurity q in a step-periodic background p has a 
richly structured spectrum sketched in Figs. 1 and 2. Scat
tering coefficients R; and T; are defined in (4.2) in terms of 
asymptotics of scattering solutions. C~efficients are collect
ed in a functional 12 S matrix called S, defined by (4.16), 
(4.13), and(4.12). The matrix S unifies scattering data in 

A 

the sense that S(s) - I has a Fourier transform, which is 
used8 in inverse scattering. 

There are two key steps in unifying scattering data. First 
is definition in (2.1) of a variable s that is real valued on the 
continuous spectrum. Second is identification in Theorem 
4.1 of an s meromorphic function-a ratio ofWronskians
that is related to scattering data and has simple s asympto
tics. 

This paper defines other functions-scattering solu
tions, regular solutions, and a Jost matrix-also needed for 
Marchenk<r-Newton inverse scattering. The basic matrix 

A A A AA 

equations are <1>* = SQ<I>, Y = J<I>, and y* = Q'Y', from 
which follow 

A A A 

(J -I - I) = (S* - I) + Q(J -I - I)*Q 
A A + (S* - I)Q(J -I -I)*Q. 

Fourier transformation of the latter equation leads to a Mar
chenk<r-Newton equation for inverse scattering. Derivation 
of the Marchenk<r-Newton equation uses8 analytic and 
asymptotic properties established in this paper's theorems 
and in Table II. 
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APPENDIX: PROOFS AND DISCUSSION 

Wronskian algebra:33 Let f and g be vector solutions of 
the same Schrodinger equation and A and B be x indepen
dent 2 X 2 matrices. Let W[ j,g] be the 2 X 2 matrix whose ij 
component is W [/;,gj]. Then W[Aj,Bg] = AW[j,g]BT 
and W[ j,j] = W[ fl'.t;]P, where P= ( _ ~ J). Also, 
f=Ag~ W[fl'.t;] = W[gl,g2]detA and A = 
- W[f,g]P /W[gl,g2]' 

Proof of Lemma 2.1: Levitan and Sargsjan 19 showed 

aAY2(A,X) = iXdX' Y2(A,X') [YI(A,X)Y2(A,X') 

- YI (A,X')Y2(A,x)]. 

Set X = 1, use the definition (2.3) of E, and setA3E2(A) = 0 
to show aA E2 = Elf~dx'[ Y2(X')]2 when E2 = O. 

Levitan and Sargsjanl9 proved the zeros in CA of E2 are 
in [1 (and that there is precisely one zero in each finite
length gap), so aERo Uniqueness of the solution of the Vol
terra equation35 

Y2(X) = 0'- 1 sin O'X 

+ 0'- lixdX' sin O'(x - x')Pa (X')Y2(X') (AI) 

on CO' X [0,1] x' together with P a = P:, implies Y2 maps 
[1 X [O,I]x ..... R. Therefore, aA E2 = Elf~dx'i Y2(X') 12 when 
E2 =0. 

Newton 19 proved E2 = O~EI = eiK or EI = e- ;K. 

But E2 = O~KE[1 ~K= mr+ iImK~EI = (- l)n 
X exp( + 1m K) ~ aA E2 (E2 = 0) = (- 1)n 

TABLE II. Poles and zeros. A function! is 00, *, or 0 iff! has a pole, is pole- and zero-free, or has a zero, respectively. Also, Sis s continuous (without poles) 
onRs • 

s=O u=O s=O q=O W=O We =0 K= n1T m. = 00 

(Ao<O) (Ao<O) (Ao>O) (Ao>O) (n#O) 

if 00 * * 00 * * * 00 

if-I * * * 00 * * * 

~ * * * * * * 
<I> * * * * 00 * * 

J 00 * 00 00 * * detJ * * 0 00 00 0 * J- I 
00 00 * * 00 * 
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x exp( + 1m K)f~dx'i Y2(X') 12. The last integral is not 
zero; if it were then Y2 would not satisfy (A 1) V XE [ 0, 1 ]. • 

Proof of Lemma 2.2: Equation (AI) implies Y2 maps 
go.<1 X [O,l]x --R. SO E2 = h(1) is real on go.<1 and 
3 sign E2• 

The literaturel5 shows that the zeros in C,. of E2 are in .<1 
and that there is precisely one zero in each finite-length gap. 
Lemma 2.1 shows the zeros are simple. Therefore, sign E2 is 
constant in each band and E2 has opposite signs in neighbor
ing bands in R,.. Also, Lemma 2.1 shows a,. E2 < 0 at the zero 
of E2 in the lowest-energy finite-length gap. SO E2 > 0 in the 
lowest-energy band. These facts and Fig. 1 imply 
sign E2 = ( - 1) n sign K in the band (mT,[n + l]1T)K' in 
which sign(sin K) = ( - 1)n as well. 

Justificationfor Fig. 2 and Table L' Multiplicities will be 
determined by x asymptotics of e ± i,x H( - x) and 
e± iKxtH(x). It is useful tonoteKER in fJ1), 1m K>Oin Int .<1, 
qE R above threshold (A> Ao), and q = ilql below threshold. 

In each band above threshold, e ± i,x H( - x) and 
!3H(x) are in L 00 \..L2 so there are two linearly independent 
L 00 solutions of (3.1). Bands above threshold form go 2' 

Each L 00 solution of (3.1) in a gap above threshold has 
the form constX!31 for x>O. Above threshold, 
e ± i,XH( - x)ELoo \..L2. So there is a one-parameter family 
(constXtPl) of Loo \..L2 solutions in gaps above threshold, 
which gaps form .<1 1' 

Each L 00 solution of (3. I ) below threshold has the form 
const X e - i,x for x < O. In bands, !3H (x) EL 00 \.. L2 so there is 
a one-parameter family (const X tP2) of L 00 \..L2 solutions in 
bands below threshold, which bands form go I' In gaps, 
!32H(X)f!L00 UL2 but !3IH(X)ELoo nL2, so the only Loo so
lutions in gaps below threshold have the form 
constIXe-i,XH( -x) +const2X!3IH(X)EL2(Rx): Gaps 
below threshold form .<1 0 ' 

The operator - a ~ + p is self-adjoint so its spectrum is 
in R,.. The operator's spectrum is .<11 U fJ1) , in which there is 
no L2 solution of (3.1). Therefore, the point spectrum of 
-a~ +pisin .<1 0 ' 

The L2 solutions of (3.1) are bound states. If bound 
states exist then they are in .<1 0 , and, being solutions of (3.1), 
they are twice differentiable. Continuity and an argument 
two paragraphs above show that bound states have the form 

(A2) 

times an x independent constant. Continuity of the first de
rivative shows (A2) is a solution of (3.1) iff 
W= - (m l + iq) = O. Therefore the point spectrum of 
- a ~ + pis {AE.<1 o: W(A) = a}, which is the set of bound 

state energies of (3.1 ). 
Table I summarizes the previous six paragraphs. • 
Sketch of proof of Lemma 4.1: Suppose /; solve 

( - a ~ + potential - A)/; = 0, fl and f2 are linearly inde
pendent, as areA andJ:.. Then 

[fl(x')h(x) - fl(x)h(x')]!W [fl,h] 

= [A(x')J:.(x) -A(x)J:.(x')]!W[A,J:.]. (A3) 

Apply (A3) to (4.1), using Bof (3.2), to get 
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E2'1'I(X>0) =Ej3I- W;ll
oo

dX'[!3I(X')!32(X) 

-131 (X)!32(X') ]q(X')E2'1'1 (x'). (A4) 

The equation is identical to (4.1) in Ref. 33, from which it 
follows that E2'1'I(X>0) has properties claimed in the 
lemma. 

It follows from (A4) that 

E2'1'1(0) - E2tPl(0) = - 100 

dx' g(X',X)qE2'1' 1' 

Then (4.1) implies 

E2'1'I(X<O) = E2['I'I(O) - tPI(O) + tPI(X)] 

- [dX' g(X',X)qE2'1'1' 

Equation (A3) and Y [see (3.2)] are used to writeg conve
niently: 

E2'1'I(X<0) =E2['I'I(O) -tPl(O) +tPI(X)] 

- [dX'q-I[Sin q(X-X')]qE2'1'1' (AS) 

Equation (AS) can be used to prove E2'1' I (x < 0) has proper
ties claimed in the lemma. The proof follows one in Ref. 33 
for E2'1'1 (x>O), so it is omitted. 

The proof for '1'2 is similar to that for '1'1' but use 

'l'2(X,0) = e- i,x - q- J: 00 dx'[sin q(x' - x) ]q'l'2 

(A6) 

in place of (A4) and 

'1'2 (x > 0) = ['1'2(0) - tP2(0) + tP2(X)] 

- wa-
I IX dx' [131 (X')!32(X) 

-!3I(X)!32(X')]q'l'2 (A7) 

in place of (AS). • 
Proof of Lemma 4.2: The proof has two parts. The first is 

about'l'. 
Compare (A4) and(A6) to similar equations in Ref. 33 

in order to show 'l'1(X>O) and 'l'2(X,0) have properties 
claimed in the lemma. 

The prooffor '1'2 (x > 0) uses the technique in Ref. 36, 
for which it need only be shown that l::~ I 'I'}n) (x) con
verges uniformly on compact subsets ofC/ URs ' where 

'l'in)(x> 0) = (_1)nlxdxl .. ·lxn 'dxn[g(X,xI) 

X .. 'g(xn _ I ,xn)] [q(x l )' . 'q(xn)] 

X ['1'2(0) - 1 + tP2(Xn)] 

is the nth iterate of (A7). [The previous equation uses 
tP(O) = 1, which follows (3.2).] Toward that end use (A3), 
(3.4), and Y to show 

g(x>O,x'>O) = [YI(X)Y2(X') -YI(X')yZ(x)] (A8) 

and to show 

g(x>O,x' >0) = [1 + O(S-I) ]S-I sin sex' - x) 
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and 

Ig(x>O,x' >0)1< [1 + O(lsl-I)] Isl-Ie*-x') 

as lsi t 00 in C/ URs with O<lm s<r. It follows from (3.5) 
and \112(0) = 1 + O(S-I ) that 

1\II~n) (x > 0) 1<[1 + O( Isl- I)] Isl- neTX LX dXI 

X ... fn -'dxn Iq(xl )' . 'q(xn ) I 

as lsi t 00 in C/ U Rs with O<lm s< r. The remainder of the 
proof for \112(X>0) is as in Ref. 36, with details in Ref. 8. 

The proof of the lemma for \III (x <0) is similar to that 
for \112 (x > 0). 

The proof's first part is complete. The second part is 
about \11'. 

Equation (4.1) implies 

E2(\II; -t/!;) = - L"'dX'[YI(X')Y;(X) 

- Y; (x)Y2(x') ]qE2\111' (A9) 

Use (2.2), (3.5), and \III = [1 + O(s- I )] t/!I to obtain 

I E2 ( \II; - t/!; ) x;;.O I 

< [1 + O( Isl- I)] Is- 1 sin sle- Txf'" dx'lql 

in the usual s limit, with r = 1m s. Then (3.6) completes the 
proof for \II; (x;;;'O). For \II; (x < 0) replace S: with S~ + So 
in (A9) and treat separately the two integrals. 

The proof for \II; is similar to that for \II;. • 
Proof of Theorem 4.2: The proof has two parts. The first 

part is about independence of columns in Table II. 
The function; depends on A.o but u is A.o independent, so 

;(u = 0) #0 and u(; = 0) #0 e.p. However, either 
u(s = 0) = 0 or ;(s = 0) = 0, and s(u = 0) = 0 or 
s(; = 0) = O. 

Quantities in Table II inherit poles and zeros at 
E2 = 0 only by way of poles of m l 

= (eiK _ EI )/E2 = ~I/(EI - e- iK ). The latter equality 
shows that if E2 = 0 then either E 1 = eiK or E I = e - iK. If 
E2 = 0 and EI = eiK then m l is finite, but if E2 = 0 and 
EI = e- iKthen m l is infinite. Conversely, E2 = 0 at every pole 
of mi' 

The column heading We = 0 is the only q dependent 
one, so it overlaps no other heading e.p. The heading W = 0 
is the only one which is bothp dependent and q independent, 
so it is distinct e.p. Headings K = ntr and E2 = 0 depend only 
on the periodic part of p, so they are distinct from all others 
e. p. However, K = n1T at gap endpoints and E2 = 0 in Int ~ o. 
Therefore, each column heading is independent of other 
headings e. p. 

The proof's first part is complete. The proofs second 
part is about row entries. The qualifier e.p. is suppressed in 
the remainder of the proof. 

A A 

Rows for M and M- I follow directly from (4.13) and 
A A 

the row for t/! follows from (3.2). The row for <I> follows from 
the ro'X, for ;p b)' the Fredholm method, ex~pt at W = 0, 
where <I> = (WM- I ) \II I We - *. The row for J follows from 
(4.18) and the row for 41. The row for det:! follows from 
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A 

(4.18). The row for J- I follows from the two previous rows. 
Wronskian algebra (see beginning of this appendix) and 

(4.17) yield 

s= WeW[~*,~]PQI(2i;W), (AlO) 
A 

showing that any hypothetical pole of S in Rs is at r; = 0, 
W = 0, or We = O. Theorems 3.1 and 4.1 show that zeros of 
Wand We are in Int [10 and Fig. 2 shows r; = 0 is in the 
closure ot [10 except when 0 <A.oE!J1J. Therefore, ifit is prov
en that S has no pole in the closure of [10' and that 
W[ ~*, ~] = 0 at r; = 0 when 0 < A.oE!J1J, then the proof is 
complete. 

This paragraph applies only to the closure of [10' Table I 
~d (2.~) show r; = ilr;1 and m* = m. Then (4.13) implies 
M* =M. Equations (4.12) and (4.16) imply 
A A. A 

S = M -IIMQ = Q-* in the closure of [10' 
A 

It was just shown that S has no pole in Rs, except possi-
bly at r; = 0 when 0 < A.oE!J1J. This paragraph applies only to 
the possible exception. Figure 2 shows such an exceptional 
point must be an endpoint of!J1J I' and (4.12) shows S21 = 0 
there. Wronskian algebra and <1>* = S<I> imply 
!f [<1>;,<1>2] = W2~21/We ~ O. Moreover, (4.13) and 
<I> = M- I <I> imply <I> = <1>21 whenever r; = O. It follows that 
A A A. A 

<1>1 = <1>2 = <l>2~ <I>~, which implies W[<I>*,<I>] = O. Then 
(AlO) shows S has no pole unless W = 0 at r; = 0 when 
o <A.oE!J1J. But Theorem 3.1 says W cannot vanish in !J1J. So 
S has no pole at r; = 0 when 0 < A.oE!J1J . • 

Proof of Theorem 4.3: Theorem 4.2 shows ~ has only 
finitely many poles, so its poles do not aff.!:ct a~mptotics. 

Equations (3.3) and (4.13) and <I> = M- 1 <I> show 
~I = - [2ir;<l>l + (m l - ir;)<I>2]1W and ~2 = <1>2' Then 
( 4.11) implies 
A A 

<1>1 = - [2ir;W\III + (m l - ir;)\II2]1We, <1>2 = W\112/We' 
(All) 

The s asymptotics of ~2 and ~; then follow from (3.5), 
(3.6), Lemma 4.2, and Theorem 4.1. 

For asymptotics of ~I in R" use Lemma 4.2 and 
Theorem 4.1 to obtain ~I = [1 +O(S-I ) ][2iWI 
+ (m l - ir;)t/!2]1W. Then (3.2), (3.4), and (4.13) imply 

A A 

<1>1 = [1 + O(S-I)]t/!I = [1 + O(s-I)]e-iSxonR;. 
For lsi, 00 in C/ , use (4.1) to obtain 

[2i~l] = [2k;::1 ] _ Loo dx' g(X"X)q[2i~I]. 
An argument in the proof of Lemma 4.2 shows [2ir;\II11 W ] 
= [1 + O( Isl- I)] [2ir;t/! I/W]. Use (3.3) and domination 

of ei,x over e - i,x in C/ X R; to show 
[2iWI/W] = [1 +O(lsl-I)]ei,x on R;. Therefore, 
[2i;\IIIIW] = - [1 + O( Isl- I)] eiSX on R;. It follows 
from (3.2) and Lemma 4.2 that \112 = [1 + O( Isl- I)]e - iqx 

~ R; . Theorem 4.1 and (All) then imply 
<1>1 = [1 + O(lsl-l) ]e isx iI3."R~. A 

It was just proved that <1>1> <1>;, and <1>2 havethesasymp
totics asserted in the theorem. Those results and (4.15) 
show~; = [1 + O( Isl-) ]iseisx in R;. 

The s asymptotics of J come from Theorem 4.1, (4.18), 
andsasymptoticsof~and ~'. Equation (4.17\ is used in the 

AA AA AAA A 

derivation QJ<I> = (!'f = Y* = J*CP* = J*SQ<I>::::}QJ 
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"'" A A A. A • A. = J*SQ~S = J - IQJQ. The s asymptottcs of S m R. 
A. 

then follow from s asymptotics of J. • 
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The quantum field theory offree Dirac particles (four-component massive spin-~ particles) is 
"derived" by a Segal quantization procedure. First, details are given on how the spinor space of 
Dirac is actually a minimal left ideal of the Clifford algebra associated with a Lorentz inner 
product space ( + , - , - , - ), and how the homogeneous group actions break the natural 
two-component quaternion structure to give familiar four-component complex spinors. 
Second, Wigner's procedure for constructing unitary representations of the Poincare group is 
used to construct the appropriately induced infinite-dimensional representation of the 
inhomogeneous group starting from the above four-dimensional nonunitary representation. 
Third, and finally, Segal's procedure for quantizing classical Fermion fields is adapted to this 
infinite-dimensional Hilbert space to obtain the Clifford algebra of annihilation-creation 
operators for spino! particles. The familiar Fock space appears as a minimal left ideal in this 
second Clifford algebra. 

I. INTRODUCTION 

In this paper we show how the familiar quantum field 
theory of free massive Dirac spin-~ particles 1.2 can be ob
tained by two successive Clifford algebra constructions. We 
refer to this generic field as the electron-positron field for 
convenience, and have attempted to use notation familiar to 
the physics community when possible. 

In Sec. II we give a short introduction to the standard 
construction of the Clifford algebra associated with a real 
vector space possessing a nondegenerate inner product.3

•
4 

This construction is applied to an infinite-dimensional space 
in Sec. IV. However, in Sec. II emphasis is placed on a Min
kowski inner-product space with signature - 2 and its cor
responding Clifford algebra of gamma matrices. The tech
nique for generating spinor representations of the associated 
Clifford algebras is given and applied to the four-dimension
al case.5-8 By carefully including the discrete transforma
tions (parity and time reversal) we are able to show how the 
presence of projective representations and additional group 
actions (i.e., phase rotation and charge conjugation) in the 
Dirac theory destroys the expected two-component quater
nion structure of spinors for the ( + , - , - , - ) metric. We 
assume the homogeneous group structure to consist of a cov
ering group of the homogeneous Lorentz group and the 
above additional members. Throughout we use the four-di
mensional spinor basis corresponding to rest states having 
spins oriented along the ± z axis and possessing ± 1 parity. 
Our motive is to use an explicit basis that produces the 
Pauli-Dirac representation of the gamma matrices familiar 
to all physicists,,·2 Other representations such as Weyl or 
Majorana could easily be used. 

In Sec. III we use Wigner's procedure for constructing 
unitary representations ofthe Poincare group to construct a 
representation of the inhomogeneous group obtained by 
combining the above homogeneous group with Minkowski 
space translations.9

-
14 Two ingredients are critical and both 

make use of the four-component Dirac representation of Sec. 
II. The first is a character, or equivalently a one-dimensional 

unitary representation of the translations (massive for the 
case considered here), and the second is a unitary represen
tation of the Little group of this character (the invariance 
group of this character). Both are found in the above four
component representation; e.g., when the homogeneous 
group is restricted to the Little subgroup, the spin represen
tation becomes unitary. 

The reason for constructing this representation and its 
infinite-dimensional Hilbert space is that in Sec. IV a second 
Clifford algebra, the operator algebra of the electron-posi
tron theory, is constructed. By a straightforward extension 
of the general construction outlined in Sec. II, and previous
ly attributed to Segal,15-21 this complex Clifford algebra is 
constructed from the infinite-dimensional complex Hilbert 
space. All the general notions introduced in Sec. II can be 
applied to this infinite-dimensional Clifford algebra. In par
ticular, a projection operator (the Fock vacuum) is used to 
generate the space of spinors (the F ock space). 22 This is a 
new construction differing from a previously introduced 
Fock space. IS Prior to Sec. IV the only complex structure 
present came from the four-component spinor representa
tion of the first Clifford algebra and appeared in the unitary 
representation of Sec. III; however, in Sec. IV another com
plex structure in the second Clifford algebra appears. 

In this paper we have tried to "draw" a straight line 
from Minkowski space to the quantum field '1', however, as 
the reader will obviously notice we made several choices 
(usually among a few possibilities) along the way. Since the 
Dirac theory is the standard theory for electrons and posi
trons, we have used it as a guide to make the appropriate 
choices. 

II. THE MINKOWSKI CLIFFORD ALGEBRA AND DIRAC 
SPINORS 

This section serves primarily to establish needed back
ground and notation. However, inclusion of group actions, 
beyond special Lorentz, is new and allows us to clarify why 
Dirac spinors are four-component complex and not two-
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component quaternion when the signature is - 2. 3-
8

,23-25 

The 16-dimensional real Clifford algebra R 1,3 can be 
attached to each point xEM 4 of Minkowski space by select
ing a translationally invariant set of basis vectors e,l ~al-' 
satisfying el-' 'ev = gl-'v = diagonal (1 , - 1, - 1, - 1) to 
span the tangent space at each x. In general, the universal 
Clifford algebra (CA) associated with a real vector space V 
possessing a nondegenerate symmetric bilinear form (,) is 
the unique associative algebra: 

by 

(i) with identity I, 
(ii) generated by a subspace V I C CA isomorphic to V, 
(iii) which has its algebraic multiplication constrained 

(2.1) 

For M4 we write v = r I-' el-" and the isomorphic vector im
ages in VI CCA as Vi = rl-' Yw The defining algebraic con
straint (iii) familiarly appears as YI-'Yv + YvYI-' = 2gl-'J. 

Using orthonormal frames such as these (el-''''''YI-') al
lows the 16-dimensional real Clifford algebra R 1,3 to be de
composed into a direct sum of Lorentz scalars, vectors, bi
vectors, pseudovectors, and pseudoscalars R 1,3 = V O EEl V I 
EEl V 2 EEl V 3 EEl V 4

, where 

VO = {rI}, Vi = {r!'yl-'}' V 2 = {r!'vyl-' Yv}' 

V 3 = {r!'VAyI-'YvYy } = {rl-'yI-'Y}' 

V 4 = {ry} where Y=YOYIY2Y3' (2.2) 

with r,r I-',r I-'V, and r !'VA real, 

f-L <V<A, and YY = -1. 

In general, the even subalgebra CA + ={VO EEl V 2 EEl V 4 EEl"'} 

of a Clifford algebra is isomorphic to another Clifford alge
bra. In the case of R 1,3 the even subalgebra is isomorphic to 
R 3,0 the eight-dimensional real algebra associated with the 
three-dimensional Euclidean space. The algebra R 3,0 is iso
morphic to the four-dimensional complex Pauli algebra be
cause the center of R 3,0 is isomorphic to the complex 
numbers. Then, 

R 1:3 = {rI} EEl {rl-'Vyl-' Yv} EEl {ry} 

= {rI} EEl {r iaJ EEl {r iaia} EEl {ra} 

~R3.0 = {rI} EEl {r iUJ EEl {r hp} EEl {ru} 

~Pauli = {(r + ir')} EEl {(r i + ir'i)uJ, (2.3) 

where a i =YiYO' a=ala 2a 3 = y. The center of R 3•0 is 
{rI}EEI{r'u}~{(r+ ir')I}. In (2.3) theui are images of an 
orthonormal basis Eo (Ei 'Ej = Dij) of a three-dimensional 
Euclidean space and generate the associated Clifford algebra 
R 3,o' The isomorphism to the familiar complex Pauli matrix 
form is ui.,...Pauli matrix U o u.,...imaginary unit "i." The pre
cise identification of R t3 with R3,o requires a choice of ob
server eo and its corresponding Yo in V I. By identifying 
Ui~i = YiYO' then j.,...a = yand we have the desired even
subalgebra isomorphism. We also have the decomposition of 
the total Clifford algebra, 

R I ,3 ~R3,O EElYoR 3.0' (2.4) 

allowing (anti) automorphisms of R 3.0 to be extended to R 1,3 

by defining their effect on Yo' Every universal Clifford alge-
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bra associated with a real or complex vector space possesses 
a fundamental antiautomorphic involution called reversion 
c ..... c and a fundamental automorphic involution called in
version c ..... c. The defining properties are 

C IC2 = C2CI' C = c, C EV I
, 

(2.5) 

CIC2 =CIC2' c= -C, CEV I. 

Vectors are invariant under reversion but are reversed in 
direction by inversion. For R1,3 we denote reversion by tilde 
as above but for inversion we can write 

(2.6) 

where we have used the notation Y5 of the Dirac helicity 
operator. For R 3•0 we use c ..... ct , the familiar Hermitian con
jugation for the Pauli algebra, for which aT = a o at 
= (a la2a3)t = a 3a2a l = - a. Equation (2.4) allows 
Pauli reversion to be extended to R1,3 by requiring n = Yo 
where 

c ..... ct=YoCYo-l~ri = - Yi' (2.7) 

The Pin group is a subgroup of the multiplicative group 
ofinvertible elements in CA that leave the subspace V I invar
iant when acting as inner automorphisms, i.e., 

cEPin¢}CVlc- 1 = VI, and satisfy CC = ± 1. (2.8) 

With a choice of observer Yo in R I ,3' the PinI.3 constraint 
(2.8) can be written 

(2.9) 

The subgroup connected to the identity is isomorphic to 
SL(2,C) and is generated by products of rotations and 
boosts, 

Rotations = e(II'/2)ya" ~(}i(}i<41T, 

('"'/2)a . 
Boosts = e ~ " - 00 <;'< 00, (2.10) 

SL(2,C) ~{e[(1I'/2)Y+ ~'/21a}. 

The three other disconnected parts of Pin 1,3 are generated by 
products of the identity component with parity P (multipli
cation by Yo) and time reversal T (multiplication by YIY2Y3)' 
The identity and parity components satisfy CC = + I or 
equivalently ct Yoc = + Yo whereas the T and PT compo
nents satisfy CC = - lor equivalently ct Yoc = - Yo' When 
Pin acts as inner automorphisms on V I (called the vector 
representation) it double covers the invariance group of V's 
inner product (for R I ,3 the invariance group is the homoge
neous Lorentz group), 

YI-' ..... ( ±c)yl-'( ±C)-I =YvAv 1-" (2.11) 

where A v I-' is a Lorentz matrix. The spin representation of 
Pin arises by letting Pin act as left multiplications on CA. It 
is reducible with each invariant subspace giving a spinor 
space. A CA is decomposed into a direct sum of minimal left 
ideals, called spinor spaces CAn' by finding a complete set of 
mutually annihilating primitive idempotents (projection op
erators) Pn ,26 

n n 

(2.12) 
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Decomposition of R 1,3 requires two idempotents, To obtain 
matrix representations of the r/s familiar to the physics 
community, we choose an observer (ro) and construct a pair 
of projection operators P ± using a unit spatial direction a 3 

(a; = I) in the even subalgebra, 

(2,13) 

It is at this point that clear differences in the fields of R 1,3 , 

R 1,3 ± ' and the complex numbers required for Dirac theory 
begin to appear, Both spinor spaces R I ,3 ± as subspaces of 
R 1,3 form eight-dimensional vector spaces over the reals, but 
if they are used only as representation spaces for left multi
plication by Pin l ,3' they form two-dimensional vector spaces 
over the field of quaternions. However, Dirac theory con
tains an additional continuous UI group action (a right mul
tiplication on R 1,3 ), uses a projective representative for time 
reversal T rather than using left multiplication by 
T = rlr2r3' and introduces a projective representative for 
the additional charge conjugation symmetry C, all of which 
are inconsistent with the quaternion structure of R I ,3± • 

These new group actions "break" the two-component qua
ternion structure leaving a four-component complex struc
ture for each spinor space. The remaining complex structure 
is defined by right multiplication by r, i.e., multiplication by 
the unit imaginary "i" of the complex field is defined by 
i (c) = cr. Using the above minimal left ideals (R 1,3 ± ) the 
UI group action on R 1,3 can be taken as right multiplication 
by 

(2.14 ) 

rotating the phases of the two spinor spaces R 1,3 ± opposite
ly. The quaternion structure "broken" by (2.14) but not by 
left multiplications (spin transformations) is generated by 
right multiplications by rl> r2' and rlr2' These commute 
with the projection operators P ± leaving R 1,3 ± invariant 
and obviously commute with left multiplications. The full 
16-dimensional real Clifford algebra could be represented by 
2 X 2 quaternion matrices using for example WI and W3 from 
(2.15) below as basis vectors of R I,3+ .23,24,27 Because 
(2.14) does not commute with rl or r2' two additional basis 
vectors must be introduced to represent the UI needed in 
Dirac theory. To obtain the familiar Pauli-Dirac matrix rep
resentation for the rl' 's, we use the following Wn basis of 
R 1,3 + and to obtain the associated Z axis oriented, positive 
and negative energy spinors U A,p and v A,p' we use the asso
ciated basis Zn : 

WI = (/ + ro)P +, ZI = (/ + ro)P +, 

W2= (/ + ro)alP +, Z2= (/ + ro)alP +, 

W3= (/- ro)P +, Z3= (/- ro)alP +, 

W4= (/- ro)alP +, Z4= (/- ro)P +. 

Using 

(2.15) 

rl'wn =WArl'~' where (O,A) = {1,2,3,4} (2.16) 

gives 

ro~ro=(~ _~), ri~ri=(~i -~), 
(2.17) 
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and 

_1_ A (0 1\ 
rs(Wn ) =rwnr =wArsn,::::}rs = I 0)' 

where in (2,17) lis the 2X2 identity, U i are the standard 
Pauli matrices, and r on the right (defining the complex 
structure) has been replaced by multiplication of the imagi
nary unit "i" from the complex field. Ifwe were interested in 
the Dirac wave theory we could and would now go to the 
above matrix representation; however, since we are interest
ed in the Dirac quantum field theory, which requires a differ
ent complex structure (see Sec. IV), we keep the concrete 
basis picture Wn with right multiplication by r. It should be 
observed that the representation matrices for the Clifford 
algebra (2.16) and (2.17) are unaffected by a change of basis 
Wn -+ Wn e~ra, = Wn e~r. This invariance constitutes the glo
bal UI invariance of the free electron-positron theory and it 
along with the following * innerautomorphism of R 1,3 are at 
the core of the projective representatives of time reversal and 
charge conjugation actions on spinors. Given a basis for 
R I ,3 + such as Wn , and its complex structure mapping r, 
Pauli reversion t of (2.7) can be decomposed into a com
muting pair of involutions, * and T, called complex conjuga
tion and transposition, 

(~)T=(CT)*=2, (CT)T=C, (~)*=c, 

constrained by 

* * T un = Wn , r= - r, ::::}r = r· (2,18) 

Complex conjugation * is a pure innerautomorphism, and 
transposition is * followed by t . They are defined in terms of 
an element CER I,3 that depends on the spinor basis, 

(~) = (Cror)c(Cror)-1 = (Cro)rs(c)(Cro)-1 

= C~tC-I, 
cT = ~t = C~ C-1,::::}CrI'C-1 = - r!, 

where 

C t -I -C-=C, =±C. (2.19) 

For the basis (2.15) we have 

and 

(2.20) 

The constraints of (2.18) were placed on * so that the repre
sentative matrices (2.17) also satisfy (2.20) where * be
comes complex conjugation of components. 

The discrete spinor transformations of Dirac theory 
representing parity P, time reversal T, and charge conjuga
tion C (written in capital bold Roman letters) are: 

P(c)= ± roc, 

T(c)=ctC-le~TYa,= -roCr2e~TYa, (C= +a2 ), 

(2.21 ) 
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where tPr and tPc are arbitrary real constants. Of these three, 
only the parity representative could be guessed without prior 
knowledge of the Dirac wave theory. The choice of" ± " is 
left to convention, both generate the same connected part of 
the group and both have the same effect on vectors. The 
projective representative of time reversal is antilinear, satis
fies T2 = - I, does not change parity or charge, but flips the 
spin eigenvalue. The projective spin representative of charge 
conjugation is antilinear, satisfies C2 = I,flips the parity and 
the charge, but not the spin. We give the matrix representa
tives of the discrete transformations using the Zn basis 
(2.15) rather than the Wn basis because we need them in Sec. 
III: 

P(Zn ) ==ZA P~, T(zn) ==ZA T~, C(zn ) ==ZA C~, 

where 

0) T= (u2 

-/ ' 0 

(2.22) 

In the above we have described a representation of a 
group we call the homogeneous group H without discussing 
the structure of H itself. Our point of view is that H consists 
of eight disconnected parts, the identity component being 
SI(2,C) XVI and the other seven given by products of 
SI(2,C) X V I and one or more of P, T, and e. The structure 
of this homogeneous electron-positron invariance group is a 
direct product ofPin l ,3 and the gauge group G, which con
sists of the phase rotations V I and charge conjugaton e, 

H = Pin1,3 X G. (2.23) 

The Pinl ,3 group consists of the four disconnected parts de
scribed below (2.10) and the G~VI ® {I,e} group con
sists of two parts, giving eight all together. In G the semidi
rect product action of e on VI is u-+u- I

• The spin 
representatives of H are just the transformations of R 1,3 gen
erated by products of left multiplication by (2.10), right 
multiplication by (2.14), and (2.22) actions; and leave in
variant a Hermitian inner product on R 1,3 (considered as an 
eight-dimensional complex representation space with r on 
the right defining the. complex structure). The Hermitian 
(Dirac) inner product is the familiar one constructed using 
Pauli reversion, 

(C I ,C2) == (cfrOC2)s+PS = (drocI);+ps = (C2,CI)t, 
(2.24) 

where s + ps stands for scalar and pseudoscalar (i.e., 
V O ED V4) parts only. When t is applied to the unit pseudosca
lar r in (2.2) it changes its sign, i.e., changes ito - i as 
required of Hermitian inner products. In other words, 
(2.24) says that to compute the Hermitian inner product of 
c i and C2 considered as two eight-dimensional complex vec
tors in R 1,3' use the 16-dimensional real Clifford algebra 
multiplication to evaluate ci rOc2 and keep only the scalar 
and pseudoscalar parts, remembering that the unit pseudo
scalar r of the Clifford algebra, when acting on the right, is 
equivalent to multiplying by the unit imaginary "r' of the 
complex field. We observe that because (R 1,3 + ,R 1,3 _ ) = 0, 
the Hermitian inner product provides an inner product on 

2195 J. Math. Phys., Vol. 31, No.9, September 1990 

each spinor s~bspace separately, i.e., on R I ,3 + ; it is the fa
miliar Dirac 'I1ct>, 

(wn,wA ) = (Zn,zA) = (~ _~), (2.25) 

wherezn andwn are basis vectors of (2. 15). We also observe 
that when the Boosts are excluded from the homogeneous 
group, invariance of (2.24) is equivalent to invariance of the 
Hilbert space inner product 

«CI,C2»==(CrC2)s+Ps = (dcI);+ps = «C2,CI»t, 
(2.26) 

which on R I •3 + is simply 

«zn h» = 8m :. (2.27) 

With respect to this inner product, the identity and parity 
component representatives are unitary whereas the time re
versal and charge conjugation component representatives 
are projective and antiunitary. 

For a global picture we wish to look at the homogeneous 
group H as the Lie group of a trivial principal fiber bundle 
HBoverM 4, 

HB~M4XH-+M4. (2.28) 

We call this the homogeneous bundle and think of it as an 
enlargement of the bundle of orthonormal frames for M4 
(whose global gauge group is the homogeneous Lorentz 
group and whose fibers consist of only four disconnected 
parts). We take this point of view primarily to avoid double
valued representations. It is sometimes beneficial (but incor
rect) to think of HB as the spinor frame bundle. One obvious 
incorrectness occurs because of the projective action of the T 
and e components on the spinor frames. The invariance 
group P, of Dirac's free electron-positron theory is a semidi
rect product of space-time translations R 4 and the homoge
neous group H, 

(2.29) 

and can be thought of as the Poincare group enlarged to 
remove double-valued representations of the Lorentz group 
as well as to include V I and charge conjugation e. In (2.29), 
H is the isotropy of the origin (x = 0). The inhomogeneous 
group acts as fiber preserving mappings on HB, (r,h)EP acts 
on (x,h ')eHBby 

(x,h')-+(r+h(x),hh'), (2.30) 

where the h action on x is the expected vector action for 
hEPin l ,3 and is ineffectual for hEG. Here, P is seen to act as a 
group of bundle automorphisms because its action com
mutes with the H action of HB. The isotropy subgroup 
Hx CP is isomorphic to H and consists of those inhomogen
eous transformations that leave XEM4 invariant, 

III. WIGNER'S INDUCED REPRESENTATION 
PROCEDURE 

(2.31 ) 

Dirac electron-positron theory contains another repre
sentation of the semidirect product (2.29) beyond the four
component spin representation given in Sec. II. In this sec
tion we use Wigner's procedure for constructing induced 

Cho, Diek, and Kantowski 2195 



                                                                                                                                    

representations to construct this second representation that 
is in fact faithful, irreducible, and unitary9-14 We are neces
sarily careful to keep track of the gauge group action and the 
discrete transformations. In Sec. IV we apply Segal's quanti
zation procedure to this infinite-dimensional representation 
and arrive at free positron-electron quantum field theory. 

To construct a unitary representation of the inhomogen
eous group R 4 ® H, Wigner's procedure requires first the 
selection of a one-dimensional representation of the transla
tions (often called a character); 

x:R 4--+ UI¢}x(r) = e-rp"r" = e- rmCl", (3.1) 

to which we have already adapted a global frame ell (fixes eo 
only). We have selected a character appropriate for a mas
sive particle and, by using the complex structure mapping r 
rather than imaginary field unit "i," indicated that the trans
lations will act on the right of the four-component spinor 
space R I ,3 +. The subgroup LCH whose vector action 
leaves eo (and hence X) invariant is called the Little group 
and is generated by products of spatial rotations 
SV2 CSL(2,C), VI phase rotations, parity P, and charge 
conjugation C. The Little group L thus consists of four dis
connected parts: the indentity component SV 2 X V I and 
three other components generated by multiplications with P 
and C. The second needed ingredient in the Wigner con
struction is an irriducible unitary representation of L. In the 
electron-positron case this representation is given by the 
L CH actions on R 1,3 + described in Sec. II. Even though, as 
a representatin of H, the four-component spin representa
tion is not unitary, as a representation of the subgroup L, it is 
[see (2.26)]. Vnder L actions, R I ,3+ decomposes into the 
direct sum of two orthogonal two-component Pauli spinor 
subspaces of opposite parity, 

R I,3+ = +R I,3 EB _RI,3+' 

± RI,3 + = [(l ± ro)/2]RI,3 + . (3.2) 

Each is invariant under SV 2 and parity P [P of (2.21) ] but is 
exchanged by the action of charge conjugation C [C of 
(2.21 ) ]. This is easily seen by choosing (z I,Z2) and (Z3,Z4) of 
(2.15) as respective pairs of basis vectors. 

The next step in the Wigner construction is to define the 
infinite-dimensional complex vector space jy of functions 
from H / L ~ Boosts (part connected to coset L only) into the 
representation space for L, i.e., into R 1,3 + ' Time reversal 
actions are defined on these functions. The Boost actions on 
translations R 4 pull back to actions on the set of characters 
and make the Boosts topologically equivalent to the upper 
mass shell. In particular, 

(3.3 ) 

where the Boost parameters; ; are related to the mass shell 
point by (2.11), 

(~i/2)ai - (~i/2)ai A" nI-'/ (3.4) 
e roe = r" ° = r"l' me. 

Consequently, jy is equivalent to functions from the upper 
mass shell to R I ,3 + ' i.e., four-component spinor valued 
functions ofpi', 1/J(pI') = Zn ~(pI'). Notice that the compo
nents ~(pI') appear on the right of the basis vectors Zn 
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because the complex structure has been defined as right mul
tiplication by r, 

The induced action U(r,h) of (r,h)eR ti)H on .,pe,7t" is, 
for sESL(2,C) CH, 

[U(O,S) 1/J] (pV) = e - (~i/2)aiSewi/2)ai1/J(A - Iv ApA), 

(3.5) 

where S is the four-component spin representative of s [see 
(2.10)], A - Iv A is related to Sby (2,11), and;'; is related 
top,v=A -Iv ApAby (3.4). The combination 

W(s,p) =e - (~i/2)aiSe(~"/2)ai = e - r(w/2)'u (3.6) 

is commonly referred to as a Wigner rotation with ro(s,p) 
being the three rotation angles and is represented by a direct 
sum of two SV2 rotations. With respect to the Zn basis of 
(2.15) we have the matrix representation, 

W(s,p)zn = ZA (W)~, 

(W) = (
D 1/2 0) 

o ulD 1/2uI ' 
(3.7) 

D 1/2= (e - ;"'0'/2). 

Here CT are the 2 X 2 Pauli matrices. For u (t/J ) E V I' the action 
is 

(3.8) 

The action of parity P is identical to (3.5) [see (2.21)], 

[U(O,P) 1/J] (po,p) = ± ro1/J(po, - p). (3.9) 

The action of time reversal T follows (2,21), 

[A(O,T) 1/J] (po,p) =f/J(po,p)C -le¢>TYa" 

= - ro1/J(po, - p)r2e¢>TYa" 

as does the action of charge conjugation C, 

[A(o,c) 1/J] (pV) = r1/J(pV) roC -Ie¢>cra , 

= _ r1/J(pV)r2e¢>cra ,. 

(3.10) 

(3.11) 

Completing the induced representation, we use the charac
ter and have for translation rER 4, 

[ U(r,1) 1/J] (pV) = [(l + ro)/2] 1/J(pV)e - rp"r" 

+ [(l-ro)12]1/J(pV)e+ rp,"", (3.12) 

i.e., the two parity components are phase rotated oppositely 
by a translation. 

The Hilbert space inner product on jy for which (3.5)
(3.9), and (3.12) are unitary and (3.10) and (3.11) are 
antiunitary is 

«1/J,t/J»w = J dp«1/J(p),t/J(p»), 

where (3.13 ) 

dp= (21T) -3 (mc/po)d 3p , 

and where «1/J(p),t/J(p») is defined in (2.26). The invar
iant volume element is dp and the integration domain is the 
entire upper mass shell. To make clear the details of 
Wigner's induced unitary representation as well as to pro
ceed with Segal quantization in Sec. IV, we introduce the 
basis functions a A,q and e A,q : 
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aA,q (p) == (21T)3(qolmc)8\p - q)ZA' 

CA,q (p) == (21T)3(qolmc)83(p - q)ZA + 21 (3,14 ) 

where qo== + [m2c2 + q.q] 1/2 and A = {1,2}. The normali
zation has been chosen so that 

«aA,q,aB,p»"" = (21T)3 (qolmc)8AB83 (q - p), 

«CA,q'CB,p) tr = (21T)3(qolmc)8AB83(q - p), 

(3.15 ) 

The above group actions (3.8)-(3.12) on aA,q and CA,q 
are 

U(O,S)aA,q = aB,AqD (1I2)BA [ro(s,Aq»), 

U(O,S)cA,q = CD,AqufcD (I/2)CB [ro(s,Aq) ] of A , (3.16) 

where j =! representation matrices D 1/2 are defined by 
(3.6) and (3.7): 

U + Y¢ A -B + Y¢T (O,U)aA,q=aA,qe , (O,T)aA,q=aB,_qU 2A e , 

U + Y¢ A -B + Y¢T (O,U)cA,q =cA,qe , (O,T)CA,q = -CB,_qU].A e , 
(3.17) 

U A -B +~ 
(O,p)aA,q = ± aA,_q' (O,C)aA,q = - CB,_qUJA e , 

U TA -B +~ 
(O,P)CA,q = TCA,-q' (O,C)CA,q = - aB,_qCT)Ae , 

follow from (2.22) and complete the unitary and projective 
anti unitary actions of the homogeneous group on the basis 
functions we use for K. Now, 

U - yq,,'" U - + yq,.'" (3 18) 
(r,l) aA,q = aA,qe , (r,/) CA,q - cA,qe , ' 

give the unitary actions of the translations, 
The action of the isotropy subgroup Hx r;;;:,H of the point 

XEM4 on the basis aA,q,cA,q' see (2.31), can easily be con
structed by applying a homogeneous transformation 
heHr;;;:,Hx=o, e.g" (3.16) and (3.17) followed by (3.18) 
with r = x - hex). 

IV. SEGAL QUANTIZING WIGNER'S INDUCED 
REPRESENTATION 

In this section we construct the complex Clifford alge
bra Crff associated with the Hilbert space K in Sec, III, This 
is the algebra of annihilation and creation operators of Dir
ac's electron-positron theory. To construct this algebra we 
follow the procedure described by Shale and Stinespring and 
frequently called Segal quantization,15-2I,28-30 The proce
dure starts by identifying the complex space K with a real 
Hilbert space K R possessing a symmetric inner product, 
followed by the construction of its associated Clifford alge
bra Crff R according to the prescription given in (2.1). This 
real infinite-dimensional Clifford algebra, when complexi
fied, becomes the desired operator algebra Crff. Because this is 
the second vector space ..... Clifford algebra construction re
quired to obtain a quantum field theory of electrons and 
positrons, we call it second Cliffordization, 

In the first step of second Cliffordization, complex vec
tors rp, (JeK, are mapped, respectively, one-to-one onto real 
vectors rp R ,r/J R Efft" R in such a manner as to relate real and 
complex inner products by 

(r/JR,rpR) R == «(r/J,rp»y + «rp,r/J»y )/2. (4,1) 

Multiplying rpEfft" by the unit imaginary number r does not 
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give an independent vector t/J'yEK; however, their images in 
KR ,rpR , and (r/Jr) R are not only independent but, according 
to (4.1) are orthogonal. Multiplication by r in K induces a 
complex structure on K R, rR IKR ..... K R defined by 

rR[rpR]==(r/Jr)R' (4,2) 

and satisfies the required r R r R = - I. Every complex lin
ear transformation of K induces a corresponding real linear 
transformation K R that commutes with this complex struc
ture, In particular the unitary invariance group U"" of 
«,»;;y is easily seen to be isomorphic to the subgroup of 
(,h invariant orthogonal transformations QR,y that com
mute with rR' i.e., every U;;yEU,;;y satisfies Uy ..... OR for 
some OR provided 

(QRr/JR,ORrpR h = (rpR,r/JR )'R for all r/JR,rpREfft"R 

and 

rROR = ORrR' i.e., provided OR EOR,y· (4.3) 

Notice that r++rR belongs to this isomorphism. In terms of 
the basis functions (3.14) of K, the one-to-one K++KR 
mapping appears as 

a A,q ++a RA,q , a A,q r++r R [ a RA,q ] , 

C A,q ++C RA,q , C A,q r++r R [ C RA,q ] , (4.4) 

and from (3.15) and (4.1 ) the symmetric real inner product 
of basis vectors becomes 

(aRA,q,aRB,p) R = (CRA,q,CRB,P) R 

= (21T)3(qolmc)8AB83(q - p), 

( r R [ a RA,q ] ,r R [ a RB,p ] ) R = (r R [ C ~,q ] ,r R [ C RB,P ] h 
= (21T)3(qolmc)8AB83(q - p), 

(aRA,q,CRB,P) R = (rR [aRA,q ],rR [CRB,P]) R = etc. = O. 
( 4.5) 

The real vector space K R plays the same role as the four
dimensional Lorentz inner product tangent space of M4 
plays in Sec. II, and the above orthonormal basis plays the 
role of the ep.' The unitary representation p ..... U:,r, of the 
inhomogeneous group (2.29), whose action on the basis vec
tors (3.14) of Kis given by (3,16) to (3.18) and preserves 
(3.15), would now appear as an orthogonal representation 
appropriately transforming the basis vectors (4.4) while 
preserving (4.5). 

Following (2.1) an infinite-dimensional Clifford alge
bra Crff R can be constructed from K R' We write the isomor
phic image of K R in Crff R as Crff 1, and write the image vectors 
in boldface rather than with a "1" superscript as in (2.1). 
For example, the K R ++ Crff 1 mapping of basis vectors is 
written as 

a~,q++aA,q, rR [aRA,q ]++r[ aA,q], 

CRA,q++CA,q' rR [CRA,q ]++r[ CA,q]' (4.6) 

This basis identification is equivalent to e p. ++r p. for M 4, The 
Clifford algebra C(j R is generated by all real linear combina
tions of products of C(j 1 basis vectors, 
{aA,q ,CA,q ,r[ aA,q ] ,r[ CA,q]}, and can be expressed as 

C(j R = Crff~ Ell Crff1 Ell Crff1 Ell Crff1 Ell "', (4.7) 

where Crff~ stands for all real multiples of the identity oF, C(j 1 
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for all real linear combinations of basis vectors 
{aA,q,CA,q,r[ aA,q] ,r[ CA,q]}, 'iff~ for all real linear combina
tions of products of pairs of basis vectors with no two pairs 
being equal, e.g" aA,q8B,p where A #B or q#p, 'iff~ for all 
real linear combinations of products of triples of basis vec
tors with no two being equal "', etc. Linear combinations 
include integrations over the continuous mass shell indices 
q, p, etc. The Clifford algebraic multiplication constraint 
(iii) of (2.1), evaluated using (4.5), appears as 

aA.qaB,p + 8 B,p8A,q 

= r[ 8A,q] r[ 8B,p] + r[ 8B,p] r[ aA,q] 

= 2(21T)3(qolmc)I5AB I53(q - p)f, 

aA,qCB,P + cB,paA,q 
(4.8) 

= r[ aA,q] r[ cB,p] + r[ cB,p] r[ aA,q] 

= etc, =0, 

Because :7t'R is isomorphic to 'iff 1 every orthogonal trans

formation of :7t'R in OR,1' corresponds to an orthogonal 
transformation of 'iff 1. In particular, the complex structure 
mapping rR I:7t'R -:7t'R corresponds to the mapping 
rl C(; 1- C(; 1 as indicated in (4.6). Since C(; 1 generates C(; R' 

an orthogonal transformation OR of C(; 1 can be extended to 
an algebra automorphism Oeo1' CAut( C(; R) of 'iff R by sim
ply requiring O(cICZ) = O(cl)O(CZ) and O(c l ) = OR (c l

) 

when CIE'iff 1. As an example, the r mapping extends to all of 
C(; R as an algebra automorphism; e.g., when r is applied to 
the identity f of C(; R' it gives f back. Consequently, r does 
not satisfy the required rr = - I to provide a complex 
structure for all of C(; R' However, 'iff R can be complexified 
by taking complex (rather than real) linear combinations as 
in (4.7); the resulting complex algebra C(; turns out to be the 
desired electron-positron operator algebra, 

C(; = C(;0 E9 'iff I E9 C(;2 E9 C(;3 E9 ... • (4.9) 

We will simply denote this complex structure by multiplying 
by the unit imaginary number "i" and • as complex conjuga
tion. Theautomorphisms 01' ofC(; R can be extended to 'G' by 
simply requiring that they commute with the new complex 
structure. In particular, r extends from C(; R to 'iff by requir
ing ri = ir. Here C(; I represents the space of all one-particle 
(electron-positron) annihilation and creation operators. 
Rather than using {8B,p ,cB.p ,r[ aB,p] ,r[ cB,p ]} as basis vec
tors, the more conventional set {bBp,b~,dBp,d~} can be 
used, 

b~ == H 8 B ,p + ir[ 8 B,p]) , 
(4.10) 

dBp==HcB,p +ir[cB,p])' 

The conjugate linear mapping tiC(; I _ 'iff I defined by (4.10) 
acts as the identity on C(; 1 commuting with r but anti com
muting with "i" multiplication. Because C(; I generates C(;, 
the t mapping can be immediately extended to a unique an
tiautomorphism of C(; by requiring that 

(c i + cz)t = cT + cL 

(cICZ)t = cicT. CICzEC(;, (4.11 ) 
... 

ci; = (r + ir'),F, Co = (r + ir')f EC(;°. 
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The fundamental antiautomorphism t is just the analog of 
reversion (2.5) for real Clifford algebras. The subset of self
conjugate elements (c t = c) is just those identified with the 
original Hilbert space:7t'~:7t' R' A complex algebra such as 
C(; with such an involuting, (ct)t = c, antiautomorphism is 
called a * algebra and with appropriate norm and comple
tion becomes a C* algebra. 3 I To make contact with the 
"CAR" algebra construction approach, one has only to 
complexify :7t'R with imaginary unit "t' by identifying it 
with C(; I. Then 'iff is the CAR algebra of this complex Hilbert 
space. 

In (4.10) careful attention must be paid to the indices 
A,B = {1,2} being up or down. This index must be raised 
and lowered with the Pauli spinor metric, e.g., with 

-AB _ '.-.4 ( 0 1) 
~ = € AB = lu 2B = _ 1 0 ' 

~C€BC = 15~. (4.12) 

The operators appearing in the Dirac fields'll (x) and 'lit (x) 
are with the "A " index "up," 

b:==~lbBp' b:t==~lb~, 

b - bA bt - bAt t Bp - € AB P' Bp - € AB P' e c., 
(4.13) 

and from (4.8) satisfy the required anticommutation rela
tions, 

= (21T)3 (qolmc)I5ABI53 (q - p),F, 

b:b: + b~: = d:~ + d:d: = etc. = O. (4.14) 

The r action on the conventional basis (4.10) is (using 
rr= -Ion 'iff I) 

r[bBp] = lbBp' r[ d~] = id~, 
r[b~] = -lb~, r[dBp] = - idBp' (4.15) 

We are now in a position to compute explicitly the ex-
tension of the inhomogeneous group's unitary action U;y 
(3.16)-(3.18) on:7t' to an 01' action on C(;I. By applying 
U(O,5) of (3.16) to (4.10) and using ( 4.13 ), the identity com
I>0nent of the homogeneous group acts according to 

O(o.S) bAq = DO/ZI(oo)B A bBAq,¢>O(O,S) b: 

= DO/Zl( _ oo)A bB 
B Aq' 

O(o,s)d~q = ufcDO'Z)(oo)C BafAdbAq,¢>O(o.s)d:t 

= a1 DO/2I( _ oo)B uC dDt 
IB C ID Aq' 

etc., where 

DO/Zl(oo)~ ==DO/ZIB A [oo(s,Aq)] 

satisfies 

* (u2D 1/2(OO)UZ)B A = D 1/2(oo)B A = D 1/2 ( - oo)A B' 

(4.16) 

We have used 0 's to represent these linear transformations 
because they are orthogonal on C(; 1 (and would be real uni
taryon C(; I if given the obvious Hilbert space inner product). 
Thej = ! unitary representation matricesD 1/2 are defined by 
(3.6) and (3.7). The UI homogeneous transformations from 
(3.17) act simply as 
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O bA - + idILA 0 bAt _ - idILAt 
(O,u) q - e 'Dq , (O,u) q - e 'Dq , 

O dAt- +i~dAt 0 d A -i~dA 
(O,u) q - e q' (O,u) q = e q' ( 4.17) 

Parity, time reversal, and charge conjugation from (3.17) 
extend to 

O(O,P) b: = ± b~q, O(O,P) b: t = ± b~tq, 
O(o,p)d: = +dA_ q, O(o,p)d: t = +d~tq, 

A bA -4 + i~TLB 
(O,T) q = U2B e U _q, 

A dA -4 - ;~TdB 
(O,T) q = u2Be -q, 

O bA -4 - ;~CdB 0 bA t -4 + i~cdBt 
(O,C) q = (TiBe q' (O,C) q = uiBe q , 

O dA -4 + i~Cl.B 0 dA t -4 - i~Cl.Bt 
(O,C) q = u3Be Uq, (O,C) q = u 3B e Uq , 

completing the orthgonal and projective antiorthogonal ac
tions of the homogeneous group on the basis for Crff I. Notice 
that P and C actions commute with the new complex struc
ture, "i" multiplication, but the T action has to be taken to 
anticommute with it. For this reason the action of C in 
(3.17) has been changed from A(o,c) -O(O,C) while the T 
action remains conjugate-linear and written as A (O,T) in 
( 4.18). From (3.18) the translations act on Crff I by 

O bA - -iq,,"'bA 0 bAt - +;ql''''bAt 
(r,l) q - e q' (r,I) q - e q , 

O dA -;ql''''dA 0 dAt +;ql''''dAt (4.19) 
(r,1) q = e q' (r,l) q = e q • 

The above linear orthogonal transformations Or are analo
gous to the linear Lorentz transformations (A;) of (2.11 ) 
for the four-dimensional M4 space. We now look for the 
equivalent of the Pin l ,3 group, i.e., the group ~ defined by 

and 

UE~¢:iUEct, 

UtU=f, 

UCrffIUt = <G'I. (4.20) 

The Pin covering of the orthogonal group ~ - Or is defined 
analogous to (2.11) by 

Uclut = Del, CIE<G' I, (4.21) 

and has a kernel ~ UI' i.e., e;~f -1. The complex Clifford 
algebra <G' can be thought of as a Hilbert space by defining a 
Hermitian inner product 

(CI,C2) = (CiC2)f, (4.22) 

where ( )f means the component of ( ) contained in 
<G'0 ex: f. In this way <G' can be thought of as a direct sum of 
Hilbert spaces (4.9), of which <G'0 is of dimension 1. The 
group ~ acting as a group of inner automorphisms (vector 
action) as in (4.20), acts unitarily on each <G'k separately. 
However, as a spinor action on the left, c - Uc, ~ acts unitar
ily mixing the ct k. The spin representation of this group is 
found precisely as we found the four-component Dirac spin
ors, by finding a primitive idempotent, Le., a projection oper
ator.32,33 One choice of the idempotent is 

= = lim II b1b1 td1d1 t v- I r f t' 
i-p ..t,; 

(4.23) 
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with the properties that 

fjJ2 = fjJ, fjJt = fjJ. (4.24) 

Note that we have used a discrete label "i" in place ofp and 
obtain the continuum by a limiting procedure. We assume 
that this process can be made rigorous;34 however, for our 
purpose the reader can take 

b1=_I_i dpb:, (4.25) 
..[V D j 

where the domains D; are disjoint, completely cover the up
per mass shell, and have invariant volume V. The b1t, d1, 
and d1 t are similarly defined and satisfy the expected anti
commutation relations, e.g., 

b1~f + bfb1t = 6~B f. (4.26) 

The important property of fjJ is that 

b:fjJ = d:fjJ = O. (4.27) 

The Fock vacuum state 10), is defined almost identically to 
fjJ except appropriately normalized, 

10) = lim II 2b1b1 td1d1 t. (4.28) 
,-p A,; 

The corresponding minimal left ideal Crff fjJ would be called a 
spinor space in analogy with (2.12) but is commonly called 
Fock space. It is generated by multiplying fjJ or 10) on the 
left by <G' and is spanned by the following basis states: 

{IO),b: tIO),~ tIO),b: ~:tIO), 

(4.29) 

where either A =/=B or p=/=q, etc. The normalization of the 
vacuum state is checked using (4.22), 

(010) == (10) tIO».,- = (~~ Q;4b1b1 td1d1 t t = 1. 

(4.30) 

The steps in (4.30) require using the idempotentcy ofb1b1 t 
and d1d1 t and decomposing b1 = (a1 - ir [ a1] ) /2 into 
self-conjugate parts as in (4.10). 

So far we have seen how familiar quantities, like the 
vacuum and the Fock space of a spin-half quantum field 
theory, emerge naturally from various algebraic quantities, 
such as an idempotent and its minimal left ideal in second 
Cliffordization. Since the minimal left ideal <G' fjJ provides a 
spinor representation of the linear orthogonal transforma
tions as defined in (4.16)-( 4.19), we can also see how phys
ical operators on the Fock space emerge as representations 
of the generators of inhomogeneous transformations. For 
example, for an infinitesimal translation by an amount e', we 
have from (4.19) 

O bA - ;ql'tI'bA (I . ~)bA 
(E,I) q =e q::::: -lq",e' q' (4.31) 

and from (4.21) the corresponding translation operator is 

(4.32) 

The momentum operators PI' are the representatives of 
translation generators and are only determined by (4.31) up 
to a generator of the kernel of the Pin covering as discussed 
in (4.21), 
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Ub~ U t = OlE,!) b~ 

=> [b~,PIL] = q"b~ 

=>PIL = ~ f dqq"b~~~ 
+ commuting terms. (4.33) 

Similar consideration can be carried out for the d's. Then the 
total momentum operator becomes 

plL = ~ f dq q"(b~~~ + d~td~) + (const)f. (4.34) 

The arbitrary constant term comes from the generator of the 
U I kernel and can be eliminated by requiring that the vacu
um be translationally invariant or equivalently 

PILIO) = ° =>const = 0. (4.35) 

That is, we require the vacuum state to have zero energy and 
momentum. This is equivalent to the normal ordering proce
dure in quantum field theory. The resulting Hamiltonian for 
free electrons and positrons is 

H=cpo=c~f dqqo(b~~~+d~td:), (4.36) 

where 

N~ - =b~~~, N~ + =d~td~ (4.37) 

are the number operators for the electrons and the positrons, 
respectively. 

The final physical observable we obtain is the charge 
operator Q. It comes from the infinitesimal phase transfor
mations (4.17), 

O(O,U) b~ = e + i~~ Z (l + i¢ )b~, 

o dAt = e+i~dAt_(I+ iA.)dAt 
(O,u) q q - 'I' q' (4.38) 

If the corresponding U of (4.21) is written as 

U = ei¢Qzf + i¢Q, (4.39) 

the reader finds by steps similar to (4.33 )-( 4.35) but even 
simpler, 

Q = ~ f dq( - b~~~ + d~td~) + (const)f. 

(4.40) 

Again, the constant term comes from the V I kernel and can 
be eliminated by requiring that the vacuum have no charge, 

QIO) = O=>const =0. (4.41) 

v. CONCLUSIONS 

In this paper we have tried to "tie together" some of the 
"loose ends" in the free electron-positron field theory by 
showing how the appropriate construction of two successive 
Clifford algebras can result in the free quantum field theory. 
The first Clifford algebra was associated with the tangent 
space of any point in Minkowski space and its Lorentz invar
iant inner product. The second was associated with an infi
nite-dimensional Hilbert space and its Poincare [enlarged 
(2.29)] invariant Hermitian inner product, which we con
structed (via Wigner's procedure) using the spinor repre
sentation of the first Clifford algebra. All elements of the 
noninteracting theory seem to be accounted for by this "sec-
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ond Cliffordization." In particular, the operator algebra of 
the free field theory is just the second complex Clifford alge
bra. The familiar abstract Fock representation appears con
cretely as a spinor representation space in the infinite dimen
sional algebra analogous to four-component Dirac spinors in 
the finite Minkowski algebra. Two obvious extensions of this 
work are to higher dimensions and to the inclusion of inter
actions with external fields. Extensions to other spins as well 
as to massless fields seem straightforward. 

ACKNOWLEDGMENTS 

This work was supported in part by the V.S. Depart
ment of Energy. 

The authors wish to thank R. Ablamowicz and S.T. Ali 
for suggesting improvements in the first version of this 
manuscript. 

I J. D. Bjorken and S. D. Drell, Relativistic Quantum Fields (McGraw-Hili, 
New York, 1965). 

2C.ltzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hili, New 
York, 1980). 

3W. K. Clifford, Am. J. Math. 1, 350 (1878). 
4C. C. Chevalley, The Algebraic Theory o/Spinors (Columbia Univ., New 
York, 1954). 

5M. Riesz, Clifford Numbers and Spinors, Lecture Series No. 38 (Institute 
for Fluid Dynamics and Applied Mathematics, U niv. of Maryland, 1958). 

6D. Hestenes, Space-Time Algebra (Gordon and Breach, New York, 
1966). 

7p. Budinich and A. Trautman, The Spinoral Chessboard (Springer, Berlin, 
1988); P. Lounesto, Found. Phys. 11, 721 (1981). 

81. M. Benn and R. W. Tucker, An Introduction to Spinors and Geometry 
with Applications in Physics (Hilger, Bristol, 1987). 

"E. P. Wigner, Ann. Math. 40,149 (1939). 
IOE. P. Wigner, in Group Theoretical Concepts and Methods in Elementary 

Particle Physics, edited by F. Gursey (Gordon and Breach, New York, 
1964). 

"G. W. Mackey, Ann. Math. 55,101 (1952). 
I2F. R. Halpern, Special Relativity and Quantum Mechanics (Prentice

Hall, Englewood Cliffs, NJ, 1968). 
I3D. J. Simms, Lectures Notes in Mathematics Yol. 52 (Springer, Berlin, 

1968). 
14y. S. Kim and M. E. Noz, Theory and Applications o/the Poincare Group 

(Reidal, Dordrecht, 1986). 
151. E. Segal, Ann. Math. 48, 930 (1947). 
161. E. Segal, Mathematical Problems in Relativistic Physics (Am. Math. 

Soc., Providence, 1963). 
I7D. Shale and W. F. Stinespring, Ann. Math. 80, 365 (1964). 
18D. Shale and W. F. Stinespring, J. Math. Mech.14, 315 (1965). 
19R. F. Streater, Rep. Prog. Phys. 38, 847 (1975). 
20J. M. Cook, Trans. Am. Math. Soc. 74, 222 (1953). 
21M. Weinless, J. Funct. Anal. 4, 350 (1969). 
22y. Fock, Z. Phys. 75, 622 (1932). 
23p. Lounesto and E. Latvamaa, Proc. AMS 79,533 (1980). 
24p. Lounesto and G. P. Wene, Acta Appl. Math. 9,165 (1987).' 
25 A. Crumeyrolle, Algebresde Clifford et Spineurs (Univ. of Toulouse, Tou

louse, 1974). 
26R. Ablamowicz and P. Lounesto, in Clifford Algebras and Their Applica

tions in Mathematical Physics, edited by J. S. R. Chisholm and L. K. Com
mon (Reidel, Dordrecht, 1985). 

27K. Bugajska, J. Math. Phys. 27,143 (1986). 
28p. J. M. Bongaarts, Ann. Phys. 56,108 (1970). 
29p. J. M. Bongaarts, in Mathematics oJContemporary PhYSics, edited by R. 

F. Streater (Academic, New York, 1972). 
"'p. Broadbridge and C. A. Hurst, Ann. Phys. (N. Y.) 137, 86 (1981). 
31H. Araki, in Quantum Theories and Geometry, edited by M. Cahen and M. 

Flato (Kluwer, Netherlands, 1988), p. I. 
32G. P. Wene, J. Math. Phys. 30, 249 (1989). 
33 A. Crumeyrolle, Rep. Math. Phys. 25, 305 (1987). 
34S. T. Ali has suggested to us a smoothing operation to legitimize the limit. 

Cho, Diek, and Kantowski 2200 



                                                                                                                                    

Dirac quantization of massive spin-one particles in an external symmetrical 
tensor field 

Teymour Oarkhosh 
Diuision of Natural Science and Mathematics, St. Mary's College of Maryland, St. Mary's City. 
Maryland 20686 

(Received 29 September 1989; accepted for publication 25 April 1990) 

Dirac's method is used to quantize massive spin-one particles interacting with an external 
symmetric tensor field. It is shown that Dirac equations of motion are identical to Euler
Lagrange equations and that tiP, the Oth component of the unknown field, is the only 
component that depends on the external field. Furthermore, Dirac commutators of the field 
and the Lorentz generators are calculated. It is shown that the field components except </J0 
transform like components of a free field, and that </J0 transforms like a field component in an 
external potential. 

I. INTRODUCTION 

Wave equations for higher spin particles, i.e., particles 
with spin ~ 1, in the presence of external interactions suffer 
from a variety of ill effects. The most fundamental flaw in the 
theory is the acausal behavior where certain components of 
the field propagate faster than the speed oflighe and conse
quently violate a principle of the special theory of relativity. 
The source of the problem is that in the presence of external 
interactions, it is not possible to eliminate the unwanted field 
components using the constraint equations. 

Although acausality surfaces in classical field equa
tions, it is of interest to examine the presence of constraint 
equations in quantum field equations. Also, because acausa
lity indirectly implies that the theory is not invariant, it is 
essential to see if the unknown field transforms properly un
der the Lorentz transformations. 

In this paper, we will consider the Proca wave equa
tion,2 the simplest wave equation suffering this ill effect. We 
quantize the field using Dirac's method of quantization3 and 
use the Hamiltonian method to derive the equations of mo
tion. We will then show that the method of quantization is 
consistent with the Lagrangian equations of motion. 

This consistency has been shown for the Rarita
Schwinger wave equation in the presence of an external elec
tromagnetic field.4 We will also show that </J0 is the only 
component that depends on the external field and that this is 
consistent with the Lorentz transformation of </J0. 

Our notation is that of Bjorken and Drell.5 The metric 
tensor, gaP, is defined as gDD = 1, gIl = g22 = ~3 = - 1. 
Greek indices range from 0 to 3; Roman indices range from 1 
to 3. The summation rule for repeated indices is used 
throughout the paper. 

We assume that the external field is an explicit function 
of space-time, xl", and define the total derivatives, df.l, as 
df.l = i[pf.l, ] + af.l, where pf.l is the four momentum opera
tor. All the derivatives that appear in the Lagrangian density 
and the Euler-Lagrange equation are total derivatives. 

II. DIRAC METHOD OF QUANTIZATION 

In this section, we begin by applying Dirac's method of 
quantization for constraint systems6 to the Proca wave equa-

tion in the presence of an external field. The Lagrangian 
density that we are interested in is given by 

!.t'= -1GaPGaP +m2</J'</J+ (A/2)</J'T'</J, (2.1) 

where G ap ~ d a</JP - d P</Ja, and TaP is a symmetric exter
nal field, TaP = TPa, which depends on space-time, xl", ex
plicitly. 

The conjugate momentum is defined 

'TTl"=. a.!( = GI"°, (2.2) 
a</JI" 

where ~f.l is the total time derivative of </Jf.l. The primary 
constraint follows directly from (2.2): 

XI =.G oo = ~~O. (2.3) 

The expression (2.3) is weakly equal to zero, meaning that it 
should be set equal to zero after all the commutation rela
tions have been calculated. 

The Hamiltonian density is 

~='~~a -!.t', (2.4 ) 

and the Hamiltonian is given by 

H= J ~d3X. (2.5) 

Using the explicit form of!.t' and adding a three-diver
gent, the Hamiltonian density becomes 

~ = - !tf'TT/ + 1 GijGij - (m 2 /2)</J'</J 

- (A 12)</J' T'</J - (d/'TTi)</J0. (2.6) 

Now we impose the following condition: 

[~(x),</Jp(Y) ]"'0=1' = - i~/3~3(X - y). (2.7) 

Following Dirac, we define the total Hamiltonian density: 

~t = ~ + uIXI' (2.8) 

Note that U I is a function of the field components to be deter
mined later. 

To qbtain the secondary constraints, we use 

(2.9) 

After substituting for XI'~ and using (2.7), we get the sec
ondary constraint: 
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X2 = di1l + m2(1 + (..t 1m2) T~;o + ..tTOi;i = O. 
. (2.10) 

Following the same procedure, we do not get new con
straints. However, we do obtain a relation for U 1: 

U 1 = 2 - 1 2 ~ [m2di;i + ..tdiT
ia;2 

m (1 + (..tIm )T 

(2.11 ) 

Since the external field depends on xl' explicitly, so does X2' 
To calculate the generalized commutation relations, we 

need to calculate the matrix formed by the constraintsr 

[X;oXJ]' The matrix is 

(~-~)im2(1+~2Too}53(x-y). (2.12) 

The inverse of (2.12), C = [X,X] -1, is 

C=(_~ ~)[im2(1+ ~2 T oo)]-163(x_ y ). 

(2.13 ) 

We define the generalized commutation relation 
between two field dependent quantities as 

(2.14 ) 

Using the above commutation relation, the commuta
tors of different field components are 

[;i,;J] * = [1Ti,nJ] * = [~,;O]* = 0, 

[1I,;J] * = -igiW(x-y), (2.15) 

[;i,;OJ* = m2(1 + (~:m2)Too) a i
6

3
(x_y). 

Now we will compare the equations of motion derived 
using Dirac's generalized Hamiltonian method and those 
derived directly from the Lagrangian density. Fi~t consider 

[Ht ,;i]*=i1l-id i;0= -i~i, (2.16) 

which implies that ao¢Ji = 0, i.e., ;i is not an explicit function 
of time and does not depend on the external field, TaP. Next 
we consider 

(2.17) 

We set (2.17) equal to - iiT'<, and to be consistent with 
(2.7), we assume that 11 is not an explicit function of time. 

We get 

dp, GJ.'k + m2;k + ..tTk.; = o. (2.18) 

The expression (2.18), when combined with the secondary 
constraint, X2' gives the Euler-Lagrange equation 

dp,GJ.'a+ m2;a+..tTa·;=0. (2.19) 

Following a similar procedure for ;0, we get 

[H,,;O] * = - iU t - (1 + (..t:m2)T~ aoX2' (2.20) 

and using the expression for U t , (2.11), we can write 

2202 

[H ""0]* _ i [m2d ""i 
,,'1' - m2(1 + (..t 1m2) TOO) i'l' 

+ ..tdi Tia;a +'..tTOidot,b;). (2.21) 
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Setting (2.21) equal to - i(~O - ao;o), we have 

m2d'; + ..td· T'; 

- [m2(1 + (..t 1m2) Too)ao¢J° + ..t(a· Toat,ba] = O. 
(2.22) 

Now if we take the divergence of (2.19), we get 

m2d't,b + ..td· T'; = 0, 

which implies that 

a ",,0 - -..t (d T Oa )"" 
0'1' - (1 + (..tlm2)T~ ° 'l'a' 

(2.23) 

(2.24) 

The expression (2.24) shows that t,bo depends on time expli
citlyand in tum on the external field. In our formulation, it is 
the only field component that depends on the external field. 
Therefore it is reasonable to assume that ;0 is responsible for 
the acausal mode. 

III. POINCARE GENERATORS 

In this section, we use the Dirac commutation relation 
to examine the transformation ofthe field components under 
the Poincare group. 

The momentum operator is given by 

pi = f r i d 3x, (3.1) 

where /Oi = 1TJd i;J is the momentum tensor. 
Using the Dirac commutator, we find 

[Pi,;J] * = _ idi;J. (3.2) 

Combining (3.2) and (2.16), we can write 

[pa,t,bJ] * = -idat,bJ. (3.3) 

In the above expression, we have taken r to be H t • 

Comparing (3.3) with the general formula, 

[pa,FJ* = - idaF+ iaaF, (3.4) 

where Fis a general field, we conclude that a a;J = 0, i.e.,;J 
is not an explicit function of space-time. 

The com.:nutation of pi and ;0 reveals 

[Pi,;OJ * = i[ dkd i1l + ..tTOkdi;p,]. (3.5) 

Substituting for d k 11 from (2.10), the above expression be
comes 

[pi,t,b0J*= -idit,b0- a (aiToa)t,b . 
m2(1 + (..t 1m2) TOO) a 

(3.6) 

Relations (3.6) and (2.24) imply that the explicit depen
dence of ;0 on xl' is given by 

aJ.'''''o = _ ..t (aJ.'TOa).I. (37) 
'I' m2(1 + (..t 1m2) TOO) 'l'a" 

If we use the chain rule, 

a mt,b0 = at,b° aToa 
aTOa axp, , 

we get the dependence of t,b0 on TOa, namely 

(3.8) 

at,b° A 
aTOa = - m2(1+(..tlm2)Too)t,ba' (3.9) 

Now to examine the transformation property of the field 
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components, we use the angular momentum operator, which 
is derived from the action integral and given by 

JlJJaP = (xa /!JfJ _ xP /JJa) _ GJJarP + G!JfJt/>a. (3.10) 

The calculation of the commutaton relations between J afJ 
and t/>\ where JaPis defined asJafJ = f d 3x Jl0aP, yields the 
following result: 

[JafJ,t/>k]* = - i(xad fJ _ xPda)t/>k 

- i(g"kgPl' - gfJlg"JJ)t/>JJ' (3.11) 

Expression (3.11) shows that t/>k transforms as a free spin
one field. A similar computation for t/>0 yields 

[JafJ,t/>0] * 

.( ad fJ xPd a)t/>0 ill. = -I X - - m2(1 + (Ii. 1m2) TOO) 

Xt/>u (xaa fJ - xPa a) TOu - i(g:zogP° - gP°g:zo)t/>u 

ill. 
+---::----~:---::-::-

m2(1 + (Ii. 1m2) TOO) 

x (TOarP- TO{Jt/>a_g:zoTfJ.t/». 

(3.12) 

When (3.9), the dependence of t/>0 on the external field, is 
used, expression (3.12) takes the following form: 

2203 

[JafJ,t/>0] * = _ i(xad fJ _ xPd a)t/>0 

+ i at/>° (xaa fJ _ xPa U ) TOu 
aTOa 
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- i(g:zog» - gP0g"U)t/>u 

+ i at/>° (g:zoTufJ + gP0Tua 
aTou 

+ g"uTOfJ _ g»TOa). (3.13 ) 

Expression (3.13) is consistent with the transformation of 
field components coupled to external interactions.7 The first 
two parentheses are the transformation of t/>0 and TaP under 
rotation and the last two parentheses are the transformation 
of a vector field and a tensor of second rank. 

Thus, we have shown that the t/>k components of the field 
are not affected by the external field and transform as a free 
spin-one field. However, t/>0 transforms as a field component 
coupled to the external field, Tr;), and is responsible for the 
acausal propagation. 
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The problem of embedding a Demianski cavity with small rotation parameter in an 
appropriate rotational perturbation of a pressureless Friedmann universe with a A term is 
considered. The relation between the coordinate change introduced by Schucking [Z. Phys. 
137, 595 (1954)] for this kind of problems and that used for the simple model of Oppenheimer 
and Snyder [Phys. Rev. 56, 455 (1939)] for gravitational collapse is also discussed. 

I. INTRODUCTION 

The problem of matching the two most important exact 
solutions of the Einstein equations, those of Friedmann
Robertson-Walker and Schwarzschild, was considered by 
Einstein and Straus, I who analyzed the influence of the uni
verse expansion on the gravitational field surrounding an 
individual star. In the Einstein and Straus model, a spherical 
vacuum region containing at its center a Schwarzschild mass 
is cut out inside a pressureless cosmological fluid.The 
matching of metrics found by Einstein and Straus depends 
on the unknown solutions of some differential equations. A 
more explicit solution for the same problem was presented 
by Schucking2 and his work has been recently extended to 
the case of the non-null cosmological constant by Balbinot et 
aC 

Related problems of embedding the Schwarzschild solu
tion in cosmological backgrounds have been considered by 
Mc Vittie, 4 Dirac,s and Gautreau.6 Other spherical inhomo
geneities in cosmology has been considered in the so-called 
"Swiss cheese" models.7 In inflationary cosmology the dy
namics of false-vacuum spherical bubbles with a domain 
wall have also been analyzed. 8 

On the other hand, the original approach of Einstein 
and Straus has been extended to the case of a small rotation 
by Chamorro,9 keeping in mind that almost all large aggre
gations of matter in the universe have some form of rota
tion.In Chamorro's paper, the Kerr solution developed to 
first order in the rotation parameter is substituted for the 
Schwarzschild solution and a rotational perturbation of the 
Friedmann-Robertson-Walker solution is used as the exte
rior metric. This perturbation decays to zero as the spatial 
distance increases. 

In this paper we simultaneously extend the works of 
Balbinot et al. 3 and Chamorr09 by considering the matching 
of a Demianski solution 10 with a small rotation parameter in 
a spherical cavity cut out inside an external rotational per
turbation ofa Friedmann-Robertson-Walker universe with 
zero pressure and a non-null cosmological constant. Our re
sults are valid to first order of perturbation theory. Instead of 
the original approach of Einstein and Straus I we shall start 
from the equivalent, but more explicit method of Schuck
ing.2 

In addition, the local equivalence of two problems 

which correspond to very different physical and topological 
conditions seems to have been largely overlooked (one ex
ception would be the book by Stephani II). For example, the 
strictly local problems of matching the Schwarzschild and 
Robertson-Walker metrics in the Einstein and Straus va
cuole and in the model for a gravitational collapse ofOppen
heimer and Snyder, 12 where the exterior metric is Schwarzs
child and the interior one is Friedmann, are exactly 
identical. In fact, the latter work has been extended to the 
case of the collapse of a slowly rotating dust cloud by Ke
geles. 13 

We shall explicitly show the equivalence between the 
matching methods used in cosmological problems2

,3 and in 
the simplest models for gravitational collapse. 12-14 

II. THE PROBLEM 

We shall consider a spherical cavity where the space
time metric is the generalization of the Kerr solution to the 
case of the non-null cosmological constant given by De
mianski.1O Since we shall always keep only the first term in 
the expansions in the small rotation parameter €, this metric 
reads, to this first approximation, as 

ds2
_ - b dt 2 + (l/b)dr + r d{J)2 

- 2€ sin2 O( 1 - b )dt drp, (1) 

with 

b = 1 2M Ir (A/3),.z, d{J)2 = d0 2 + sin2 0 drp 2. 
(2) 

This metric satisfies, to first order in €, the vacuum field 
equations with a A term, 

RaP + Agap = 0, (3) 

and reduces to the Schwarzschild-de Sitter metric used in 
Ref. 3 when there is no rotation (€ 0) and to the expansion 
of the Kerr metric used in Ref. 9 when A = O. 

In the exterior of the cavity the metric will be a rota
tional perturbation of the Robertson-Walker metric in the 
form J3,9 

d~+ - dr + R 2( C - 2 dp2 + p2 d{J)2) 

- 2€p2R 2 sin2 8( W dr + X dp)drp, (4) 
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where C = ~I - kp2 (k = - 1,0,1), the scale factor R de
pends on r, and the functions Wand X depend on rand p. 

We suppose a cosmological fluid of pressureless dust 
moving with the four-velocity 

Ua = ( - 1 ,O,O,EL ( r,p,On, 

Ua = (I,O,O,E( W + L /p2R 2 sin2 0». (5) 

The stress-energy tensor isTap = aUa up and its conserva
tion gives the "total mass" A=~aR 3, which remains con
stant. Also, L=aL /ar = 0: This condition also guarantees 
that the motion of the fluid is geodesic to first order in E. 

It can be seen that under these assumptions the field 
equations 

RaP - !RgaP - Agap = - 81TGTap (6) 

give rise to the evolution equation for the scale factor, 

R = heR) =~81TGAR -\ - k + AR 2 (A = A/3), 
(7) 

and the following conditions on the functions L, W, and X: 

L = C/(p)sin2 0/2p2, X - W' =!(p)/p4CR 3, (8) 

where w'=aw lap and l(p) and!(p) are arbitrary except 
for the fact that they must satisfy 

f' = 241TGAI. (9) 

Finally, we shall also require the perturbation to vanish 
at infinite spatial distance, that is, 

lim Cl(p) = lim !(p) 
p-a p2 p-a p4 

= lim W( r,p) 
p-a 

= limX(r,p) = 0, (10) 

where a stands for 1 when k = 1 and for 00 if k = 0, - 1. 
The problem we face can be stated as follows: Given the 

values of the constants M, A, k, and A and the scale factor 
R ( r) satisfying Eq. (7), we seek a spherical surface 1: [with 
the equations r = roU) in internal coordinates and 
p = Po ( r) in external coordinates] and the functions 
L(p,O), W(r,p), and X(r,p) satisfying Eqs. (8)-(10) in 
such a way that the first and second fundamental forms are 
continuous across the surface. 

We shall work to order E throughout the paper, as indi
cated above, and will comment at the end on the approxi
mate nature of our solution. 

III. THE CONTINUITY OF THE METRIC 

To analyze the continuity of the metric across the 
spherical surface, we shall closely follow the method of "cur
vature coordinates" of Refs. 2 and 3. Thus we shall change 
the coordinates for the exterior metric from (r,p) to (t,r) by 
means of the implicit equations 

R(r) = ¢lU,r), p = r/¢l(t,r) , (11) 

with ¢lU,r) defined (implicitly, again) by 

F\(¢l(t,r» + F2(r/¢l(t,r» = GU), (12) 

with a function G(t) to be determined later and with 
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(l3 ) 

A more explicit expression for F\ is discussed in Ref. 3. 
Equations (12) and (13) are required in order to guar

antee that in the new coordinates the coefficient of dt dr van
ishes. Indeed, one can easily see that in the coordinates (t,r) 
the exterior metric reads as 

ds~ = _ ~ 62H2D2 dt 2 
4 B 

where 

+ ~ dr + r dol - 2Er sin2 0 
B 

X {( W - ;; X)! dt 

+ [( W - ~~ X )~ + ;]dr}dq?, (14) 

H(t,r) = ~81TGA¢l-1 - k + A¢l2, D(t,r) = ~¢l2 - k?, 

B(t,r) = 1 - 81TGAr¢l - 3 - Ar = ¢l - 2(D 2 - rH 2). 
(15) 

Next, we require continuity of the line element on the 
spherical surface 1: at r=roU)=R(r)po(r) 
= ¢lo(t,ro(t) )Po( r). By comparing the coefficients of dr in 
Eqs. (1) and ( 14), we see that2·3 

Po = (2M /81TGA) 1/3 = const. (16) 

Using Eqs. (12) and (13) to analyze the continuity of the 
coefficients of dt 2, we find 

ro = ro-312[ro - (2M +A~)] (2M + A~ 
- kp~ro)1/2(1- kp~) -112. (17) 

Equations (16) and (17) give the radius of the matching 
surface in external and internal coordinates, respectively. By 
using Eq. (16) and a solution ro(t) to Eq. (17), the function 
G(t) can be computed by means of the restriction of Eq. 
(12) to the surface of matching, which gives the relation 

G(t) = FI [ro(t)/po] + F2(po) (18) 

and then ¢l(t,r) can in principle be found from Eq. (12). 
This completely determines the change of coordinates in Eq. 
( 11) and guarantees the continuity of the metric to zeroth 
order in E. 

In addition, continuity of the coefficients of dt dq? and 
dr dq?, i.e., continuity of the metric to first order in E, gives 

Wo = Co( 1 - Bo)/p~R 2Bo, 

Xo = R(1 - Bo)/poRCoBo, 
(19) 

where the subindex zero means that the expression is valid 
only on the matching surface. Thus, for example, we have 

Co = ~1- kp~, 
Bo = 1 - 81TGAR - Ip~ - AR 2p~ 

=bo = 1-2M/ro-Aro· (20) 

Aguirregabiria et al. 2205 



                                                                                                                                    

In the particular case in whichA = 0, the results of Cha
morr09 are recovered. 

The matching surface can be seen as made of points that 
slowly rotate along the geodesics, with equations given in 
external coordinates by (5) with P = Po and in internal co
ordinates by (17) and 

dq; _ 1 + Nbo --€ , 
dt ?a 

N = l(po) - 1 = const. 
2P6 

(21) 

IV. THE CONTINUITY OF THE EXTRINSIC CURVATURE 

Since we assume that there is no singular domain wall at 
the points on the matching surface-which are in free fall in 
both metrics-we must require not only the continuity of the 
metric, but also that of the extrinsic curvature. 15 

By using the results of Sec. III it is easy to see that the 
outward normal unit vector in internal and external coordi
nates is 

n~ ~) = ( - poR,CoB o~ 1,0,0), 

n~ +) = (O,RC o~ 1,0,0). (22) 

We choose the intrinsic coordinates for !. as (SI, S2' 
S 3) = (1',B,q;); the associated basis of tangent vectors in in
ternal coordinates is 

e(T) = (CoB o~ l,poR,O,O), e(lJ) = (0,0,1,0), 

e(ep) = (0,0,0,1) 

and in external coordinates the basis is 

e(T) = (1,0,0,0), e(lJ) = (0,0,1,0), 

(23) 

e(ep) = (0,0,0,1). (24) 

It is possible to see that the components of the extrinsic 
curvature 

(25) 

as computed in both types of coordinates, are exactly the 
same at zeroth order in E, 3 but now we have the following 
first-order terms: 

K ( ~ ) = ~ E sin2 B 
Tep 2 

(3Bo - 2C6)( 1 - Bo) - Ap6R 2Bo 
X , 

poRBo 

K ~ep+) = i E sin2 BpoRCo[Po(Xo - Wb) - 2Wo]. (26) 

In consequence, using (19) we see that one must also 
require that Wand X satisfy, at !., 

(27) 

which reduces to the condition found by Chamorr09 when 
A=O. 

By a straightforward extension of the analysis in Ref. 9 it 
is possible to show that there exist the functions L(p,{}), 
W(1',p), and X(1',p) satisfying Eqs. (8)-(10), (19), and 
(27). This solves the proposed embedding problem. 

V. FINAL COMMENTS 

To match both metrics we have passed from the coordi
nates (1',p) to (t,r) by means of ( 11 ). It is equally possible, 
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of course, to express the coordinates (t,r) in terms of ( 1',p). 
In fact, the necessary inverse change of coordinates is a slight 
extension ofthe change used by several authors 14, 13 to deal 
with the model of gravitational collapse of Oppenheimer and 
Snyder2 and its rotational perturbation. 13 Although the to
pology and physical meaning of both problems are complete
ly different, the local problem of matching both metrics at a 
spherical surface is mathematically the same as the one dis
cussed above. The only different minor details are the rela
tive positions of the vacuum and dust solutions and the fact 
that in the problem of collapse one selects length units to 
have k = 81TGA > 0. Of course, there is no A term in the 
latter problem and instead of Eq. (10) other conditions l3 

must be imposed. 
In order to establish the relation between these two 

changes of coordinates used in different kinds of problems, 
we shall sketch the procedure to match both metrics in the 
coordinates (1',p). The change from the coordinates (t,r) to 
(1',p) is given by 

t= -CoI dR I ' r=pR(1'), (28) 
Bo(R)h(R) R=S(T.p) 

where the function S( 1',p) must be determined in the match
ing process. The latter can be accomplished in a way similar 
to that used in Secs. II-IV to obtain, obviously, the same 
final results. The relation between the changes (11) and 
(28) is given in terms of the functions defined in (13) by 

S(1',p) = U(FI(R(1'»+F2(p», (29) 

where the function U is implicitly defined by means of func
tion GU): 

( I dR I ) G - Co =x. 
Bo(R)h(R) R=U(x) 

(30) 

Finally, we want to comment on the approximate nature 
of our solution. The problem has been solved to first order in 
the rotation parameter E. If higher orders were considered, 
new features would.appear in the situation. In fact, it is to be 
expected that the solution to second order in E should require 
in general a nonspherical shape for the boundary of the De
mianski cavity. This is so because the centrifugal force only 
becomes effective to second order in the angular velocity of 
the dust (second order in E), therefore distorting to this or
der the originally spherical shape of the boundary. The rate 
of expansion of the boundary should also be in generallati
tude dependent in the second order, with that dependence 
determined by the initial conditions of the dust. This bears 
some resemblance to the results obtained by Brill and Co
hen 16 and Pfister and Braun 17 in their studies of the Machian 
induction of the inertial forces by a rotating shell. Pfister and 
Braun were able to extend Brill and Cohen's induction of the 
Corialis force (first order in the angular velocity of the shell) 
to the centrifugal force (second order in the angular velocity 
of the shell) by allowing for a prolate shell and a latitude
dependent mass density instead of the spherical and homo
geneous shell considered by the latter authors. 

It is perhaps worth stressing that our results do not 
guarantee the existence of an exact exterior cosmological 
solution matched to the Demianski cavity. However, the 
possibility of obtaining first-order results is a necessary con-
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dition for such a solution to exist at all. 
We do not see a priori reasons suggesting that an infini

tesimally thin wall at the boundary of the cavity must be
come necessary at higher orders. Postulating singular do
main walls in embedding problems relaxes the requirement 
of the matching of the extrinsic curvatures and therefore 
makes the embedding much easier. However, under the usu
al conditions of our present universe, most embeddings with 
an infinitesimal wall should be regarded as limiting cases of 
the more realistic smooth embeddings, where continuity of 
the extrinsic curvature holds in addition to that of the met
ric. An example in this direction is that of expanding voids in 
the universe: Their relativistic treatment has usually been 
undertaken within the context of the thin wall approxima
tion. 18 However, the existence of expanding voids without 
thin walls smoothly embedded in asymptotically Fried
mann-Tolman universes can be shown. 19 
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An exterior solution is obtained for a charged radiating sphere in higher dimensions. The 
solution reduces to an earlier one obtained by Krori and Barua [J. Phys. A 7,2125 (1974)] 
when the space-time dimension is four, and to one obtained by Iyer and Vishveshwara [J. 
Phys. 32, 749 (1989)] when the electromagnetic field is switched off. 

I. INTRODUCTION 

Finding a theory that unifies gravity with other forces in 
nature remains an elusive goal in quantum field theory. Most 
recent efforts in this search have been directed at studying 
theories in which the dimensions of space-time is greater 
than the (3 + 1) of the world that we observe. The earlier 
suggestion of Kaluza and Klein that the topology of an extra 
dimension is a circle S ' of very small radi us, obtaining in this 
way a unified theory of gravitation and electromagnetism 
has now been replaced by what is called spontaneous com
pactification according to which solutions to (4 + k)-di
mensional Einstein's equations exist for which 4-D space
time expands while extra dimensions contract or remain 
constant at planckian length. 1 It has also been suggested2 

that the experimental detection of the time variation of fun
damental constants could provide strong evidence for the 
existence of extra dimensions. Higher-dimensional cosmolo
gical models have been studied among others, by Chodos 
and Detweiler,3 Demianski et al.4 and Chatterjee.5 In re
garding to localized sources, mention may be made of Myers 
and Perry,6 Dianyan/ ChatteIjee8 and Koikawa.9 

But, to our knowledge, most of the works for localized 
bodies in higher dimensions are related to static sources. 
While, during many stages of stellar evolution, the variation 
of the physical parameters with time is so slow that a quasi
static approximation is justified, this method fails for stars 
evolving very rapidly from one stage to another. Following 
the detection of quasi -stellar objects (QSOs) and other extra 
galactic sources and their colossal energy requirements 
Hoyle and Fowler lO suggested a theory of hot, convective 
supermassive stars where general relativistic effects can no 
longer be neglected. Further since a nonstatic starlike object, 
in general, would be radiating energy and it may contain 
electric charges as well, II models have been considered by 
allowing outgoing radiation to the collapsing body (Vai
dya, 12, 13 Lindquist,14 Israel 15 ). In the context of the above 
we have thought it worthwhile to investigate Vaidya's metric 
in higher dimensions with an electromagnetic field. Our so
lution may be described as a higher-dimensional generaliza
tion of earlier works in this field in the sense that when the 
space-time dimension is four our solution reduces to that of 
Krori and Barual6 and when the electric field is absent our 
solution reduces to recent works of Iyer and Vishvesh
wara.17 

II. BASIC EQUATIONS AND THEIR SOLUTIONS 

An appropriate metric for a higher-dimensional spheri
cally symmetric, nonstatic space-time may be taken as 

where ¢ and A. are functions of rand t and 

dn~ = dO ~ + sin2 On (dO ~ _ I 

(2.1 ) 

+ sin2 On _ I (dO~ _ 2 + ... sinZ Oz dO~» (2.2) 

is the metric on the n sphere in polar coordinates and 
n = D - 2, where D is the total number of dimensions. The 
energy-momentum tensor corresponding to a charged radi
ating sphere is given by 

Tab =pVaVb + Eab , (2.3) 

where p is the density of radiation and Eab is the electromag
netic energy momentum tensor. Since the lines of flow are 
null geodesics, 

Vil Vil O. 

For radial outflow of radiation we have 

V 3 = V 4 
... = V:t~ =0, 

and 

T: =pVIV I +!E, 

T~ =pVzVz + !E, 

Ti =pVzVI, 

T~ = T! ='" T~t~ = -E/2, 

(2.4) 

(2.5) 

(2.6) 

where suffix 1 refers to time and 2 to radial coordinate. 
Following Xu Dianyan one can write the Einstein-Max

well equations in higher dimensions as follows: 

Eab = F~Fbc - ~abFcdFcd, 

F~;b =0, 

Fab;c + Fbc;a + Fca;b = 0, 

Fob = Aa•b - Ab,a' 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

where A a is the electromagnetic vector potential in D dimen
sions. 

The components of the electromagnetic field tensor, not 
equal to zero, are 
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F12 = - F21 = q/r" 

and the corresponding vector potential is 

AI = q/(n - 1)r" - I 

where q is the total charge within the sphere and 

E = q2/iln. 

(2.11) 

(2.12) 

(2.13 ) 

From the field equations given by Iyer and Vishveshwara we 
get 

e- 2A (nA' _ n(n - 1») + n(n - 1) 
r 2il 2il 

= Tl = P VI V I + E , 
2 

2 V V2 E = T2 =P 2 +-, 
2 

_ e- 2A [ + l/J" + l/J,2 -l/J'A' _ (n - 1) ~A' -l/J') 

+ (n-l)(n-2)]+e- 2tP(X+,P_J.lp) 
2il 

(2.14 ) 

(2.15 ) 

+ (n-1)(n-2) = T3 = T4 ... Tn+2 = -E/2 
2r 3 4 n + 2 , 

(2.16) 

(2.17) 

where the overhead dot and prime refer to differentiation 
with respect to t and r, respectively. 

From n exp(l/J-A) + Tl we get 

-2"[ A' n(n-l)]+n(n-l) 
e + n- - 2-2 2-2 r r r 

J. 2 + ne- ("+4» - = -q-, 
r 2rn 

(2.18 ) 

while Eqs. (2.14) and (2.15) give 

-2A[ A'-l/J' n(n-1)] n(n-l) q2 
ne + r - il + il = -;;;; . 

(2.19) 

Assuming a particular form of the metric coefficient 7 

e-2" = 1 _ 2m(r,t) + q2 (2.20) 
(n-1)r"-1 n(n-l)rn - 2 

we get from Eq. (2.18) 

etP = - (m/m')e". (2.21) 

Using the operator 

~=V2~+VI~, 
dr ar at 

(2.22) 

the last equation can be expressed as 

dm=O. 
dr 

(2.23) 
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From Eqs. (2.19), (2.20), and (2.21) we further get 

(: - :':) [ 1 - (n _2~r"_' + n(n _ ~2)iln_21 
2m 2q2 

=-;:;-- nrn - I ' 
(2.24) 

which yields a first integral 

m' 1- + = (m), (
2m i) 

(n - 1)r" - I n(n _ 1)iln - 2 ji 
(2.25) 

where f( m) is an arbitrary function of mass. 
To check whether our solution satisfies the remaining 

field equation (2.16) also, we may use the rth component of 
the energy conservation equation 

T:;a = 0, 

which gives 

n.2 + TL +l/J'(n - T:) +~ (Ti - TD 
r 

(2.26) 

+ n (lp + J.) = O. (2.27) 

We finally obtain via Eqs. (2.14), (2.18), and (2.19) 

nn = - r"+ I exp(3A) ~ [m' (1 _ 2m 
dr (n-l)rn- ' 

+ i )] _ nE 
n(n - 1)rn - 2 2 . 

(2.28) 

thus 

n = -E/2, (2.29) 

as is evident from Eqs. (2.25) and (2.23). 
If we, at this stage, introduce a coordinate u = u(m) 

defined by 

dm 
du= --

f(m) 

= - ( dr + ;, dt ) 

X 1- +--~--(
2m i) 

(n _1)r"-1 n(n _1)iln- 2 
(2.30) 

the line element describing the radiation envelope of a 
charged sphere in D dimensions reduces to 

d:l = (1 _ 2m(u) + q2 ) du2 
(n - 1)r"-1 n(n - l)rn- 2 

+ 2 du dr - r dn!. (2.31) 
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It is shown how to construct symmetries of the geodesic equation starting from space-time 
symmetries. The constants of motion associated with space-time symmetries are recovered and 
a few new ones are found using non-Noetherian conservation theorems. Explicit examples are 
presented. 

I. INTRODUCTION 

Symmetries of space-time have been extensively dis
cussed by several authors. I

-
3 Davis, Katzin, and Levine2

•
3 

have carefully studied their properties and constructed con
served quantities associated with geodesic motion on space
times that possess those symmetries. Nevertheless, certain 
space-time symmetries are not geodesic symmetries in the 
usual sense,4-7 and, furthermore, there does not seem to be a 
systematic way to associate certain constants of motion to 
symmetries of space-time. 

In this paper, we find geodesic symmetries associated 
with space-time symmetries and construct constants of mo
tion using non-Noetherian conservation theorems devel
oped earlier,6.7 recovering known constants and exhibiting a 
few new ones. 

The main idea is the following: The geodesic equation 
on any space-time is an autonomous equation and has there
fore a symmetry vector i/ tangent to the geodesic curves. The 
space-time symmetries may be used to construct a tensor, 
which we call a special symmetry map, that maps the sym
metry vector i/ into a new (sometimes non-Noetherian) 
symmetry vector of the geodesics. Special symmetry maps 
obey an equation that generalizes that of Killing tensors. 
Special symmetry maps may be interesting by themselves, 
even if not related to space-time symmetries. 

In Sec. II we present a brief summary of previous results 
on symmetries of geodesic equations and non-Noetherian 
conservation laws. In Sec. III we define and explore the con
cept of symmetry maps. In Sec. IV we establish the relation
ship linking symmetries of space-time to geodesic symme
tries and find the new constants of motion associated with 
them. In Sec. V we present explicit examples to apply the 
results obtained in Sec. IV. Section VI presents a summary 
and the conclusions. 

II. SUMMARY OF RECENT RESULTS 

In this section we summarize the relevant results recent
ly obtained.5

•
6 Consider the geodesic equations (space-time 

indices run from 1 to N) ; 

qi + rjkqi/ = 0, iJ,k = 1, ... ,N, (2.1) 

where 

,,) Current address: Center for Relativity, Department of Physics, Universi
ty of Texas at Austin, Austin, Texas 78712. 

b) Fellow of the John Simon Guggenheim Memorial Foundation. 

(2.2) 

with 

ds2 = gij (qk)dqi dqi. (2.3) 

The Christoffel symbols rjk are defined in terms of the Rie
mannian metric gij in the usual way, 

r i _Igil( _g +g +g ) (24) jk - 2 jk,/ klJ lj.k· . 

The geodesic equation (2.1) may be derived from the La
grangian I, 

I=~gyi/q, (2.5) 

using the Euler-Lagrange operator Ei' 

d a a 
E i =----· 

dt aqi aqi 
(2.6) 

There are several ways of associating conservation laws to 
the symmetries of the Lagrangian or the equations of mo
tion. Noether's theorem is probably the best known of them 
all and we will not discuss it here. We will be mainly interest
ed in non-Noetherian symmetries. It is easier to deal with 
them if the equations and Lagrangian are rewritten in first
order form. For that purpose consider the system 

XO - r(xb) = 0, a,b = 1, ... 2N, (2.7) 

where 

Xi = qi, Xi+N = qi, 

j i = Xi+N, ji+ N = _ ri Xj+NXk+ N 
Jk • 

(2.8) 

(2.9) 

It may be proved that the Lagrangian for Eq. (2.7) may 
always be written as5

-
9 

L=t;,(xb,s)(xo-r)· (2.10) 

This fact may be easily understood considering Hamilton
Jacobi theory. Perform on any first-order Lagrangian 
LI = p,4 - HI the canonical transformation (add to it a to
tal time derivative), which leads from (p,q,H I ) to 
(P,Q,K = 0), where P and Q are constants of motion. The 
new Lagrangian L2 can be written as 

L z =PiQi. 

The time derivative of any constant of motion is a linear 
combination of the left-hand side of the equations of motion 
of the system in question (i.e., it vanishes "on shell"), which 
leads to Eq. (2.10). The equations of motion for the Lagran
gian (2.10) read 

2211 J. Math. Phys. 31 (9), September 1990 0022-2488/90/092211-06$03.00 © 1990 American Institute of PhYSics 2211 



                                                                                                                                    

(2.11 ) 

or 

a ~ at;,.a at;, (·a fa) ~ ar ° (2.12) 
- (b + -x - - X - + (a - = . 
as axa axb axb 

Adding and subtracting (at;,laxa)r, one gets 

_b __ a (xa-r) +-t;, +_b r+_a fa=O, (
at. at ) a at. at 

axa axb as axa axb 

which leads to the condition 

(as + .!ff)t;, =0, 

(2.13) 

(2.14 ) 

in order to reproduce Eqs. (2.7) (Here, as denotes the par
tial derivative with respect to sand .!f f is the Lie derivative 
along!) One may write t;, [for Eqs. (2.7)-(2.9)] as 

( 
d afi+N) 

t; = - dSf.li + f.lj axi+ N ' 

x" +N f.li = - sgij , (2.15 ) 

and 

d =r ~ + as. (2.16) 
ds axa 

The equations of motion for the Lagrangian (2.10) may 
be written as 

-EaL=uab(xb-p) =0, (2.17) 

when Eq. (2.14) is taken into account. The operator Ea is 
given by 

d a a 
E a=----, (2.18) 

ds axa axa 

and the implectic (for inverse symplectic) two-form Uab is 
defined by 

at;, at;, 
U ----ab - aXb axa' 

(2.19) 

One must then require 

det Uab #0, (2.20) 

to guarantee that Eqs. (2.17) and (2.7) be equivalent. The 
Lagrangian (2.15) satisfies (2.20). It is straightforward to 
prove that Uab satisfies 

(as + .!ff)Uab = 0, 

on account ofEq. (2.14). 
We define an infinitesimal transformation 

(2.21 ) 

x'a = xa + E'rt(xb,s) , (2.22) 

to be a symmetry transformation for Eq. (2.7) if it maps the 
space of solutions of Eq. (2.7) in itself, i.e., if 'TJa satisfies, to 
first order in E, 

(as + .!ff)'TJa = 0. 

Note that 

(2.23 ) 

(2.24) 

is always a solution toEq. (2.23) forr given by Eq. (2.9), as 
it was mentioned in the Introduction. 
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Once a symmetry vector 'TJa is known, it is direct to prove 
that the one-form t~ 

t~ = .!f ." t;, , 
is Lagrangian, i.e., 

(as + .!ff)t; = 0. 

(2.25) 

(2.26) 

To prove Eq. (2.26), it is helpful to use Eq. (2.23) and Eqs. 
(2.27)-(2.29) below: 

.!f f'TJ = [f, 'TJ ] , 

and 

as.!f ."t= .!f ."a/+.!f a,."t 

The two form U~b 

at' at' , U? a b 

Uab =..z. ."Uab = axb - axa' 

is implectic, i.e., 

(as + .!ff)U~b = 0. 

Define A! by 

A! = u~c (u- I )Cb, 

then 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

because of Eqs. (2.21) and (2.31). It is then evident that 

and 

t;' = A!t;, 

are Lagrangian one forms, while 

'TJHa = (u- I )abt;, 

(2.34) 

(2.35) 

(2.36) 

'TJ",a='TJbA~ (2.37) 

are symmetry vectors, because t;" 'TJb, Uab' and A~ satisfy 
Eqs. (2.14), (2.23), (2.21), and (2.33), respectively. 

We end this section by writing down the following non
Noetherian conservation laws.6 Let 

j=o, J = t;, 'TJa, (2.38 ) 
ik =0, Ik = tr (A)\ (2.39) 

klJ2 =0, MJ2 = 'TJfUab'TJ~, (2.40) 

NI2 =0, NJ2 = ~a (u- I )abt;b' (2.41 ) 

Q=O, Q='TJaA!t;" (2.42) 

and 

(;'=0, c' = .!f ." C with (; = 0. (2.43) 

Furthermore, if A is a constant of motion such that 
A = dB Ids then 

D=O, D=As-B. (2.44 ) 

Equations (2.38) and (2.40)-(2.42) can also be found 
in Ref. 7, while Eq. (2.39) was first derived in Ref. 8. Katzin 
and Levine derived Eq. (2.43) in 1968 (see Ref. 2). Equa
tions (2.40), (2.41), and (2.43) are, in some sense, general
izations of Poisson's theorem involving the Poisson bracket 
of two constants of motion. 
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III. SYMMETRY MAPS 

In the preceding section we showed that A~ is a univer
sal symmetry map, i.e., given any symmetry vector "la, A~ 
produces a new symmetry vector according to Eq. (2.37). 

This procedure is particularly useful in some instances, 
and, as a matter of fact, it provides one of the methods to 
completely solve some nonlinear problems such as the 
Korteweg-de Vries equation. \0 It may then be interesting to 
explore a bit more the concept of symmetry maps. Consider 
now a special symmetry map jY~ such that for afixed sym
metry vector "la, jY~ produces r/; 

(3.1) 

which is also a symmetry vector. 
We know that for geodesics, fa is always a symmetry 

vector of the problem [see Eq. (2.24)]. We will then study 
the special symmetry maps jY~ such that iJa is a symmetry 
vector defined by 

(3.2) 

It is now convenient to return to the second-order for
malism and write down the symmetry equation for the first 
N components of the symmetry vector "la. The first N equa
tions contained in (2.23) state simply that (space-time in
dices run from 1 to N), 

. N d . 
"l'+ = _"l' (i = 1, ... ,N), 

ds 
(3.3) 

while the second N equations give rise to 

15 15 i ~i ;,i'k ( 0 
DS DS "l + jkl'1Q "l = (3.4 ) 

where the Riemann tensor ~;k,1 is given by 

~;kl = r;k.l - r;l.k + rp;r~1 - rj/r~k' (3.5) 

and 

(3.6) 

once Eqs. (3.3) have been used. Here, (15 IDs) "li is the "on 
shell" covariant derivative of "li. 

If we define iJi = k;1/ for iJ = 1, ... ,N, then it can be 
easily seen that the structure of jY ab is given by 

(3.7) 

when Eqs. (3.3) are taken into account. 
We will consider the case in which k ij is symmetric and 

depends on qk only. After a bit of algebra, Eq. (3.4) reduces, 
for iJ given by Eq. (3.2), to 

k(ij;kl;1 = O. (3.8) 

Equation (3.8) is the basic equation to define the special 
symmetry maps with which we deal in this paper. Note that 
it provides a generalization of the concept of Killing tensors 
much in the same way affine collineations generalize the 
concept of Killing vectors. In the next section we will show 
how Eq. (3.8) has room enough to accommodate the sym-
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metries of space-time (which are not symmetries ofthe geo
desic equations) that have been extensively studied by Da
vis, Katzin, and Levine.2

•
3 Katzin and Levine found equa

tions similar to Eq. (3.8) in Ref. 3. We will also be able to 
link these space-time symmetries to geodesic symmetries. 

IV. SYMMETRIES OF SPACE-TIME AND GEODESIC 
SYMMETRIES 

Davis, Katzin, and Levine have very carefully classified 
and studied many symmetries S i of Riemannian space
times. 2

•
3 They have also written down conserved quantities 

associated with geodesic motion on space-times having those 
symmetries. Nevertheless, most of the symmetries consid
ered are not geodesic symmetries in the sense that they do not 
satisfy Eq. (3.4). Moreover, there does not seem to be a 
systematic way to assign conservation laws to space-time 
symmetries [simply because they do not seem directly relat
ed to the geodesic (or geodesic symmetry) equations]. 

In this section we prove that all space-time symmetries 
(which give rise to conservation laws) defined by Davis, 
Katzin, and Levine may be associated with special symme
try maps kij that satisfy Eq. (3.8). Therefore any space-time 
symmetry defines a geodesic (either Noetherian or non
Noetherian) symmetry "li through 

i ki;,i "l = j'1' 

which satisfies Eq. (3.4). 

(4.1 ) 

Furthermore, all the constants of motion found by Da
vis, Katzin, and Levine (plus a few others) are obtained by 
using the non-Noetherian conservation laws (2.38)-(2.44). 

We summarize these results in three tables. In Table I 
we list the defining equations of the different kinds of space
time symmetries and show some ways of associating special 
symmetry maps kij [which satisfy Eq. (3.8)] with each of 
them. 

In Table II, we show the constants of motion that can be 
associated with special symmetry maps, such as those con
structed in Table I, according to the scheme developed in 
Sec. II. The numbers in parentheses refer to the formulas at 
the end of Sec. II, which define constants of motion associat
ed with geodesic symmetries. 

For those symmetries of space-time that are also geodes
ic symmetries (such as motions or affine collineations), the 
definition of the special symmetry map is, in some sense, 
irrelevant because one may simply define 

(4.2) 

as a geodesic symmetry. 
We will, nevertheless, include a symmetry map associat

ed with affine collineations [which satisfies Eq. (3.8)] for 
completeness. In the case of motions the symmetry map is 
trivial and will be excluded. 

In Table III we list constants of the motion associated 
with geodesic symmetries that we have not found in the liter
ature. The equation numbers refer to Sec. II. All the known 
constants may also be obtained using the results of Sec. II. 

Katzin and Levine3 have constructed constants of mo
tion that depend explicitly on s and are polynomial both in s 
and in the momentum pp. The coefficient in front of each 
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TABLE I. Definition ofspace-time symmetries and associated special symmetry maps. 

Symmetry of 
space-time 

Homothetic 
motion 

Affine 
collineation 

Projective 
collineation 

Special projective 
collineation 

Conformal 
motion 

Special conformal 
motion 

Conformal 
collineation 

Special conformal 
collineation 

Special curvature 
collineation 

Notation 

HM 

AC 

PC 

SPC 

CM 

SCM 

CONFC 

SCONFC 

SCC 

term with increasing powers of s and If' can be obtained in 
Katzin and Levine's case (up to a constant) by taking the 
covariant derivative of the coefficient in the preceding term 
of the polynomial. (See, for instance, Table IV in Ref. 3.) 

Although we have followed a very different procedure, 
we have recovered their results, and the constants of motion 
that appear in Table II have exactly the structure described 
above. 

Nevertheless, the constants listed in Table III have a 
different, more elaborate structure, and we have not found 
these new constants in the literature. 

V.EXAMPLES 

In this section we present some solutions to Eq. (3.8) for 
the special case of metrics representing plane-fronted gravi-

TABLE II. Constant of motion associated with special symmetry maps kij' 

Cn )= 
Cm = 
COl = 
C(4) = 
C,,)= 

C(b} = 
dqi 

P'=
ds 

Constant of motion 
associated with SSM 

gi}k{",p'pmp' 
sgijkjl.mP'p'p'" - gijk{p'pl 

SiP' skijP'pi + (ilI2)kij./pllP'" 
G/jk~,"p'p'pm h 

sGijk ;".P'p'p'" - Gijk~p'p' 
2 tr(Gij )\ k = 1.2, ... 

Ukjj = SUJ)' 

hGij == 3k(ij;/)p'. 

Equation 
number 

(2.40) 
(2.40) 
(2.44) 

(2.40) and (2.30) 
(2.40) and (2.30) 

(2.44) 
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Defining 
equation 

S!I'J) =a08ij 
ao const 

S(/;});. =0 

2SW );k = 2gqfl.k 

+ gikflJ + glkfl.1 

2SU:J);k 2gijfl.k + glkflJ 

+gjkfl.1 

fl;ij =0 

SUJ) = uglj 
a;/j=O 

S(/'J);k = :r.kgij 

r;ij=O 

Special 
symmetry map 

kiJ = SUJ) 

kij = SW) - Upg/j 

klj=sW) 
kij = S(/;}) - ugij 

kg = S(rJ) 

klJ = Sw) - rgij 

tational waves with parallel rays or p-p waves. 
The metric of a p-p wave can be written in terms of 

coordinates (p,u ,z,z* ) : 11.12 

dr = 2dpdu- 2dzdz* - 2Bda2, (5.1) 

where p,eT are real and z,z* are a complex variable' and its 
complex conjugate. 

For the metric (5.1), the vacuum field equations require 
that 

aB = a
2
B =0. 

ap azaz* 
(5.2) 

The vectors 

Ii = (1,0,0,0), 

mi = (l/.j2)(0,0,0,l), 

ni = (B,I,O,O), 
•. '" (5.3) 

m '=(1/,,2)(0,0,1,0), 
form a Newman-Penrose null tetrad. 

In this formalism an arbitrary vector S is represented as 
(Greek indices run from 1 to 4); 

S = Sa ea = Saea , a,/3,r,/),· .. = 1,2,3,4, 

where 

e"l = t? = t; e2 = e1 = n, 
e3 = -e4 =m, e4 = -e3 =m*, 

and a covariant tensor k of valence 2 as 

(5.4) 

(5.5) 

k = kapeaeP. (5.6) 

The defining equation for special symmetry map (SSM), 
Eq. (3.8) is then: 

k(aPlr>16 = 0, (5.7) 

where the brackets denote total symmetrization, and the ver-
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TABLE III. New constants of motion associated with symmetries of space-time. 

Symmetry 
of 

space-time 

New constants 
of motion 

Equation 
number 

spe 
seONFe 
see 

[3 (tp.,p') 2 + (tp.,tp'.)]s - 2S(rJ)P'tpJ. (2.40) and (2.30) 
(2.40) and (2.30) 
(2.40) and (2.30) 
(2.40) and (2.30)" 

S(iJ)P'[ (r.kpk)p - T'.] 
h(ij:k) hJ/".p'!lp'pm a 

see 
see 

Sh(ij:k) h\.p'pkp'pm - h(ij:k) h imppkp" 
h(iJ':k I) h(j/2'k 2) ., 'h(j, I i,~,)pk, .. 'pk, 

r= 1.2 •... 

(2.39) 

d i 

p'=..3L 
ds 

tical bar represents the covariant derivated projected in the 
tetrad frame. As an example, for a vector this notation reads: 

Sal/3 =siJe~ei/3' (5.8) 

We now look for solutions to Eq. (5.7) using the metric 
defined by Eqs. (5.1) and (5.2). 

Depending on the form of H" several cases arise. 
(i) General p-p waves: In this case. H is an arbitrary 

function of a.z,z* satisfying Eq. (5.2). 
It is straightforward to prove that 

kg)=A (5.9) 

is a (reducible) Killing tensor. whereA is a constant. Upper 
indices in parenthesis are used to enumerate the different 
solutions, while lower indices denote as usual the covariant 
components of k on the tetrad. 

Also, if B is a constant, the tensor, 

(5.10) 

which is nothing but the metric multiplied by B, is trivially a 
Killing tensor. 

In addition this space-time admits two SSM's, namely, 

kg> =Aa, (5.11 ) 

and 

kl~)=Ba, k~:)= -Ba. (5.12) 

(iO Cylindrically symmetric p-p waves. In this case, H 
takes the special form 

H=I1t(2zz*)1I2, (5.13) 

and 

kg)=2AH, k~~)=-A, (5.14) 

is a Killing tensor. 
We now establish the relation ofSSM's with symmetries 

of space-time. 
Some of these tensors can be written in terms of a vector 

S in the form; 

k~~ =sl~I/3)' (5.15) 

For k (I), this vector is 

s~1) =Aa. (5.16) 

in the case of k (5), we have 
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sF)= -Aa, S~S)=A(p+a+aH), 

S~S) = -Az, siS) = -z*A. 

For k (3) 

(5.17) 

(5.18) 

The tensor k (2) can be written in terms of as (2) if we 
consider the restriction to the special case of general p-p 
waves known as plane linearly polarized waves defined by 

H =! (r + Z02). (5.19) 

In this case,the vector is 

S 12
) = 0, S ~2) = 2/3p, 

sf) = -Bz, sf) = -Bz*. 
(5.20) 

As far as we know the tensor k (4) cannot be written in 
the form (5.15). Due to the fact that k (I) is a Killing tensor, 
we conclude from (5.15) that s(1) defined in (5.16) is a 
proper affine collineation for general p-p waves. 

Also, it is straightforward to verify that s (2) is a homoth
etic motion for plane linearly polarized waVei. 

On the other hand, the fact that k (3) is SSM implies that 
S (3) is a proper special curvature collineation for general p-p 
waves. 

As far as we know, the vector S (S) used to write k (S) is 
not a space-time symmetry. 

In what follows, we list the (independent) constants of 
motion associated with the SSM that we have found. 

(i) General waves. Following the convention, an upper 
index in a constant indicates the number the tensor to which 
it corresponds and a lower index refers to the notation em
ployed in Table II. 

Let p=dq/ds, then 

cg: =A(pol')2 

Cm =A(pol')[a-s(pol')] 

Cm = A (pol')[a1/2 - s(pol') + (s1/2)(po/')2]. 

(ii) Cylindrically symmetric p-p waves: 

C m = 2A [H(pol')2 - (pom)(pom*)] 

D. Dei-Castillo-Negrete and S. Hojman 
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em = e [ - CT(pon) + p(pol) + CT( 1 + H) (po}) 

+ z(pom*) + z·(pom)] 

- 2As[H(po}) 2 - (pom)(pom*)]. 

(iii) Plane linearly polarized waves: 

em = B [2p(pot) + z(pom*) + z*(pom) - s(pop)]. 

VI. SUMMARY AND CONCLUSIONS 

We introduced the concept of symmetry maps, which 
generalizes the definition of Killing tensors and allows us to 
relate symmetries of space-time to geodesic symmetries. We 
recovered all the known constants associated with space
time symmetries and found some new ones. 

Universal symmetry maps play an important role in the 
solutions of nonlinear problems, while special symmetry 
maps have proved to be useful in the study of geodesic mo
tion. It may be interesting to consider generalizations of the 
concept of symmetry maps (using tensors with n indices and 
n - 1 symmetry vectors, for instance) and to study in more 
detail and depth the possible applications of both universal 
and special symmetry maps. 
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By using the double-complex function method, two regular double Riemann-Hilbert problems 
are established; therefore two double Kac-Moody algebras are given. These structures show 
that in two-dimensional reduced gravity, in fact, there is more exquisite hidden symmetry than 
common nonlinear systems. 

I. INTRODUCTION 

By using a complex method, Wu and Gel have given a 
Kac-Moody algebra structure for the gravitational plane 
waves. Recently, Chau and Ge2 have further pointed out 
that a Kac-Moody algebraic structure can be obtained for 
many nonlinear systems from the infinitesimal regular Rie
mann-Hilbert transform. However, only the ordinary com
plex functions are used, hence the results are restricted. In 
this paper, it will be shown that the case is still deeper for the 
two-dimensional reduced gravity, i.e., there are four Kac
Moody algebras simultaneously, which are natural and iso
morphic, and the result concerned in Ref. 2 is only one of 
these four algebraic structures. This multiple algebra reveals 
profoundly the hidden symmetry in two-dimensional re
duced gravity. The thing that accounts for the occurrence is 
that in two-dimensional reduced gravity, there is an impor
tant dual symmetry; by the double-complex function meth
od, this symmetry has been discussed by us in Refs. 3 and 4. 
The essence of this dual symmetry is the NK transforma
tion5 and analytic continuation. 3 In addiiton, the infinitesi
mal Riemann-Hilbert transform about the Ernst potential 
in Ref. 1, in fact, derives the Geroch group6 in two-dimen
sional reduced gravity. However, recently we have proved7 

that by using the double-complex method, the double-com
plex realizations of the Geroch group can be obtained; there
fore the appearance of some double algebraic structures, in 
fact, is to be expected. 

In Sec. II, we discuss the regular double Riemann-Hil
bert problem (RDRHP) of the axisymmetric stationary 
vacuum fields (ASYF). Two double Kac-Moody algebraic 
structures are derived in Sec. III. In Sec. IY, we calculate a 
concrete example. In the last section, we discuss the case of 
the cylindrically symmetric stational vacuum fields 
(CSYF). 

II. RDRHP FOR ASVF 

The general double-complex function method and the 
inverse scattering method have been discussed in Refs. 3 and 
4; in the following, we directly use the results concerned. Let 
J denote the double-imaginary unit, i.e., J = i(P = - 1) or 
J = E(~ = + I,E# ± 1). When the real series 1:;'=0 Ian I is 
convergent, then 

00 

a(J) = L aJ2n (1) 
n=O 

is called a double-real number, and let ac = a(J = i), aH 

= a(J = E). Ifbotha(J) andb(J) are double-real numbers, 
we call Z(J) = a(J) + J·b(J) a double-complex number, 
and write Zc = Z(J = i), ZH = Z(J = E). 

Let the metric of the ASYF be the Papapetrous form 

d$2 =/(dt - w dO)2 - I-I [er (dp2 + dr) + p2 dO 2], 
(2) 

where J, w, and r are real functions of p and z only. It is 
known that r is determined by land w. The double-complex 
Ernst equation is 

Re($' (J»V2$' (J) = V$' (J)·V$' (J), 

2_ 2 -I ' V =ap +p ap +a z' (3) 

V=. (ap,az). 

From a double solution $'(J) =F(J) +J·n(J) ofEq. (3), 
a dual real gravitational solution pair {( J,w), (f,{;j)} can be 
obtained simultaneously, where 

(J,w) = (FcoVFc(n C », 
(f,{;j) = (T(FH ),nH ), 

and (T, V) are the NK transformations5 

T: J-J' = T(j) = plJ, 

(4) 

Vf : <p-w = Vf(<p) = Jpl-2(ap<p dz - az<p dp), (5) 

i.e., 

ap<p=p-I.Fazw, az<p= -p-lj2apw. 

Now let us consider how to relate the double-complex 
Ernst equation (3) with the RDRHP. For this purpose, let 

P J __ 1_[1 n(J) ] 
( ) - F(J) n(J) n2(J) - J 2F 2(J) , 

det(P(J» = - P; (6) 

it is a 2 X 2 double-real symmetric matrix. It can be proved3 

that Eq. (3) is equivalent to the double-real Belinsky-Zak
harov8 equation 

ap U(J) + az V(J) = 0, 

U(J) =papp(J)·p-I(J), 

V(J) =pazP(J)·p-I(J). 

The Lax pair for Eq. (7) has the form 

[DK (A.) - d' K (A.;J) ] \f1(A.;J) = 0 (K = 1,2), 

(7) 

(8) 

where A. is an ordinary complex spectral parameter, and 
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U 2 

DI(A.) = az - 2 2 a ... , 
A. +p 

_ Up 
D 2 (A.) - ap + 2 2 a ... , 

A. +p 

d (A.-I) = A.U(J) -pV(J) 
I , 1 2 2 ' 

/I. +p 

d (A.-J) = - pU(J) - A. V(J) 
2 , A. 2 + p2 (9) 

We must notice that where the "wave function" '" (A.;J) is a 
double ordinary complex matrix, i.e., its matrix elements 
take the form as a (A.;J) + ib(A.;J) , in which both a and bare 
double-real functions depending on A.. If '" (A.;J) is a double 
solution of Eq. (8), then 

P(J) = "'(A. = O;J) (10) 

is a solution ofEq. (7), and 

'fJ (J) = 1 + J. ['" (A. = O;J)) 12 (11) 
["'(A. = O;J) LI ["'(A. = O;J)] II 

is a solution of Eq. (3), where [M] ij is a element of matrix 
M. Now we can propose a RDRHP for system (8) as fol
lows. Let C be the circle surrounding the origin in the ordi
nary A. plane with radius p, and let C + ( C _) be the inside 
(outside) of C. Suppose that there has been a solution 
'" (p,Z;A.;J) satisfying the condition ( 10), and", is analytic in 
C + U C. We seek ordinary complex matrices X ± defined on 
C ± U C, which satisfy the following condition: 

X_ (A.;J) = X+ (A.;J)G(A.;J), A.EC, 

G(A.;J) = "'(A.;J)U(A.)",-I(A.;J), 

X_(A. = oo;J) = 1, 

where u(J)ESL(2,C), and 

Dk(A.)u(A.) =0 (k= 1,2). 

(12) 

(13) 

Evidently, the discussion about this RDRHP is similar to a 
common regular Riemann-Hilbert problem, and we write it 
as RDRHP (D,d,"',C,u,X). We assume that there exists a 
pair of fundamental solutions X ± (A.,J), nonsingular matri
ces on CUC ± . Let 

, A. J {X + (A.;J) '" (A.;J), 
'" ( ; ) = X_(A.;J)"'(A.;J)u-I(A.), 

A.EC+, 
(14) 

A.EC_; 

then it can be proved that "" (A.;J) is also a solution of Eq. 
(8), and 

P'(J) = '1" (A. = O;J) = X(A. = O;J)'I'(A. = O;J) (15) 

is a new solution ofEq. (7). 
Since P'(J) should correspond to a gravitational solu

tion pair, the double-reality and symmetry of P' (J) must be 
guaranteed. Therefore, similar to Belinsky and Zakharov,8 
'1', X, and u should satisfy the following additional require
ments: 

iii(.~;J) = "'(A.;J), u(X) = u(A.), 

P' (J) = X( - p2 / A.;J)P(J)XT (A.;J), (16) 

where the bar denotes the complex conjugation and T de
notes the transposition. In the following, we assume that 
these requirements have been satisfied (in Sec. IVan exam
ple is given). 
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Since Uc , Vc , UH' and VH are contained in d(J), the 
above RDRHP has related to the double-complex duality 
symmetry of the ASVF. However, it is interesting that by 
using this duality. symmetry we can yet establish another 

A "" A 

RDRHP (D,d,'I',C,u,x), which is dual with the above 
RDRHP, as follows. Let the duality mapping d(J) be de
fined as 

d(J):'fJ(J) =F(J) +J'O(J) 
A A A 

--+'fJ(J) =F(J) +J'O(J), 
A 0 

F(J) = T(F(J», 

(17) 

where the overcircle denotes the commutation operation of 
an imaginary unit, i.e., 

o 0 

0: J --+J, i = E, € = i. 
Therefore, from a solution 'fJ (J) of Eq. (3), we can obtain 

A 

its other solution 'fJ (J). According to E,gs. (6), (7) A and 
(9), wewritethecorrespondingresultsasP(J), U(J), V(J), 

A A 

and d(A.;J). Of course, P(J) is also a solu,tion of E'k (7). 
Notice that, in view of gravitational fields, 'fJ (J) [or P(J) ] 
is equivalent to 'fJ (J) [or P(J)], i.e., the gravitational field 
solutions obtained from 'fJ (J) and ~ (J), in fact, are the 

"'-
same. However, it is important that d (,.t;Jl# d (,.t;J); 

AA 

therefore by the formal substitution of ( d, 'I' ,x) for 
(d,'I',X) in ~s. (8) and (12)-(14), we can establish an 

A A A ;..000." 

RDRHP (D,d,"',C,u,x), where "'(A.;J) must satisfy 
A A 0 0 

'I'(A. = O;J) = P(J) = d(J){P(J». (18) 

By a fundamental solution pair (X+,x_), we can obtain a 
new solution P'(J) = X+ (A. = O;J)P(J) ofEq. (7) as well. 

Summing up, where the doubleness of the Riemann
Hilbert problem reflects the duality symmetry of the ASVF, 
this doubleness makes just two dual RDRHP's appear. This 
is a notable difference from common nonlinear systems. 
Naturally, we expect that there can exist some method to 
~termine a solution W (A.;J) of Eq. (8) corresponding to 
d (A.;J) from a solution'" (A.;J) corresponding to d (A.;J). 
It is a pity that we have not yet found a concrete feasible way; 
only in a simple case can we obtain the result (see Sec. IV). 

III. DOUBLE KAC-MOODY ALGEBRAS 

Let us consider the infinitesimal transform correspond
ing to the above RDRHP. Let 

/(p,Z;A.) =p/A. -Z-A., (19) 

so 

DJ= 0 (k = 1,2). (20) 

Let fA (A = 1,2,3) be the infinitesimal generator of group 
SL(2,R), and 

VA (A.) = [(A.)]-mfA, 

(21) 

where a A is an infinitesimal constant with the group index A, 
and m is an integer. It can be proved that the group element 
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U (A) generated from Va (A) satisfies Eq. (13). Therefore, 
according to the method of Ref. 2, an infinitesimal transform 
/ja.sf can be derived, however, which is double, i.e., 

.sf; (A;J) - .sf K (A;J) = aA/j A .sf K (A;J) , 

/jA.sfK(A;J) = [iiYK(A;J),( - ~) r ~GA(t;J)], (22) 
2m Je t - A 

where 

iiYK(A;J) =DK(A) + .sfK(A;J) (K= 1,2), 

GA (A;J) = '11 (A;J) VA (A) '11- 1 (A;J). 

The algebraic structure is 

[ /ja ,/jp ].sf K (A;J) 

= [iiY K (A;J) ,( - ~) r ~ '11 (A;J) 
2m Je t - A 

(23) 

X [ Va (f), Vp (f) ] '11- 1 (A;J) ]. (24) 

If we write the infinitesimal transform corresponding to 

G ~m) (A;J) = '11 (A;J) [J(A)] - mVA (A )'11- 1 (A;J) 

as /j~m), then we have 

[/j~m),/j1n)].sfK = C~B/je(m+n).sfK' (25) 

where m and n are integers and C ~B is the structure constant 
for SL(2,R). 

Similarly, for the RDRHP (D,~, W ,C,u,X), we obtain a 
double Kac-Moody algebra, 

/jA~K(A;J) = [~K(A;J),( - ~) r ~GA(f;J)], 
2m Jc t - A 

~K(A;J) =DK(A) + ~(A;J), (26) 
A A A_I 

GA (A;J) = 'I1(A;J) VA (A)'I1 (A;J). 

The above four Kac-Moody algebras obtained are iso
morphic. In fact, let j denote the maIWing derived from the 
substitution of c for i in /j.sf e or /j.sf e, let Y d~n0J.e the 
mapping derived from the substitution for (.sf,'I1) of 
(.sf,'I1), and let a corresponding Kac-Moody algebra be 
written simply as (/j.sf); therefore the relation among the 
above four algebras can be explained by the following dia
gram: 

(27) 

where all arrows denote isomorphism mappings. The Ernst 
potentials corresponding to the above algebras, respectively, 

are If e = Fe + ific> If H = FH + CfiH' ~ e = pF if I 

+ iV F - 1 (fi H)' and ~ H = pF c I + c V -;. ~ 1 (fie)' These 
P 11 P c 

four Kac-Moody algebras are equal in status; this fact itself 
is also a hidden symmetry in the ASVF. 

IV. AN EXAMPLE 

In correspondence to a Weyl-type solution, let If = e'fJ, 
where rp( p,z) is a real function independent of J and 
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(28) 

The corresponding gravitational solution pair is « f,w). 
(J.@» = «e'fJ ,0),( pe-'fJ ,0». Now ~ =pe-'fJ, and 

P(J) = e 2' P(J) = p e [ 
-'fJ 0) [ -I 'fJ 

° -J e'fJ ° 
u=paprp[~l ~], u=(parp-1)[~ ~J (29) 

v=pazrp [~l ~]. v=pazrp [~ ~ J 
Suppose that both '11 (A;J) and W (A;J) are also diagonal, 

and 

° ) A- [eE 
2 E ' 'I1(A;J) = 

-Je 0 

A-

where E( p,Z;A) and E( p,Z;A) are ordinary real functions, 
and 

Re(E(A» = Re(E(A», Im(E(A» = - Im(E(A», 

E(A = 0) = rp, 

Re(E(A» = Re(E(A», Im(E(A» = - Im(E(A», 

E(A = 0) = rp -lnp. 
(31) 

Now, Eq. (8) is changed into 

(Aap + paz)E = p azrp, 

(pap - Aaz + Ua,,)E = p aprp, 

(Aap + paz)E = p azrp, 

(pap - Aaz + ua;..)E =p aprp - 1; 
A-

thus we find that the relation between E and E is 
A- 2....2 2 E=E-pn(p -z- -U ). 

As for how to solve Eq. (32a), see Ref. 9. 
From Eq. (33), we have 

'I1'W = l/~p2 _Z2 _ 2A 2. 

(32a) 

(32b) 

(33) 

(34) 

If Eis a solution ofEq. (32a), according to Eqs. (23), (24), 
and (26), every algebra can be easily calculated, in which 

GA (A;J) = [/(A)] -m'l1(A;J)IA 'I1- I (A;J), 
A- A- A-

GA(A;J) = [/(A)] -m'l1(A;J)IA'I1- I (A;J) (35) 

= [/(A)] - m'l1- I (A;J)IA '11 (A;J). 
A-

Between G and G, there is only a difference of factor order; 
the above four Kac-Moody algebras, obviously, are isomor
phic. In fact, by the substitution of E for - E, one can be 
obtained from the other. 

V. THE CASE OF CSVF 
For the general discussion of CSVF, see Ref. 7, where 

we directly use some results to establish the RDRHP and the 
double Kac-Moody algebras for the CSVF. The steps are 
similar to the above; however, the results are more different 
from the ASVF. 

For the CSVF, we use the metric 

ds2 = A(dt 2 - dr) - tg- I [(dx - jl dy)2 + g2 dy2], 
(36) 
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where A, g, and p are real functions of t and z only, and A is 
determined by g and p (Ref. 9). Let us consider the hyperbo
lic type double-complex Ernst equation 

Re(<G' (J»V2<G' (J) = V<G' (J) 'V<G' (J), (37) 

where 

v2=a;+t-ta,-a;, V=(a"iaz)' (38) 

Different from ASVF, the dual gravitational solution pair 
«g,p), (g,p», which is physical (real), is completely gener
ated by the component <G' c = <G' (J = i) of <G' (J), when 
<G'(J) = G(J) +J'M(J) is a double solution ofEq. (37), 
i.e., 

(g,p) = (Gc,Mc), 

(g,p) = (T(Gc),WGc(Mc»' (39) 

where (T, W) is another kind of NK transformation, which 
differs from the ordinary NK transformation in a sign, i.e., 

T: g-> T(g) = t Ig, 

Wg: ll->tP = Wg(p), (40) 

a,tP = (t Ii) azll' aztP = (t li)a,Il' 

From <G' H = GH + EMH, we can only obtain a nonphysical 
(pure imaginary) solution pair as follows: 

(g',Il') = (GH,iMH), (41 ) 
(g',p') = (T( GH ),iWT(G

H
) (MH ». 

The duality mapping d(J) is defined as [notice the differ
ence from Eq. (17)]: 

d(J): <G' (J) = G(J) + J'M{J) 
A A A 

->C{/(J) = G(J) +J'M(J), 

G(J) = T(G(J», (42) 

A tAt 
a,M(J) = G 2(J) azM(J), azM(J) = G 2(J) a,M(J). 

Thus, if C{/ (J) is a solution of Eq. (37), then f6 (J) 
= d(J)(<G' (J» is also a solution. 

Let Q(J) be a double-real symmetric matrix 

1 [ I M(J)] 
Q(J) = G(J) M(J) M2(J) _ J 2G 2(J) , 

det(M(J»= - J2 (43) 

then the double-complex Ernst equation (37) is equivalent 
to the following double-real Belinsky-Zakharov equation 

a,R (J) - azS(J) = 0, 

R(J) =ta,Q(J)'Q-t{J), 

S(J) = tazQ(J)·Q-t(J). (44) 

From a solution Q(J) ofEq. (44), we can obtain a solution 
ofEq. (37), 

C{/ (J) = _1_ + J. Q12(J) . 
QI1 (J) QI\ (J) 

(45) 

The Lax pair for Eq. (44) is 

[DK (A) - YJ K (A;J)] <I> (A;J) = 0, 
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- Ut 
Dt(A) =a, + 2 2 a;,., 

t -A 
_ U 2 

D 2 (A) =az + 2 2 a;,., 
t -A 

(46) 

YJ (A-J) = tR(J) + AS(J) 
t, t2 _ A 2 ' 

YJ (A-J) = tS(J) +AR(J) 
2, t 2 _A 2 ' 

and <I> (A;J) is an ordinary complex 2X2 matrix such that 

<I>(A = O;J) = Q(J). (47) 

Evidently, by the same explanation we can establish a 
RDRHP (D,YJ ,<I>,C,u,Y) as in Sec. II,and the addition con
dition can be taken as 

<i>(X;J) = <I>(A;J), 

Q'{J) = Y(t 2/A;J) Q(J) yT(A;J). (48) 

For the infinitesimal transform, we take 

j(A) = t 21 A + 2z + A, 

D)"=O, (49) 

v~m)(A) = [/(A)] -maAIA> etc. 

Therefore we obtain a double Kac-Moody algebra as fol
lows: 

G ~m)(A;J) = <I>(A;J) v~m)(A)<I>-t (A;J) , 

[D~m),Dkn)] g{) K (A;J) = C~BD~m + n) g{) K (A;J). 
A A........ A 

(50) 

LetR(J), S(J), g{) (A;J), and <I> (A;J) denote the results cor-A _ 

responding to <G'(J) = d(J)(<G'(J» in Eq. (46); then we 
can obtain another double Kac-Moody algebra as follows: 

D~m)&; K(A;J) = [!2J K(A;J),( - ~) i ~ ~a (t;J)], 
2m c t-A 

!2J K (A;J) = DK (A) + &; K (A;J) , 

~ ~m)(A;J) = ~(A;J) v~m)(A)~-t(A;J), 
~(A = O;J) = f6 (J) = d(J)(<I>(A = O;J». 

(51) 

When J = i, the results in Eq. (50) correspond just to 
the results concerned in Ref. 2. This can be seen in that the 
above results more profoundly reveal the hidden symmetry 
in the CSVF. However, it should be pointed out that two 
gravitational field solution pairs related to Eqs. (50) and 
(51) are both mixtures consisting of physical and nonphysi
cal solutions; this is not as ideal as in the case of ASVF dis
cussed in Secs. II and III. 
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From a general Lagrangian that is quadratic in the Ricci tensor, independent variations of the 
metric and torsion tensors produce gravitational field equations that are of second differential 
order in the metric tensor. This reduction in order from four results from the use of the 
torsional field equations. Also, the equation of motion is derived and several special cases are 
considered. 

I. INTRODUCTION 

Over the years, a geometrical Lagrangian of the form 

has received considerable attention. 1 Weyl,2 in his confor
mally invariant theory; Gregory;3 and Eddington,4 who 
used only the quadratic part, considered such forms soon 
after general relativity, and later this form was found to give 
renormalizable quantum field theories. 5 Soon thereafter, 
many papers with quadratic Langrangians (QLs) ap
peared.6 However, in a V4 metric theory of gravity the above 
equation yields fourth-order differential equations in the 
metric tensor. One problem introduced by the higher deriva
tives concerns the Cauchy problem, which mayor may not 
be solved depending on the constants A and B.7 For purely 
QLs, Havas8 showed that in the linearized limit such equa
tions do not produce the correct equation of motion for an 
extended source, and Folomeshkin9 showed that sensible so
lutions only exist if T, the trace of the energy momentum 
tensor, vanishes. 

However, recently it has been shown that a special case 
of the above Lagrangian (with A = 0) produces second-or
der differential equations in the metric tensor in U4 space
time. 10 This result was obtained in a metric theory of gravity 
by assuming independent variations of the metric and tor
sion tensors. The reduction in order occurs because the tor
sional field equations impose constraints that cause the high
er order derivatives to drop out of the gravitational field 
equations. 

It is the purpose ofthis paper to extend this result to the 
most general Lagrangian that is at most quadratic in the 
Ricci tensor, to include sources, and to derive the equation of 
motion. It is shown that a similar reduction occurs as in the 
special vacuum case and that the equations are second order 
in the metric tensor. 

The inclusion of torsion into gravitation received an im
portant boost after the work of Kibble 1 1 and Utiyama, 12 who 
showed that torsion can be viewed as the local gauge group 
of the Poincare transformation. In this formalism, the inde
pendently varied quantities in the variational principle are 
taken to be the translational potential e/ (where Latin in
dices are nonholonomic) and the rotational potential r a/. 
With this, one obtains a first-order formalism 13 and general 

QLs yield second-order differential equations. 14 The use of 
QLs, besides producing propagating torsion, gives the tor
sion a conjugate momentum. These results do not occur in 
the linear case. 

As a result of its elegance and success in particle physics, 
many favor the gauge approach to gravity; however, there 
are problems in this approach. The gauge theory does not 
restrict the Lagrangian very well, so that it may consist of a 
nine-parameter sum. 14,15 Moreover, there is no guarantee 
that the Poincare invariance is the right one to gauge and one 
may consider generalizations such as the affine group or the 
conformal group, for example. 16 For that matter, there is no 
guarantee that the gauge approach correctly describes gravi
ty. 

Besides the gauge theory approach, there was also a 
first-order formalism by Israel and Trollope, 17 who consid
ered QLs with independent variations of the (symmetric) 
metric tensor and the affine connection. 

The view taken in this paper is that the fundamental 
quantities and unknowns in the theory are the metric and 
torsion tensors and that these are the objects to be varied. At 
first glance, this produces field equations for gravitation that 
are fourth-order differential equations in the metric tensor; 
this may stand as a strong argument for abandoning such a 
variational principle. However, as stated above, the gravita
tional equations will actually turn out to be of second differ
ential order and the torsional equations will be of second 
differential order in the torsion tensor. However, the tor
sional field equations will contain third derivatives of the 
metric tensor. As a special case, we will show how to remove 
these third derivatives. We will also show how the Bianchi 
identity produces the equation of motion, which is done 
without resorting to the linearized version. 

Following this, we show how the torsion tensor may be 
viewed as a gauge field of the conformal transformation. By 
assigning the correct transformation property to the torsion 
tensor, the Ricci tensor is made to be conformally invariant. 
Thus, by restricting the Langrangian to terms that are only 
quadratic in the Ricci tensor or curvature invariant, a vacu
um conformally invariant theory results. However, matter 
will break conformal invariance. 

Finally, special cases will be considered. We show how 
to remove the third derivative term by an appropriate choice 
of coupling constants. Another case produces nonpropagat
ing torsion and finally, for a semisymmetric connection, we 
show how the torsion represents a massive vector field. 
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II. FOURTH· TO SECOND·ORDER EQUATIONS 

It is assumed that the geometrical part of the Lagran
gian consists, in addition to the usual scalar R, of the most 
general form that is quadratic in the curvature scalar and the 
Ricci tensor. Therefore, the variational principle takes the 
form 

8 f~ -g (R + AR 2 + BR R I'V + CR R vI' I'v I'v 

+ kLm + 2KLs) = 0, (1) 

where the definitions are those of Schouten 18 and the source 
tensors are defined by 

8Zm -__ = TI'V 
8gl'v 

(2) 

and 

8Zs - {3 
--=-7'" 8S y Y' a{3 

(3) 

where the overtilde denotes density. It is assumed that the 
covariant derivative of the metric tensor, which is assumed 
to be symmetric, vanishes, so that Vagl'V = O. The gravita
tional field equations (GFEs) are obtained by varying the 
metric tensor, which gives 

_ G I'V + t Tl'va + A (~VR 2 _ 2RR (I'V» 

+ B(~g'"vR a{3Ra{3 - R l'aR va - R al'Ra V) 

+ C(~VR a{3R{3a - R al'R va - R l'aRa V) 

+SYMl'vt( _dl'va_dl'<7V+d<7Vl') = -kTI'V, (4) 

where 

d I'va = Tl'va + A ( _ g<7V VI'R + ~l'vvR + 2RTl'va) 

+ B( - VI'R <7V + ~I'V",R ",v + 2R", 71''''a) 

+ C( - VI'R va + gal'V",R v'" + 2R v'" TI'",a) , 
(5) 

w here the modified torsion tensor is defined by 
Ta{3y = sa{3y + S{3~y - sagPy, Vy =V y + 2Sy; the torsion 
vector is defined by Sy = Sy/; and brackets (parentheses) 
around indices imply antisymmetrization (symmetriza
tion) . Details concerning these variations may be found else
where. 19 

The torsional field equations (TFEs) are obtained by 
performing variations of Sa{3 y. The resulting equations may 
be put in the form 

(6) 

As expected, the GFEs are offourth differential order in 
the metric tensor. However, the TFEs impose additional 
constraints that can be used to eliminate the higher order 
derivatives from the GFEs. In fact, using the TFEs in (4) 
along with the Bianchi identity and the rule for commuta
tion of covariant differentiation20 (see Ref. 10 for details), 
one obtains 

_ Gl'v + A (~VR 2 _ 2RR I'V) + B(~VR a{3Ra{3 

- R l'aR va - R I' a{3 v R a(3) + C(~VR fJaRa{3 

- R l'aRa v - R I' a{3 v R (3a) = - kTl'v - Kt r""1'. (7) 

Since r""1' represents some prescribed distribution of 
"charge," which, of course, is zero in vaccum (torsion prop
agates here), (7) shows that the GFEs are of second differ
entialorder. It may also be shown that the antisymmetric 
part of (7), with the TFEs, vanishes. We point out that the 
torsion is nontrivial, i.e., it does not vanish identically, and 
these equations cannot reduce to Einsteinian equations un
less the torsion vanishes. This will be seen explicitly in Sec. 
V, where special cases are considered. 

Equation (7) has another interesting feature: The tor
sion source tensor contributes (interiorly) directly to the 
curvature of space and thus acts as a direct source for the 
gravitational field. This is over and above the usual coupling 
that arises from the mass-energy associated with the stress 
tensor contribution. 

Thus the GFEs are of second differential order in gl'v 
and the TFEs are of second differential order in the Sa{3Y' 
However, in the TFEs there are terms that involve the third 
derivative ofthe metric tensor. Later, it is shown how these 
can be removed by an appropriate choice of constants, but 
these terms are more benign than the usual fourth deriva
tives that, without torsional variations, would appear in the 
GFEs. 

III. EQUATION OF MOTION 

We now show that the Bianchi identities of U4 space
time impose a differential constraint on the source tensor 
that produces the equation of motion. 

The Christoffel derivative is useful here and is defined 
by 

A I';a = A I',a + {a~}A (3, (8) 

where {a~} is the Christoffel symbol. In order to find the 
equation of motion, operate with V v on both sides of (7) to 
obtain 

kTI'V;v = - 2k(SI' "IvT"IV - S"I TI'''I) + 2SI' "IyR r"I - S"I/ R 1'", r"I - V a {A(~aR 2 - 2RR I'a) + B(~aR a{3Ra{3 - R I''''R a", 

- R I' a{3 a R a(3) + c(~aR a{3RfJa - R I''''R", a - R I' a{3 a R (3a)} - KI', (9) 

where KI'=KV a V",r"'al'. In proceeding, the derivatives on the rhs of (9) can be simplified in the same way as that used to 
obtain (7) and the TFEs multiplied by the full curvature tensor can be used to eliminate S"IY '" R 1'", r"I from (7). The result is 

kTI'V;v = - 2k(S I' "Iv TI'V - S"I TI'''I) + 2S I' "IyR r"I - 2SyR I'Y + 4AR (R r"IS I' "IY - R I'YSy) + 2B [R I'fJaYR{3ySa 

- R I'YR aySa + Rap (SAI''''R a",pA - saI'ARAP)] + 2C [R I'fJaYRy{3Sa 

(10) 
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Finally, the first four terms on the rhs can be eliminated by 
multiplying the torsion tensor and the torsion vector into the 
GFEs. After the ensuing cancellation, one obtains 

kTp,v;v = - Kp, + KR p,PaYrpya 

+ 2K (S I' 'IY V". r""Y - S Y V". ".urI') . (11) 

From Eq. (11), the actual equation of motion may be found 
by prescribing the source tensors ofthe material. Using stan
dard techniques, 2 

1 the equation of motion to any desired 
order may be found. 

An important aspect of (11) is that for (torsionally) 
charge-free matter, the rhs of ( 11 ) vanishes and the equation 
of motion is that of standard general relativity. Equation 
( 11 ) also shows that, at least as far as the equation of motion 
is concerned, the quadratic terms in the GFEs may be cou
pled to matter consistently even if the linear term in R from 
the Lagrangian is dropped. Also, in vacuum, Eq. (11) is an 
identity which shows that the Bianchi identities are consis
tent with the field equations. 

As an example pertaining to the use of ( 11 ), consider 
the special case that the torsion source may be represented 
by a conserved four-currenti', so that 

JXP =J'[ a ,,8 I " Y_ cry. 

Then (11) yields 

kTp, \v = KjV 2S[p"v I' 

a useful result for later. 

(12) 

( 13) 

IV. GAUGING THE CONFORMAL TRANSFORMATION 

The field equations of general relativity are not confor
mally invariant and to make them so, one has to introduce 
some new field or degree offreedom. Weyl introduced a non
metricity four-vector, which he interpreted as the electro
magnetic potential and which was assigned the correct 
transformation property concomitant with the conformal 
transformation of the metric tensor. Under the combined 
transformation, conformal invariance is obtained. 

A similar scheme can be used here, although a metric 
theory of gravity is maintained. The new freedom is the tor
sion tensor, which can be assigned a transformation property 
to produce a conformally invariant Ricci tensor. 

It may be noted that under a global or homothetic con
formal transformation, the quadratic part of the Lagrangian 
density is invariant. In order to make this invariance local, 
one may assign a compensating transformation to the tor
sion tensor. In fact, under the combined local transforma
tion 

(14a) 

and 

gp,v - wgp,v (gI'v _ gl'v / w), (l4b) 

one may show that, calling Op = U,p - w,p/2w, 

Rap-RaP + KyaYOp - K u", UO"'gap + 2Kap"'O", + Ka",pO'" 

+ K"'fJa0'" + gaP (2m - Ow/2w - 8A,,,,A ,"') + 4A,fJ;a 

+ 8A,aA,p + w- I 
[ - 4(w,[a A,p I) + 4A,,,,w''''gap 

- W,p;a + 3w,a w,p/2w]. (15) 
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Equation ( 15) shows that if Op = 0, RaP is invariant under 
the transformation (14) and, therefore, the quadratic La
grangian densities are also invariant [contrary to a usual 
gauge approach, the covariant derivative is not invariant un
der ( 14) ] . Like the Weyl case, the curvature scalar R has to 
be abandoned and only the quadratic terms in (1) may be 
retained in order to construct a conformally invariant La
grangian density. 

It has been shown above that the equation of motion can 
be obtained, and is sensible, without the necessity of keeping 
R in the Lagrangian. However, without R, the coupling con
stant k will not be the usual one and all interior solutions of 
gneral relativity are no longer valid. Moreover, Tp,v is not 
conformally invariant, so that matter breaks conformal in
variance anyway. Thus, if one wants to construct a confor
mally invariant theory, there is still much work that needs to 
be done. The purpose of deriving ( 15) is to show that torsion 
may be viewed as allowing a global invariance inherent in 
QLs to be made local. 

V. SPECIAL CASES 

A few special cases will now be briefly examined. The 
strongest reason for considering these cases is that they sim
plify the above equations, reduce the number of arbitrary 
constants, and facilitate the interpretation of some of the 
above equations. It may also tum out that these represent 
approximate versions of the above, although this is specula
tive. 

As stressed earlier, the GFEs are of second differential 
order in the metric tensor and the TFEs are of second differ
ential order in the torsion tensor. However, the TFEs con
tain third derivatives of the metric tensor. It will now be 
shown how the third derivative terms can be removed by a 
suitable choice of constants. 

In fact, the geometrical part of the Lagrangian contains 
three arbitrary constants. In a reasonable physical theory, 
unless each of these constants is related to a universal con
stant of nature, this number is too high. In order to reduce 
the number of arbitrary constants, one may seek some con
straint or condition that can eliminate or determine some of 
these. A natural choice here is to impose the condition that 
the field equations nowhere contain derivatives of the metric 
tensor of order higher than 2. This can be achieved by letting 
A = 0 and B = - C. The TFEs then become 

TaPy + ANT2B { - vrV", Taflt/J + ~rv U V", TUP'" 
ap 

+ 2TYu a V",TuP"'} = Kry[pa1• (16) 

The GFEs are given as before, with A = 0 and B = - c: 
These equations now represent second-order equations with 
one unknown constant in the geometrical part of the Lagran
gian. As will be seen later under further special cases, this 
constant will acquire a physical interpretation. 

If one considers the linearized (in the torsion) version, 
the vacuum equation becomes 

VyV",TafJ",-saPy/2B=0. (17) 

Equation ( 17) represents 24 second-order differential equa
tions in the modified torsion tensor. 
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Another special case is given by B = C = 0, which rep
resents the simplest nonlinear Lagrangian. In this case, the 
torsion turns out to be non propagating, but is nonzero inside 
matter. The torsion is coupled to the gradient of the ordinary 
energy momentum tensor of matter and the equation of mo
tion turns out to be that of conventional general relativity. 
Details of this case are presented elsewhere. 22 

As a final special case, reconsider B = - C, A = 0 for 
the semisymmetric case. In the semisymmetric case, the tor
sion tensor is written in terms of a four-vector (and therefore 
the source is represented by a vector), so that one can as
sume23 

3Sa/3r = 2S[ag/3lr' (18) 

With (18), one has R[a/31 = 4S[/3.a l3 and therefore that 

P{R[a/3].'.} = 0, (19a) 

where P stands for permutation of the indices. When (18) 
and (12) are used in (16), one obtains 

R [ul'l;u + 2S1'/B = - 3Kj"/2B. (19b) 

Thus the torsion vector may be interpreted as the potential 
for a massive vector (Proca) field and the antisymmetric 
part of the Ricci tensor may be interpreted as the field inten
sity. Alternatively, the field equations (19) for the torsion 
may be viewed as those of electromagnetism with massive 
photons, with SI' taken as proportional to the electromag
netic field. The equation of motion is given by (13) and is 
seen to be the usual equation of the Einstein-Maxwell theo
ry. This has been discussed elsewhere and details may be 
found there. 19 

In either case, there is left only one unknown constant of 
the geometrical part of the Lagrangian, which from the 
above special case may be viewed as being proportional to 
the range of the potential, or equivalently, the mass of the 
torsion quanta (or photon). Also, of course, the charge of 
torsion particles is not determined by these equations. Thus 
the only undetermined constants represent universal con
stants. 

The conformal invariance discussed earlier is now seen 
to be related to a gauge transformation of the potential. 
However, with matter present (R #0), the torsion quantum 
acquires a nonzero mass and breaks the gauge invariance, as 
well as the conformal invariance, of the theory. 

VI. SUMMARY 

This paper has examined the field equations resulting 
from the most general Lagrangian, which is at most quadrat
ic in the Ricci tensor, under independent variations of the 
metric and torsion tensors. The main result shows that the 
gravitational field equations are of second differential order 
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in the metric tensor. This reduction in order from four re
sults from the use of the torsional field equations, which are 
second-order differential equations in the torsion. However, 
third derivatives of the metric tensor persist in the TFEs. 

It was shown how the Bianchi identity produces the 
equation of motion in a simple way, without resorting to a 
linearized version. Also, it was shown how the torsion tensor 
can be viewed as the gauge field of a conformal transforma
tion. 

Several special cases were considered and, in particular, 
it was shown how to eliminate the third derivatives from the 
TFEs. As a further specialization, this case was considered 
for the semisymmetric situation, where the torsion vector 
may be viewed as the potential of a massive vector field. It 
was seen that the R contribution to the Lagrangian gave the 
torsion quanta a nonzero mass that broke the conformal in
variance. 
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The u model with a Wess-Zumino term is treated as a system of a particle in a magnetic field 
on an infinite-dimensional configuration space. Noether's theorem has to be modified to take 
account of this background gauge field in the configuration space. The questions of possible 
"anomalous" constants of motion and an "Aharonov-Bohm effect" for nonsimply connected 
configuration spaces are also addressed. 

I. INTRODUCTION 

It is well known that continuous symmetry transforma
tions that leave the action of a field theory invariant imply 
the existence of conserved currents and hence associated 
constants of motion (conserved charges). This is Noether's 
theorem. This idea still retains interest when the theory pos
sesses gauge invariance. It has been demonstrated in Ref. 1 
that Noether's theorem is modified for a system in a symmet
ric background gauge field. Under a transformation of 
space-time coordinates that leaves the gauge field invariant, 
there is a further contribution Cgauge to the usual constant of 
motion Co, giving the constant of motion of the total system 
as 

C = Co + Cgauge' 

In this paper, we will discuss an example of such a modi
fication for the case of nonlinear u models with a Wess
Zumino term. It was shown by Wu and Zee2 that the Wess
Zumino term provides an analog of a magnetic field in the 
configuration space of the u model. We will use this idea to 
furnish these theories with a gauge symmetry and hence 
show the modification of Noether's theorem in the presence 
of a Wess-Zumino term. This will be illustrated in examples 
of u models on simple target manifolds M in Sees. IV and V. 
Of particular interest to us in these discussions is the possible 
anomalous phenomenon of ill-defined constants of motion, 
as in the case of a particle in a constant magnetic field on a 
nonsimply connected space.3

-
5 This will be discussed in con

junction with the examples. 

U. WESS-ZUMINO TERM AND GAUGE SYMMETRY 

To begin, we will give a construction of the Wess-Zu
mino term and hence the (total) Lagrangian density for the 
u model in general. We will also demonstrate, from the La
grangian density, the correspondence of these models with 
the case of a particle in a magnetic field. This leads us to the 
discussion of the gauge symmetry in the configuration space 
ofthe u models. 

Consider a u model consisting of fields mapping a 
(d + I)-dimensional space-time into a manifold M. A 
Wess-Zumino action (term) is a topological action (term) 
added to the normal kinetic energy action (Lagrangian den
sity) of the theory: It is topological in the sense that the 
physically relevant quantities derived from it are indepen
dent of transformations of the fields. A Wess-Zumino action 

consists of a (d + 2) form on M integrated over (d + 2) 
chains of M. [A d chain of a manifold M is an immersion of a 
d-dimensional surface into M, while a d cycle is a "boundar
yless" d chain. Equipped with a boundary operator a, the 
equivalence classes of d cycles modulo boundaries of 
(d + 1) chains form the d th homology classes of M, 
H d (M).6] For simplicity, we will restrict our interest to 
(1 + 1) dimensions of space-time, with the coordinates 
(x,t). 

Let the fields mapping space (coordinate x) be denoted 
by <1>. We impose on <I> the boundary condition 

(2.1 ) 

Topologically, we are investigating loops in M with the base
point <1>0' The loops generate one-cycles of M and in effect we 
consider <I> to be the map 

<I>:SI-+M, (2.2) 

where S I is space with a distinguished point mapped to <1>0' 
The image of <1>, which we shall also sometimes call <I> for 
simplicity, can be decomposed in terms offundamental cy
clesof Mas 

(2.3 ) 
a 

where Ca is a set of nontrivial loops generated by 'lT1 (M) 
with (nonzero) winding numbers na and ~ is (the image of) 
an extension 

~:D2-+M 

of the map 

t/J = a~: Sl-+M, 

(2.4) 

(2.5) 

where aD 2 = S I (with the distinguished point). Basically, t/J 
is a map which is homotopic to the constant map. The + 
symbol in (2.3) means the joining of oriented loops at the 
basepoint, as in the discussion of the group property of the 
fundamental groqp.6 (See Fig. 1.) In general, this (group) 
operation may be non-Abelian. In such a case one considers 
only the Abelianized version of the group.6 However, the 
examples of M considered here will all have the Abelian fun
damental group. Thus we will not pursue the discussion any 
further. 

The time dependence of the fields <I> is introduced by 
considering a family of maps cI> t: S I X {t} -+ M parametrized 
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M 

FIG. 1. Joining ofloops in M. 

by tE I = [to,t I] C R. The whole family of maps will be de
noted by 

cf>I:SIXI-+M, (2.6) 

with 

a 

(here, tPI refers to the image ofthe map), where 

¢/:DzXI_M, 

(2.7) 

tPI = (a¢)I:SIXI-M. (2.8) 

[Note that one could taketP/ to be (a¢I)' where there will be 
an extra contribution from the endpoints of 1. This amounts 
only to a total time derivative in the action and hence can be 
ignored. Further explanations can be found in note (i) and 
the discussions of gauge symmetry later in this section.] The 
relevant differential form on M for the construction of the 
Wess-Zumino term will be a three-form 

O+dA, (2.9) 

where 0 is a generator of the third cohomology class of M, 
H 3 (M) and A is some two-form on M. With Eq. (2.7) and 
form (2.9), the Wess-Zumino action may now be given by 

r[cf>d = 2:nar[C/a ] + r[(a¢)d + r'[cf>d, 
a 

(2.10) 

where 

(2.11 ) 

and 

r'[cf>d = r cf>TA. 
JS'XI 

(2.12) 

(The asterisk denotes the pullback ofthe forms 0 and A by 
the maps ¢/ and cf>I' respectively.) The first term in Eq. 
(2.1O)is an arbitrary fixed real number given by the follow
ing construction of Krichever et al. 7 This is done by realizing 
that Ca is a class of homologous one-cycles. Denote two cy
cles in this class by Ca and C~. Consider a pair (Nz,Xa)' 
where N Z is a two-dimensional topological space whose 
boundaryisSIU( -SI') (Sl'beingdifferent from S1) and 
is mapped by C ~ to an image of C ~ with the same basepoint 
as that of Ca , while X a is the mapping 

Xa: NZ - M 

such that 
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(2.13) 

(2.14 ) 

Xa Is" = C~. (2.15) 

We can now use the pari (N 2
, Xa) to construct r [CIa] glo

bally by defining 

r[cla ] = r xTaO, 
IN'XI 

(2.16) 

where X Ia is simply the mapping 

Xla: NZXI_M. (2.17) 

It is now important to note the following. 
(i) We have assumed that 0 is closed. This is necessary 

to make term (2.11) a topological term, i.e., to be indepen
dent of the way in which tP is extended to ¢. [The same can be 
done for term (2.16) simply by replacing tP and ¢ by Ca and 
X a' respectively. J This can be seen as follows. Let ¢ / and ¢; 
be two different extensions of tPI' If 1Tz(M) = 0, then a ho
motopy 

'1': D3 X I_M (2.18) 

from¢I to¢; always exists, whereD 3 isa three-disk (see Fig. 
2) and 

\{IlsXI = ¢I' 

'l'INxI = ¢;, 
'l'IExI = tPI' 

If 0 is closed, then 

0= r '1'* dO 
JD'XI 

= r '1'*0 
Jaw'XI) 

(2.19) 

(2.20) 

(2.21) 

= r ¢?"O - r ¢TO + r '1'*01,=" 
JNXI JSXI JD' 

(2.22) 

Note that the last two terms in (2.22) combine to give a total 
time derivative under the integral Sdt and may be ignored 
since they do not contribute to the dynamics. (Equivalently, 
one may use the gauge freedom discussed later in this section 
to gauge them away.) Hence we find that the Wess-Zumino 
action is independent of the extensions ¢I (or X/a) modulo 
endpoint contributions and thus is well defined as a part of a 
physical action. For those manifolds M with 1Tz(M) =1=0, 
there is an ambiguity in the possible extensions of tP I (or 
CIa)' Referring to the explanations above, the extensions ¢ I 
and ¢; are no longer homotopic to each other and hence are 
inequivalent. To resolve this problem one requires an extra 

FIG. 2. Here we show D3 (a solid ball) di
vided by the equator E and giving the two 
hemispheres Nand S. 
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datum to make the Wess-Zumino action well defined. We 
will defer the discussion of such cases to Sec. VI after con
structing the second example in Sec. V. 

(ii) Most of the time we will restrict our attention to 
term (2.11) of the whole Wess-Zumino action. Term (2.11) 
in fact corresponds to the usual definition of the Wess-Zu
mino action, which is independent of any deformations of ~ I 
in M. Term (2.12) is uninteresting since it can be written 
consistently and globally as an integral over space-time with
out any difficulty. With this term in mind, one can always 
add further exact forms to 0, with their integrals contribut
ing only to integral (2.12). Hence to define (2.11) one uses 
only the generators of the third cohomology class of M, 
H 3(M), as seen earlier. Thus we will have 
b3(M) = dim H 3 (M) independent Wess-Zumino terms. 
The term r [ CIa] will be treated as fixed numbers given by 
(2.16). We will in fact totally ignore the fields Ca later. 

(iii) This construction of the Wess-Zumino action is 
different from its usual construction, e.g., that of Braaten et 
al.8 Here, the normal construction involving Euclideanized 
space-time is avoided by using a time-parametrized family of 
maps <1>. An important consequence is that the fields <I> I need 
no longer be cycles of M, but are general two-chains on M. 
(For explanations of the terms "cycles" and "chains" see the 
discussion regarding the d chain. ) 

To write terms (2.11) and (2.16) in the usualfashion of 
(the integral of) the Lagrangian density, we use the Poin
care lemma to write 0 as an exact form in some local patch of 
M: 

0= dw. 

The integral (2.11) may now be written as 

r[(a~)d = r ~Tdw 
JDXI 

= r </JTw + {total time derivatives} 
Js'x/ 

= r dtdx{etval'rMav</J~Wjk(</J)}, 
JS'XI 

(2.23 ) 

(2.24) 

where w(</J) has singularities in </J. For the integral (2.16) 
there is no consistent way of writing the integral locally. This 
is due to the problem associated with the gauge transforma
tions belonging only to trivial winding number sector of the 
fields <I> (this will be discussed at the end of this section). To 
avoid a cumbersome notation, the SUbscript I will be 
dropped from now on. Before discussing the total Lagran
gian for the whole system, it is necessary to define the kinetic 
energy term: It consists of derivatives of the field <1>. Given a 
metric g on the target manifold, the kinetic energy term is 
written as 

f dx ~ a I' ~ a l'<I>k gjk (<1». (2.25) 

One can make simplifications for this term when one realizes 
that the fields Ca are linear functions of x (generating the 
nontrivial winding numbers). Furthermore, the term may 
be made independent of t owing to the topological nature of 
the fields Ca. Thus derivatives of the fields Ca in the kinetic 
term merely add constants to the kinetic term involving </J's 
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[the cross terms in (2.25) may be integrated out] and, there
fore, these fields will be ignored totally for the rest of this 
paper. Hence given Eq. (2.24), the total Lagrangian density 
for the nonlinear q model with the Wess-Zumino term may 
now be written (modulo constants) as 

!f = !(al'¢/)(al'</Jk)gjk (</J) 

+ . k e'V(al'¢I)(av</J )Wjk (</J). (2.26) 

We will proceed to express the correspondence between 
the q model and a particle in a magnetic field2 by first writing 
the conjugate momenta to ¢/(x) from Eq. (2.26): 

8!f 
1Tj (X) = -.-. -

8¢1(x) 

(2.27) 

Note that the second term in (2.27) provides an analog of 
the gauge potential A j [cf. Pj = ih + A j (q)] in the space of 
field configurations OM (the space of loops in M with a 
given base point): 

(2.28) 

To relate the second term in (2.27) to topological properties 
of the configuration space, one must write it as a differential 
form on OM (cf. A = Aj d~). We will briefly digress to de
scribe the relevant ideas of differential geometry on OM. 

A vector field on OM is intuitively given by an infinitesi
mal deformation of based-point loops in M. Thus the set of 
basis vectors at each point of !lM may be denoted by {8¢1}. 
(Similar definitions involving the other sectors Ca follow). 
To describe a one-form on !lM, we think of it as an object 
which sends vectors on!lM to real numbers. Noting that for 
every vector 8¢/,8¢/(x) is a number, we may denote the 
basis of one-forms on !lM as {8¢/(x)} (following the nota
tion of Cmkovic and Witten9

). These objects anticommute 
(resembling the wedge product of ordinary one-forms), i.e., 

8¢/(x)8</Jk(X') = - 8</Jk(X')8¢/(x). (2.29) 

The exterior derivative is denoted by 8 and obeys 

82 = O. (2.30) 

Interpreting the zero-form ¢/(x) as an object that sends the 
function ¢/ to the number ¢/(x) for each x, we find that 
8¢/(x) is a closed one-form, i.e., it obeys 

8(8¢/(x» = O. 

A general k form % may be written as 

% = r dx(l) r dX(2) ... r dX(k) 
JSI JSI JSl 
x %i,i, .. 'i

k 
(</J(x( 1) ), ••• ,</J(X(k») 

X8</Ji, (x(1»·· ·8</Jik (X(k». 

(2.31) 

(2.32) 

where the parenthesized indices on the x's are just labels for 
different x's and %i,i""i. is a functional of </J at the various 
points. Note that apart from the usual summation conven
tion over the indices iI' i2, ... , ik, there is also a "summation" 
over the different x's, showing the infinite dimension of OM. 
Note that in our problem we will only be interested in a 

Hishamuddin Zainuddin 2227 



                                                                                                                                    

subclass of such forms, in which the functional % i i ... I will 
, , k 

be a functional of l/J at one point x. This is because such 
functionals will be appearing in the Lagrangian for the theo
ry and hence required to be local. Last, given a vector 
8¢/ = vi on OM, the contraction of v with % is given by 

Returning to the discussion of d j , it can now be under
stood as the components of the gauge potential one-form 

d[8¢/] = r dx{2aAk(x)WjkCl/J)8¢/Cx)} 
Js' 

= r dx{dj (l/JCx»8¢/(x)}. 
Js' 

(2.34 ) 

The field strength two-form on OM (cf. F = dA) can be 
obtained by applying the exterior derivative 8 at point x, i.e., 

Y [8l/JI,O¢/] = 8 (d [8¢/] ) [orf/ ] 

= r dx{2(ax 8l/Jk(x»Wjk o¢/(x) Js, 
+ 2 (aAk)wjk,1 8l/JJ(x)8¢/(x)} 

= r dx{3(aAk)wjk,J 8l/JiCX)8¢/(x)}, (2.35) 
Js' 

where Wjk,1 denotes the derivative of Wjk with respect to the 
fie1dl/Jl. In deriving Eq. (2.35), we have used the symmetries 
of w, 

(2.36) 

and the fact that ¢/ is periodic in x. The Wess-Zumino action 
can now be written in terms of forms on OM: 

r [(a~) d = f dtL,dX{2;P;(x)(ax l/Jk(X»Wjk (l/J)} 

= f dtl,dX{f(X)d/l/J)} 

= L ,dx f dt { a: d j (l/J) } 

= r dx r 8¢/(X)dj (l/J) = r d, 
Js' Jr Jr 

(2.37) 

where r is the path traversed in OM. A more useful form will 
be 

(2.38) 

treating ~ as a vector at each point of OM and contracting it 
with d (cf. S dt Ajxl

). 

Having mentioned the analogs of the gauge potential 
and field strength in OM, we must now check that they have 
the proper gauge symmetry properties. The analog of a 
gauge transformation of d is 

(2.39) 

for some zero-form A on OM. From the form of the Wess-
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Zumino Lagrangian, oA is required to be 

8A = i dx{2 aAk a kJ8¢/(x)} 
s' 

(2.40) 

for some functional one-form a (l/J) on M: This implies that 

(2.41) 

Note that in deriving Eq. (2.41), it is necessary that A is a 
functional of fields only from the trivial sector, namely 
¢/(x). This means that the gauge transformation for the 
whole action comes from the trivial sector. This is precisely 
the reason why (2.16) cannot be put in a Lagrangian form, 
as it depends on the choice off unction w(Ca ) [Le., it is no 
longer gauge (quasi-) invariant]. We also find that as re
quired, Yis gauge invariant under the transformation 
(2.39): 

Y ..... :7' = i dx{3(wjk,1 + akJI) (ax l/Jk)ol/Jl(x)8¢/(x)} 
s' 

= f dx{3wjk,J(ax l/Jk)8l/JI(x)o¢/(x)} = Y. 
Js' 

(2.42) 

The Wess-Zumino action is also well defined under trans
formation (2.39) since it changes by a total time derivative 
given by 

f dt L,dX{e'v a,.,¢/ av<pk aj,k} 

= f dtL,dx{av (e'v a,.,¢/ aj)} 

= f dt :t (- L,dx{ax ¢/ aj }) (2.43) 

[cf. lint = f dt(Aixi ) ..... lint + f dt(ajAX
j
) = lint 

+ f dt( dA/ dt) ] : This can be ignored as it does not contrib
ute to the dynamics of theory. 

III. NOETHER'S THEOREM AND CONSTANTS OF 
MOTION 

In Sec. II, we have seen how the Wess-Zumino action 
can be interpreted as the interacting part of a total action for 
a "particle" in a background "magnetic field" on an infinite
dimensional space exhibiting the appropriate gauge symme
tries. Here, we will proceed by looking at space-time symme
tries of the a model and, by using the above interpretation, 
one can show that Noether's theorem gives constants of mo
tion modified by a contribution from the "background 
field." This further elaborates the particle analogy. 

Consider the Lagrangian density(2.26) as 

5{' = .5t' KE + 5{' WZ' 

where 

5{' KE = 1(a,,¢/)(a#ll/Jk)gjk (l/J), 

.5t' wz = e'''(a,.,rfI) (avl/Jk)wjk (rp). 

Let rfI transform as 
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¢!-¢! + 8¢!, 

with 

8¢! = vi. (3.3 ) 

First, we let the Lagrangian density (3.1) be invariant under 
transformation (3.3) (for a more detailed discussion of the 
symmetries of .!t' KE see Ref. 10: 

8.!t' KE = !(al' vi al'cpk gjk + aI'¢! al'v
k 

gjk 

a 'a k I + I'¢I I'cp gjk.IV) 
I . k' . . = !(aI'CP al'cp ) (v1. lgjk + v1,kglj + glkJvI) 

=0; 

this implies 

vi,lgjk + vi.kglj + glkJvi = 0, (3.4) 

i.e., v must be a Killing vector on (M,g). 
To see how .!t' wz responds to transformation (3.3) and, 

in particular, to see when (3.3) is a symmetry transforma
tion, it is important to recall that the Wess-Zumino action 
may be written in terms of a gauge potential one-form [see 
(2.38)]. Interpreting 8¢! as a vector field on OM, the gauge 
potential one-form .sf tr~sforms under (3.3) in a way given 
by its Lie derivative with respect to 8cp = v, i.e., 

.sf -.sf' =.sf + £v.sf. (3.5) 

Thus to make .!t' wz invariant one can impose £v.sf = 0, but 
note that we can use the gauge freedom to modify this into 

(3.6) 

for some scalar lrv (cp) on OM: From Eq. (2.43) this is 
equivalent to the condition that .!t' wz may change by a total 
time derivative. The change in .!t' wz under transformation 
(3.3)is explicitly given by 

8.!t' wz = 2~Y(al' vi) (aycpk)Wjk 

. k I + ~Y(al' ¢I) (aycp )Wjk,lV 

y . k I I 
= ~ (dl'¢I)(aycp )(2Wlk V J + Wjk,IV). (3.1) 

Equation (3.1) may be set to equal the total derivative. 
. k I I ) al'(~Y¢l(aycp )(2W1k V J + Wjk.IV) , 

provided that the following condition holds: 

2 a[mWk ]IV
I
J + a(mWk lj.IV

I = O. 

By using symmetries in (2.36) and from Eq. (2.43), a suffi
cient condition for Eq. (3.6) to hold is then 

(3.8) 

Note that in general condition (3.8) is not true. For such 
cases it is necessary to treat Eq. (3.7) case by case for differ
ent M and W (one such case is our second example in Sec. 
IV). For simplicity, we shall assume Eq. (3.8) in order to 
illustrate our point on the modified constants of motion. 

Now the Lie derivative of.sf can also be expressed for
mally using the homotopy formula £v ( .) = 8 (v J .) 
+ v J 8('), in particular, 

£v.sf = 8(v J .sf) + v J (8.sf) = 8(.sf[v]) + v J Y. 
(3.9) 

ComparingEq. (3.9) withEq. (3.6) implies a new condition 
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vJ Y = - 81/1v 

for some scalar 1/Iv on OM, with 

lrv = .sf [v] - 1/Iv 

(3.10) 

(3.11 ) 

[cf. Eq. (1.8) in Ref. 1]. Of relevance to our discussion on 
the constants of motion is the gauge invariant object 1/1 •. 
From Eq. (3.10) we note that 1/1. is globally well defined only 
if v J Y is exact. Note that v J Y is necessarily closed since 
Y, being gauge invariant, must be invariant under the sym
metry transformation (3.3), i.e., 

£vY=8(vJY)=0. (3.12) 

Thus v J Y belongs to the first cohomology class of OM. A 
sufficient condition for a globally well defined 1/Iv is then 

H1(OM) = O. (3.13) 

This is always the case for simply connected configuration 
spaces, i.e., 

(3.14 ) 

However, for other spaces there is the possibility of v J Y 
being closed, but nonexact; thus Eq. (3.10) is only true local
ly. 

In addition to Eq. (3.10), one can also obtain another 
equation for 1/1. involving further contraction of Y with 
v = [w,u] for some vector fields w, u on OM, namely, 

1/Ilw.u] = Y[w,u] (3.15) 

[cf. Eq. (1.14b) in Ref. I]. 
Proof: Consider the following identity: 

(3.16) 

ThelhsofEq. (3.16) gives 

£w (811"" u ) - £u (811"" w) = 8 (w J 811"" u) - 8 (u J 11"" w ) 

=8(£wlru - £ulrw). (3.17) 

The rhs ofEq. (3.16) with Eq. (3.17) gives the identity 

lr(w.u 1= £w lru - £u 11"" w' (3.18) 

Using Eq. (3.11) in Eq. (3.18) we obtain 

.sf[[w,u]] - 1/I(w.U] = £w.sf[u] - £w1/lu 

- £u.sf[w] + £u1/lw 

= w(.sf[u]) - (wJ 81/1u) 

- u(.sf [w]) + (u J 81/1w). 

Thus 

1/Ilw.u] = u(.sf[w]) - w(.sf[u]) + .sf[[w,u]) 

- uJ (81/1w) + wJ (81/1u). (3.19) 

Using Eq. (3.11) with the identity 

Y[u,w] = u(.sf[w]) - w(.sf[u]) + .sf[[w,u]] 

(3.20) 

in Eq. (3.19) will now give the desired identity 

1/I(w.ul = Y[u,w] + Y[w,u] - Y[u,w] = Y[w,u]. 
o 

A useful computation is that of £u.sf using Eqs. (3.9) 
and (2.34): 
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- 2 l)t/l(x)wjk,lvi(aAi) - 2 l)t/>k(X)Wjkvi,1 (aAi) + 2 (aAk)wjk vi,1 l)t/>I(X) + 4(aAk)wjk,IVI l)f(x)} 

= 1 dx{2wjk vi,/(l)t/>I(x)aAk - l)t/>k(x)aA~ + 2(aAk)wjk,I VI l)f(x)} 
s' 

Equation (3,21) is in fact consistent with the change in 
.!f wz when the action is written in terms of d: 

1 dx l).!f wz 
s' 

= £vd[~] 

= 1 dx{(~/a" t/>k - ~ka" t/>1)(2wjkvi,1 + WlkJ vi )} 
s' 

= 1 dx{e'V allt/>I avt/>k(2w}k vi,1 + WlkJ vi )}, 
s' 

Given the above results one can now discuss conserved 
currents and hence the associated constants of motion with 
respect to the symmetry transformations (3.3), For com
pleteness, we include the following standard discussion of 
Noether's theorem. A Lagrangian density .!f (t/>,a Ilt/», un
der transformation (3.3) changes (without using equations 
of motion) as 

(3.22) 

for some K Il. With the equations of motion the Lagrangian 
density transforms as 

(3.23) 

Thus a conserved current can be constructed from the identi
ty 

a K Il = a (l)f l).!f ), 
Il Il l)(allf) 

namely, 

Jil = l)f l).!f. _ Kil. 
l)(aA") 

(3.21) 

(3.24) 

(3.25) 

From the total Lagrangian density, (3.1) with (3.2), Kil is 
given by 

Kil = e'vf(avt/>k) (2Wlk VI
J + Wjk,IVI) 

[see (3.7)]. Hence the current Jil is 

Jil = allfgjk (t/»vk + 2e'v avt/>k WlkVI 

- e'vf(avt/>k) (2v1
JWlk + Wjk,IVI). 

One can verify using the equations of motion that 

allJIl = O. 

(3.26) 

(3.27) 

Hence one can construct constants of motion Cv out of the 
time component of J Il such that 

acv =1 dx aJO = -1 dx aJ' =0. 
at s' at s' ax 

Computation of Cv from Eq. (3.27) gives 

Cv = 1 dX{~kgjkvi + 2 a" t/>kWjkvi 
s' 

(3.28) 

The main point now is to understand what the terms in Eq. 
(3.28) mean. We begin by taking the last term in (3.28) and 
computing its exterior derivative: 

- (a"f)l)t/>k(X)(2vI
JWlk + Wjk,IVI) - f l)t/>k(x)am (2v1

JWlk + Wjk,IVI)(a" t/>m)} 

= 1 dx{(2vI
JWlk + Wjk,/vl)(l)f(x)aAk - l)t/>k(x)aA/)} = £v d , 

s' 
(3.29) 
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where we have used Eqs. (3.8) and (3.21) and the factthat 
the ¢l's are periodic functions of x. Hence Eqs. (3.29) 
and(3.8) imply that the third term in (3.28) is simply 

(3.30) 

The second term in (3.28) is straightforwardly given by 
.x{ [v], while the first term is just the normal contribution 
from the kinetic term. Writing the first term in (3.28) CUo' 

we have 

(3.31) 

Thus we find that the normal constant of motion CUo is sup
plemented by "'u, the contraction of the field strength Y 
with the Killing vector field v. Thisjustifies the earlier claim 
that Noether's theorem gives a modified constant of motion 
that includes a contribution from the background field. 

Having obtained these results, we will now illustrate 
them using specific examples of u models with the Wess
Zumino term. 

IV. THE C1 MODEL ON M= 13 

The first example is the u model on the target manifold 
M = T 3• Here, all the results derived in Secs. II and III hold. 
We will now make the results more explicit for this particu· 
lar model. 

From the construction of the Wess-Zumino action (in 
the usual sense), there is only one independent action given 
by the (integral of the) generator of H 3(T 3

), which is the 
volume form 

(4.1 ) 

where </>i (i = 1,2,3 ) are the angular (field) variables of T3. 
Here, 0 can be represented locally as the exterior derivative 
(d) ofthe two-form 

(4.2) 

Given such an ll), the gauge potential one-form (2.34) is 
simply 

.x{= L,dX{+ Eijk</>iaxt/>k 8t/>"(X)}, (4.3) 

while the field strength two-form (2.35) is 

Y = L,dX{ ~ Eijk aAi 8</>i(X)8t/>"(x) }. (4.4) 

The Lagrangian density of this model may now be written as 

U' 1 a ,l,jall,l,k + 1 Il" ,l,ia ,l,ja ,l,k 
oZ = 2 1l'fJ 'fJ 1]jk l.E Eijk'fJ 1l'fJ ,,'fJ' (4.5) 

where 1] is the fiat metric on T3. 
The Killing vectors on (T 3,1]) that will generate the 

symmetry transformations are just the vectors v generating 
translations, so that 

(4.6) 

where the Vi'S are constants. The induced vector field on the 
configuration space OT 3 is obtained by Lie dragging the co
ordinate functions by the vector field v, i.e., 

(4.7) 
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Under this symmetry transformation, the Lagrangian den
sity (4.5) changes by a total derivative as in (3.7) [notethat 
ll) and v satisfy condition (3.8)]: 

82' = all KIl, 

where 

K Il = f,E""EijkVit/>" a,,</>k. (4.8) 

Thus the conserved current Jil [(3.25)] is simply given by 

(4.9) 

The constant of motion associated with the current (4.9) is 
then 

Cu = ( dxJo= ( dX{viif/1]jk +..!..Eijkvi</>iax</>k}. 
Js· Js' 2 

(4.10) 

Note that the second term in (4.10) may be written as the 
contraction of the field strength two-form (4.4) with </> and 
v, i.e., Y [</>,v] (with an abuse of notation; </> is not a vector 
on OT 3

). This can be compared with the case of a particle in 
a magnetic field in which the analogous term is }jkXjvk (xi is 
the coordinate function of the configuration space). 

At this point, it is appropriate to address the aforemen
tioned possibility of the constants of motion being ill defined. 
In Ref. 3 it is noted that for the case of a particle on Tn in a 
magnetic field, the term }jkXjvk is not globally defined owing 
to the multiple-valued coordinate function xi on the non
simply connected space Tn. However, in our example this 
problem does not occur. As the field variable </>j(x) under
goes a translation of its period 21T, 

t/>"(x) -t/>"(x) + 21T, 

the change in Cu is trivial: 

acu = ( dX{Eijk1Tvi ax</>k} = 0 
Js' 

( 4.11) 

(4.12) 

since the function </>k is periodic in x. This is consistent with 
the fact that the configuration space is now a loop space OT3 

of T3 and is simply connected, i.e., 

1T,(OT3) = 1T2(T3) = O. (4.13) 

In fact "'U = Y[</>,v] must be globally defined as a conse
quence of (4.13) [see the remarks after Eq. (3.13)]. 

Thus to find any possible phenomena of "anomalous" 
constants of motion, one must first require that 1T2 (M) is 
nontrivial. Such an example will be discussed in Sec. V. 

V. THE C1 MODEL ON M=S2XS1 

This model is a more interesting example than that in 
Sec. IV as the target manifold M = S 2 X S ' has a nontrivial 
second homotopy group, which means that the space of field 
configurations is no longer simply connected. However, this 
also means that one encounters an ambiguity in the con
struction of the Wess-Zumino action (see note (i) in Sec. 
II). We will nevertheless proceed as in Sec. III. A comment 
regarding the ambiguity will be made in Sec. VI. 

The Wess-Zumino action is constructed from the one 
generator of H 3 (S 2 X S ') that is given by the volume form: 

O=sin</>'d</>'l\d</>2I\d</>3, (5.1) 
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where ¢I and ¢2 are now spherical coordinates on S 2 and ¢J is 
the angUlar coordinate on S I. Locally, Eq. (5.1) is given by 
o = dill, where 

ill = - (cos ¢l +- l)d¢2I\d¢J. (5.2) 

With the metric of S 2 X S I given by 

dsl = gjk d¢l ® d¢k 

= (d¢1)2 + sin2 ¢!(d¢2)2 + (d¢3)2, 

the total Lagrangian density of the u model is 

2' =iap.¢liJlL¢kgjk(¢) 

_ tf'V ap.¢2 av¢3(cos ¢l 1). 

(5.3 ) 

(5.4) 

The gauge potentials computed from the Lagrangian density 
(5.4) are given by 

.sd N = f dx{ - (cos ¢! - 1)(ax ¢3 c5¢2(X) 
JSI 
- aA2 c5¢3(X»}. 

.sd S = f dx{ - (cos ¢! + 1)(aA3 c5¢2(X) JSI 

(5.5) 

(5.6) 

Note that (5.5) and (5.6) are only well defined locally in the 
regions 

N€ = {(¢!,¢2) iO<¢! <1T/2 + €,O<¢2 <2'17}, (5.7) 

S€ = {(¢1,¢2) 11T/2 - € <¢I<1T,O<¢2 < 21T} (5.8) 

of S2, respectively (€>O). A gauge potential that is well 
defined on the whole of S2 (and hence of OM) can then be 
given by 

{
.sd N' on No 

.sd= 
.sd s, on SE' 

(5.9) 

with the observation that .sd Nand .sd S are gauge related on 
(NEnS.,) by 

S .sdS-.sdN 

Note that (5.10)is an exact one-form 

s=&, 
where e is the zero-form 

(5.10) 

(5.11 ) 

(5.12) 

(e is well defined under the translations ¢i_¢i + 21T for 
i 2,3). The field strength !7 is simply given by 

.7 = ildX{ ~ sin ¢I€ijk ax¢k c5¢i(X)<5¢1(X)}. (5.13) 

For this model, the symmetry transformations are gen
erated by the following Killing vectors on S 2 X S 1 : 

. ~2 a ~! ~2 a 
V(ll = sm 'f' a¢1 + cot 'f' cos 'f' a¢2' (5.14) 

a 
v --

(2) - a¢2' (5.15 ) 
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(5.16) 

(5.17) 

Here, the parenthesized indices are just labels denoting dif
ferent Killing vectors. We can now construct the associated 
constants of motion for each of the symmetry transforma
tions given by c5¢1 ~i) (i = 1, ... ,4): It is important to note 
that condition (3.8) does not hold for these cases and one 
has to repeat any necessary computations of Sec. III that 
assume this condition. 

A.I=1 

The vector field OM is given by 

c5¢1 = sin ¢2 /!Jl + cot ¢ 1 cos ¢2/)12, (5.18) 

where c5ij on the rhs is the Kronecker delta. The change in 
Lagrangian density by such a transformation is a total deriv
ative, i.e., <52' = aflK ~l)' where 

Kfl) = -tf'v(csc¢1+cot¢!)cos¢2av¢3. (5.19) 

Hence the associated constant of motion constructed 
from transformation (5.18)will be 

Cv = f dX{~1 sin ¢2 + ~2 sin ¢l cos ¢l cos ¢2 
(1) JSI 

+ (ax ¢3)sin ¢l cos ¢2}. (5.20) 

Here the contribution from the field strength.7, 

'I/lv = f dx{sin ¢l cos ¢2 aA3}, (5.21) 
(I) Jst 

is no longer as transparent as 'I/lv in Sec. III. However, if we 
take the exterior derivative c5 of 1/IV(1) we find 

c5'1/lV(1l = ildX{cos ¢l cos ¢2(ax¢3 c5¢!(x) 

_ ax¢l c5¢3(X» + sin ¢! sin ¢2 

X (aA2 <5¢3(X) - aA3 c5¢2(X»} 

= - v(\) J.7, (5.22) 

thus confirming our previous results. 

8.1=2 

The vector field on OM induced by v(2) is simply given 
by 

(5.23) 

and hence the change in Lagrangian density c52' is trivial. 
The constant of motion is then 

C
U

(2) = f dX{~2 sin2 ¢l _ (aA3)cos ¢l} 
JSI 

(5.24) 

( Cv is the normal kinetic term contribution). As before, 
(2)0 

we find that 
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= - V(2) J Y. (5.25) 

C.i=3 

For this case similar calculations as above will produce 
the following results: 

(5.26) 

CVP) = i dX{~3 + (8x <p2)COS <PI} = CV(3)O + tPV(3)' 
. s' 

(5.27) 

8tPv = i dx{sin ifJI(8xflJl 8ifJ2(X) 8xflJ28ifJl(X»} 
(3) s. 

= - v(3) J Y. (5.28) 

Using Eq. (3.15), one finds the field strength contribution to 
the constaQt of motion 

0.1=4 

For this case we could proceed with calculations similar 
to the above; however, we will instead make use of the obser
vation that 

V(4) = [v(l) ,V(2) ]. (5.29) 

Using Eq. (3.15), one finds the field strength contribution to 
the constant of motion associated with the symmetry trans
formation 8¢1 = ~4) to be 

i dx{sin ifJI sin <p2 8xflJ3}. 
s· 

(5.30) 

One finds again that 

8tPV(4) = i.dX{COS ifJI sin ifJ2(8xflJ3 8ifJI (x) - 8<p3 (x)8xflJl) 

+ sin ifJI cos ifJ2(8x ifJ3 8ifJ2(X) 8x ifJ2 8ifJ3(X»} 

- V(4) J Y (5.31) 

Having constructed the constants of motion, we need to 
check whether or not the tPu(i) 's are globally well defined. As 
discussed earlier, possible obstructions may occur when 11'1 
(OM) is nontrivial. Thus it is natural to look at a noncon
tractible loop in the configuration space which is generated 
by this homotopy group. One such loop is shown in Fig. 3. 

The reason why such a loop can give a possible obstruc
tion to a well-defined constant of motion can be seen as fol
lows. Consider the loop on S 2 in Fig. 3 as given by the map ifJ. 
In defining the Wess-Zumino action, the map ifJ has to be 
extended to ~ (see Sec. II). Replacing the loop given by the 

FIG. 3. Evolution of a loop around S2 of M (S I not shown), giving a resul
tant noncontractible loop of OM. 
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map <p in Fig. 3 by the image of (a particular) extension ~ 
gives the corresponding Fig. 4. Figure 4 shows that the 
Wess-Zumino action changes value as ifJ evolves under such 
a nontractible loop. Thus constants of motion derived from 
such an action can also change values under such an evolu
tion of <p and hence are ill defined. One has to check this 
explicitly. 

A construction of one such noncontractible loop in OM 
is given as follows. First, the submanifold S 2 of M is embed
ded in R3 with a triplet of coordinate functions Xi'S: 

n = (x l,XZ'X3 ) (sin ifJI cos ifJ2, sin ifJI sin ifJ2, cos ifJI), 
(5.32) 

which satisfies n' n = 1 (the ifJi>s are coordinates on M). The 
loop may now be constructed via such a triplet of functions, 
where they now map [0,11'] xS I to S2, i.e., 

n = (sin A sin x,sin2 A cos X 

+ cos2 A,sin A cos A (cos x-I», (5.33) 

where AE [ 0, 11'] is some parameter and xeS I is the coordinate 
of space. The vector n has all the properties required of a 
noncontractible loop in OM, as follows. 

(i) n'n = 1. 
(ii) For fixed x, 

nlA=o =nIA=1 = (0,1,0) 

is a fixed point through which the one-parameter family of 
loops (parametrized by A) appears on the submanifold S2. 
The map (5.33) actually describes the intersection of a plane 
with the two-sphere of unit radius, as shown in Fig. 5. 

The map (5.33) possesses the required looplike proper
ty in OS2 as A goes from 0 to 11'. 

(iii) The map (5.33) has a topological winding number 
1. This can be seen by noting that with the coordinate func
tions (5.32), the volume form of S2 is given by 

For the map (5.33), the volume form is 

0= sinA(1- cosx)dAl\dx. 

(5.34) 

(5.35) 

Integrating (5.35) gives the winding number multiplied by 
the volume: 

i 1T

dA f1T dx sin .1.(1 - cos x) = 411'. 

Hence the winding number is 1. 
Having obtained the map (5.33), it is now easily verified 

that the constants of motion are globally well defined [with 
respect to the function (5.33) ]: 

IJ..tPv(i) = tPV(i) 1 (A 1T) - tPv(i) Ic... 0) = 0 (i 1, ... ,4). 

(5.36) 

FIG. 4. The corresponding evolution of the image of the extension ¢; of u. 
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plane 

FIG. 5. The intersection of a 
__ ~ x,.a, plane with S 2 in the xrx3 plane. 

(0,1,0) 

tan A = (X2 - 1)/X1 

In fact, one finds that v (i) J Y is an exact form for each 
i = 1, ... ,4 (using the triplet of coordinate functions), i.e., 

v(1) J Y = I dx M - XI ax t/J3}, (5.37) JSI 

V(3) J Y = I dx M - x lax t/J2}, 
JSI 

V(4) J Y = I dx M - X2 ax t/J3}. JSI 

(5.38) 

( 5.39) 

(5.40) 

This brings us to the conclusion that while the requirement 
of OM being nonsimply connected is necessary for the exis
tence of "anomalous" constants of motion, it is not suffi
cient. 

VI. SOME REMARKS AND CONCLUSIONS 

We have seen from the above discussions how the corre
spondence between a (T model with a Wess-Zumino term 
and a particle in a magnetic field can be made closer through 
a discussion of Noether's theorem. In fact, these (T models 
may be treated as systems of a particle in a magnetic field on 
an infinite-dimensional configuration space OM. One can 
further elaborate this by investigating the idea of an "Ahar
onov-Bohm effect" in OM. This is a topological effect which 
always exists when the configuration space is no longer sim
ply connected [i.e., 1TI (OM) = 1T2 (M) #0 in our case]. 
Note that the example discussed in Sec. V B has this feature: 
We will use this example to demonstrate the "Aharonov
Bohm effect" in OM. However, prior to this, some com
ments on the ambiguity in the construction of the Wess
Zumino action associated with the nontrivial1T2 (M) (see 
note (i) of Sec. II) are necessary. 

Consider the (T model on M = S 2 X S I of Sec. V with t/J 
mapping the space S I into the submanifold S 2 of M. This 
map has different extensions ¢ which are not deformable to 
each other as a result of the "obstruction" from S 2 of M. For 
example, the map t/J that sends S I to the equator of S2, e.g., 

t/JI = 1T12, t/J2 =x, t/J3 = t (6.1) 

has the extensions 

¢I = m12, ¢2 = X, ¢3 = t, (6.2) 

¢1=mI2+n(1-r)1T, ¢2=X, ¢3=t, (6.3) 

where r E [0,1] is the radial coordinate of the two-dimen
sional disk D 2 (aD 2 = S I) and n is a positive integer [n is 
actually the number of times the map (6.2), together with 
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map (6.3), winds around S 2 of M]. (see Fig. 6.) 
These extensions (6.2) and (6.3) in fact give different 

values to the Wess-Zumino action, i.e., 

I ¢*O= I e'vPsin¢la,..¢lav¢2ap¢3rdrdxdt 
JD'X! JD'X! 

= f dt f 1T

dX fdr{rsin( 7 + n( 1 - r)1T)} 

(-1)n41 { (2n -1)1T) = cos 
(2n - 1) 2 

2 . (2n -1)1T)} - SIn , 
(2n - 1)1T 2 

(6.4) 

where I is the length of the time interval and n takes values 
from 0,1,2, ... [n=O corresponds to extensions (6.2)]. 
Thus to resolve the ambiguity of the extensions (6.2) and 
(6.3) one needs to specify this "winding number" n, which 
then gives a unique Wess-Zumino action. 

Having done this, one can now discuss the "Aharonov
Bohm effect" in OM. An essential ingredient in this topolog
ical effect is that one can obtain a different gauge -Xff' by 
performing a singular gauge transformation on -Xff.ll Con
sider, then, 

-Xff N = I dx{ - (cos t/JI - l)(aA3 Ot/J2(X) 
JSI 
- aA2 Ot/J3(X»} (6.5) 

from Sec. V. We can perform a singular gauge transforma
tion on -Xff N by the (nonexact) one-form 

5' = I dx o[ - (cos t/JI - 1)t/J3(ax t/J2 - aAI)] (6.6) Js, 
in order to give the gauge potential 

-XffN = I dX{t/J3 sin t/JI(ax t/J2 Ot/JI(X) - aAI 0t/12(X» 
JSI 
+ (cos t/JI - l){aAI Ot/J3(X) - aA3 Ot/JI(X»}. 

(6.7) 

Similarly, one can do the same for -Xff S to obtain 

-Xffs = I dX{t/J3 sin t/JI(ax t/J2 Ot/JI(X) - aA 1 Ot/J2(X» 
JSI 
+ (cos t/JI + l){aAI Ot/J3(X) - ax t/J3 Ot/JI(X»}. 

(6.8) 

Both -Xff Nand -Xff s can now be "patched" up in the same way 
as -Xff Nand -Xff S in Sec. V to obtain the desired new gauge 

FIG. 6. The shaded regions are the image of different extensions of t/! 
[(5.1)] given by (5.2) and (5.3) (withn= I),respectively. 
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potential ,pf' on OM, which gives the same Y [( 5.13 ) ]. 
However, in the Aharonov-Bohm effect the relevant phys
ical quantity to be determined is the phase factor t2 

exp i(f ,pf ). (6.9) 

where 15 denotes an integral over a noncontractible closed 
path in OM. (See Fig. 7.) 

Thus we only need to obtain different holonomies 15 ,pf, 

giving different phase factors, to demonstrate the existence 
of Aharonov-Bohm effect in OM. Here, the different holon
omies are easily given by the two gauges ,pf and ,pf'. To show 
that this is the case we shall use a particular mapping ¢, 
namely that given by (5.33), i.e., 

it = (sin t sin x, sin2 t cos x 

+ cos2 t, sin t cos t( cos x-I» (6.10) 

and 

¢3 = 1 (a constant mapping). (6.11 ) 

The parameter t in it now denotes the time which parame
trizes the noncontractible closed path traversed in OM. Us
ing these set of functions, we find that the holonomy of ,pf is 
just trivial: 

J (11"/2 (211" 
j ,pf = Jo dt Jo dx{ - (cos ¢t - 1 HiJ,,¢3 ~2 - ax ¢2 ;p)} 

(6.12) 

as ~3 = ax ¢3 = O. for ,pf', the computation of its holonomy, 

f,pf' = l1l"dt f1l"dx{¢3 sin ¢t(aX¢2 ~t - ax¢t ~2)}, 

(6.13) 

is messy. The integral was done numerically, which gives 

f ,pf' = - 0.4159#0 (6.14 ) 

(to the fourth decimal place). These two results (6.12) and 
(6.14) then give different phase factors and hence imply the 
significance of the gauge potentials themselves (as in a nor
mal Aharonov-Bohm effect). It is now important to note 
that the use of a different gauge potential ,pf' implies the use 

FIG. 7. A schematic diagram ofa noncontractible loop in !1M, where the 
shaded region is int(S2) xS '. 
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of a different local expression of the Wess-Zumino Lagran
gian density from that of (5.4), namely 

.!L' wz = e"v(¢3 sin ¢I al'¢1 av¢2 

+ (cos ¢t ± l)al'¢3 av¢I). (6.15) 

Thus the Aharonov-Bohm effect in OM would then imply 
that the local expression for the Wess-Zumino Lagrangian 
density has a physical significance. At this point, it is also 
tempting to relate the ambiguity of extensions (6.2) and 
( 6.3) for the construction of the Wess-Zumino action 
[which comes from1T2 (M#0] with this Aharonov-Bohm 
effect [which comes from 17' t (OM) # 0]. However, earlier 
we noted that the extensions are labeled by integral winding 
numbers, while the Aharonov-Bohm effect is labeled by a 
continuous parameter, say AER, given by the holonomy of 
Ad' + (1 - A) d". Therefore, there is no obvious relation. 

Finally, we conclude this paper by summarizing the 
main results obtained above. 

(i) A (T model with a Wess-Zumino term on a target 
manifold M may be treated as a system of a particle in a 
background magnetic field on a configuration space OM. 
The Wess-Zumino term provides an analog of the gauge 
potential on OM, which then gives the Lagrangian on the (T 

model a gauge symmetry. 

(ii) Like other systems in a background gauge field, the 
constants of motion associated with the symmetry transfor
mations of the total system are modified by a contribution 
from the gauge field Y on OM. 

(iii) There is no "anomalous" phenomenon of ill-de
fined constants of motion for (T models on M = T3 and 
M = S 2 X S I. The second example shows that 17' t (OM) # 0 is 
not a sufficient condition for such phenomena. 

(iv) For nonsimply connected configuration spaces 
OM, there is a functional analog of the Aharonov-Bohm 
effect in OM. The holonomy of the gauge potential d' has to 
be specified to obtain a unique theory. This implies that the 
local expression of the Wess-Zumino Lagrangian density 
has a physical significance. In addition to this, one has to 
specify the "winding number" n to have a well-defined 
Wess-Zumino action. 
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An efficient new method is presented for the solution of eigenvalue problems that involve 
nonlocal operators of the type that appear in the solution of relativistic wave equations. The 
method, which has wider utility, allows very accurate results to be obtained with small matrix 
approximations to the eigenvalue equation. The method is illustrated for the equation 
[2( - V2 + m2

) 112 + VCr) - M]¢ = O. 

I. INTRODUCTION 

In this paper, we describe a matrix method for the solu
tion of eigenvalue problems that involve nonlocal differen
tial operators of the type E = [ - V2 + m2

] 1/2 typicallyen
countered in the solution of relativistic wave equations. The 
method is far superior to conventional finite-difference 
methods, and is applicable to a wide range of problems. In 
the case of local operators, it is a version of the collocation 
method. 

We developed this method during an investigation of 
relativistic quark-antiquark bound state problems using a 
reduced Sal peter equation. 1 Because of our emphasis in that 
work on the form of the quark-antiquark interaction, the 
problem was most clearly formulated in configuration space 
where the interaction can be described in terms of local po
tentials and nonlocal operators that involve E, 
E- 1 ,(E + m) -1, and ordinary differential operators. For 
example, the reduced Sal peter equation with a Lorentz sca
lar interaction between quarks gives a spin-averaged radial 
wave equation, 1 

[M - 2EI ]R,(r) 

= _1_ [(EI + m)2V(r) + 2(EI + m) 
4E~ 

x(dV(r) .!!... + v(r)v~) 1 
dr dr E( + m 

(
d

2
V(r) ~ dV(r) (V2.!!... .!!... V2) 

+ dr dr + dr I dr + dr ( 

+ v(r)v~v~) 1 2 ]RI(r), 
(EI + m) 

where 

V~ = ~~r- t'(t'+ 1) 
r dr r 

and 

E( = [ - V~ + m 2
]1/2. 

(1) 

(2) 

(3) 

The methods developed here allowed us to reduce the 
solution of this and more general equations to small matrix 
problems. Thus, in the work reported in Ref. 1, we were able 
to determine the five lowest eigenvalues M of Eq. (1) to an 

a) Present address: Fennilab-E790. P. O. Box 500, Batavia, IL 60510. 

accuracy of - 10 - 4 for singular qq potentials of the general 
form 

VCr) = - air + Br, (4) 

using 25 X 25 matrices. We will illustrate the methods below 
using a simpler relativistic wave equation that has been used 
in a number of analyses of qq bound states, 2-10 

(5) 

Matrix methods for solving this simplified equation effi
ciently were developed in earlier work. 8

,11 The present 
methods are a considerable improvement, as we show later. 
However, their full advantage is only evident when one con
siders more singular wave equations such as that in Eq. (1). 

The remainder of the paper is as follows. In Secs. II A 
and II B we describe two versions of our matrix method for 
treating the nonlocal operator E(. The methods are very effi
cient, as we illustrate in Sec. II C with tests of the accuracy 
and rate convergence with matrix size, but remain incom
plete in the sense that we have not established rigorous 
bounds on the error. We discuss the relations of our ap
proach to other methods briefly in Sec. II D. Finally, in an 
Appendix, we apply our method to an exact integral formu
lation of the operator E(. The results, while easier to analyze 
theoretically, are unfortunately cumbersome even for fairly 
small values of t; and are not especially useful for the solu
tion of Eq. (1). 

II. MATRIX APPROXIMATIONS FOR E( 

A. The square root matrix E( 

Our approach to the development of matrix representa
tions for the operator E I is motivated by the observation that 
the bound-state wave functions in a confining potential are 
spatially compact. It is therefore reasonable to suppose that 
they can be approximated by a finite expansion in functions 
orthogonal on the interval O<r< 00. We choose, then, to 
construct a matrix EI that represents the action of E( on the 
basis set as accurately as possible at a selected set of points Xi 

in the (finite) interval that is actually relevant for the prob
lem. (The method developed in the Appendix is exact in this 
respect; the methods developed below are approximate, but 
much simpler.) 

Our construction of EI is closely related to the method 
of orthogonal collocation. 12 We select a finite basis of N or-

thogonal functions {2"j (r) = Pj (r)~Jl-(r), 

2237 J. Math. Phys. 31 (9), September 1990 0022-2488/90/092237-07$03.00 © 1990 American Institute of Physics 2237 



                                                                                                                                    

j = O,L,N - l}'Pj (r) a jth-orderpolynominal, and define 
a matrix L as the matrix of basis functions evaluated at a set 
of N points {r j , i = 1,2, ... ,N}, 

(6) 

The most appropriate choice of basis functions depends on 
the problem to be solved. To optimize the convergence of the 
method, we will choose the rj as the zeros of .!t' N (r), the 
choice appropriate for Gaussian integration with the weight 
Ji(r). The reason for this choice will be evident later. 

In our first method, we construct an N X N matrix Ar 
that gives the exact action of the operator Dr = E ~ 
= - V~ + m2 on the basis functions at the points rj , 

(Ar)ij= [(-V~+m2).!t'j](rj)' (7) 

This action can be determined for the bases we considered 
using the recurrence relations for the functions .!t'j (r), but 
can also be determined using the Lagrange differentiation 
formulas. 13 The matrix representation for D is then given by 

Dr=ArL-I. (8) 

The eigenvalues of D are determined by the relation 

DrU = UAr. (9) 

Here, U is the matrix of eigenvectors, U ij = U ~ j) with if j) 
thejth eigenvector, and Ar is the diagonal matrix of eigenval
ues, (Ar)ij = ~ijA.j' Thus, 

Dr=UArU- I. (10) 

The operator Dr is the formal square of Er. We there
fore define the matrix Er as the square root of Dr, the finite 
matrix approximation for Dr, 

Er =DY2=UA1I2U- I. (11) 

With this definition, the relativistic wave equation in Eq. (5) 

reduces to a standard matrix eigenvalue problem, 

(12) 

where V is the potential matrix, (V) ij = ~ij V(rj ), and Rr is 
the column vector with components (Rr)j = Rr(rj ). We 
will use this equation in Sec. II C to test the accuracy and 
rate of convergence of our approximation. 

The extra nonlocal operators that appear in the more 
general relativistic wave equation in Eq. (1) can be defined 
in terms of Er as 

(13) 

(Er + m) -1_ (Er + m) - 1= U(A I12 + m) -IU-I. 
(14) 

Operators such as V~ and d / drcan also be defined in terms of 
their action on the basis functions, e.g., 

:r-d, (d)ij=~(:r.!t'n(rj»)(L-I)nj' (15) 

and the equation reduced to a matrix eigenvalue problem. 
Several remarks are in order here. First, the definition of 

Er given above is not exact even at the points rj • (The defini
tion given in the Appendix is exact at the rj , but involves 
considerably more numerical computation to implement.) 
We do not have a theoretical analysis of the possible errors in 
the action ofEr. However, E~ = D f exactly, and the errors 
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in the action ofD r can be estimated from standard results on 
orthogonal collocation,12 and are small for appropriate 
choices of the basis function and points rj • Second, the matri
ces E - I and (E + m) - I defined above are not the same as 
the matrices that would be constructed, for example, by de
termining the exact action of E f 2 on the basis set, and tak
ing the square root of the resulting matrix. "Exact" matrix 
operators for E f I and (E r + m) - I can again be construct
ed using the methods of the Appendix, but there does not 
appear to be any practical advantage to that construction. 
The present definition of the inverse operators preserves 
such relations as ErE f I = I without error. 

B. The symmetrical square root matrix Ef 

We have implicitly assumed above that the eigenvalues 
of Dr are real and positive. This is generally expected to be 
the case since, Dr = - V~ + m2 is a positive Hermitian op
erator. However, the matrix D, while real, is not symmetric, 
so reality of the A. 's is not guaranteed, and positivity may also 
be lost in the approximations. We therefore present a second 
method of constructing Er that is free of this potential prob
lem. 

The method that we will use to construct a positive, 
symmetric matrix D f has been discussed elsewhere. 14 We 
begin with a finite-basis Rayleigh-Ritz variational problem, 
and seek to minimize the matrix elements of Dr subject to the 
condition that R r be normalized, 

~ LX> dr rRf(r)( - v~ + m2 - A.)Rr(r) 

L
oo [d 2 t'( t' + 1) 

= t) dr ur(r) - - + --'-----'-
o dr r 

+ m2 - A. ]uAr) 

= t) Loo dr[ ( dU~;r) r + ( Itt'; 1) + m2 
- A. )u~(r) ] 

=0, (16) 

where ur(r) = rRr(r) and A. is a Lagrange multiplier used to 
enforce the normalization condition. Minimization of the 
expression in Eq. (16) without restriction on the u's gives the 
equation for the continuum eigenfunctions of Dr. Minimization 
on the functions spanned by the basis {.!t'j(r),j = O,L,N - 1} 
gives the best approximation of D f in the mean on the set of 
functions presumed to give a good description of the solutions to 
the complete wave equation, e.g., Eq. (5). 

We will suppose that the basis functions .!t'j (r) are of the 

formpj (r)~Ji(r) with the polynomialspj orthogonal on [0,00] 
with respect to the weight Ji(r). Then writing ur(r) as 

vr(r)~Ji (r) and extracting a factor ofJi, we can rewrite Eq. (16) 
as 

t) roo dr Ji(rJ( dvAr) + _1_ dJi(r) v
r
(r»)2 

Jo 'L dr 2Ji(r) dr 

+ (Itt' + 1)/r + m2 
- A. )0(r)] = 0. (17) 

The integral can now be approximated using generalized Gaus
sian integration with respect to the weight Ji (r), IS 
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i'" N 

o dr p,(r)!(r) =;~I wJ'<r;), (18) 

where the points r; are the zeros ofpN(r) or.!f N(r), and the 
weights w; can be detennined by standard methods. IS The result 
is exact for it r) a polynomial of order 2N - 1 orless. With this 
approximation, we obtain a discrete variational problem, 

~ ~ [(dVr(r;) 1 dp,(r;) (»)2 
u~w. --+----vrr· 

;= I I dr 2p,(r;) dr I 

+ (ttt; 1) + m2 -A )0(r;)] = 0, (19) 

or, in matrix form, 

~[V~A~WArvr+v~ttt;l) +m2-AI)WV] =0. 

(20) 

Here v is a column vector, W is the diagonal matrix of integration 
weights, and A is the matrix 

A .. = N~ I(dpn(r;) + _1_ dp,(r;) (r.»)( -I) . 
IJ ~ d 2 () d Pn I P "J 

n=O r ft1'; r 

= (~ dvlt)ij' (21) 

where d is the matrix defined in Eq. (15). 
It is convenient to define a new column vector v and a ma

trix a by 

(22) 

With these definitions, the variational problem reduces to 

~[v1>v - AVV] = 0, (23) 

where 

Dr =a~+ ttt+ 1)/r +m2
• (24) 

Varying wid!. respect to the components of vT
, we obtain the 

matrix eigenvalue problem 
A A A A 

Drv =AV. DrV = VA, (25) 

where V and A are the matrices of eigenvectors and eigenvalues. 
The matrix aTa = at a is real, symmetric, and positive, so 

A 

Dr is also, and the eigenvalues A are guaranteed to be real and 
positive. The eigenvectors v can be chosen real. With this con-

A A 

vention, V is a real orthogonal matrix, and Dr can be written in 
the symmetric form 

A. A. AT 6 
Dr = VArY . (2 ) 

The u's are related to the original eigenvectors u with com-
ponents u; = u(r;) by u = (J.l./w) 112 V, hence 

A A 

V = (J.L/w) Illy, V = (w/J.l.) 1I2U. (27) 

The remainder of the construction of a matrix representa
tion of EI follows that given in Sec. II A. We define the symmet
rical square root operator Er as the square root of Dr, trans
formed to the u basis {.!fpj = O, ... ,N - l}, 

A A 

Er = VA II2UT, (28) 

where U and A can be determined directly as the matrices of 
eigenvectors and eigenvalues associated with the equation 

[~dT ~d + tl:t+ I) + m2]v = VA. (29) 
w J.I. r 
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The relativistic wave equation in Eq. (5) can be formulated 
as the variational problem 

~ i'" dr[2urCr)(Erur)(r) 

+ ur(r)(V(r) - M)urCr)] = O. (30) 

If we again use Gaussian integration with respect to the weight 
p,(r) to convert Eq. (30) to a discrete variational problem, it 
assumes the form 

(31) 

or 

[2Er + V - MI]ur = 0, [2Er + V]V = VM (32) 

Here, EI gives the best representation of E( in the mean on the 
basis states for this discrete problem, and M gives the variation
ally best set of eigenvalues. It was shown in Ref. 14 that the 
errors in the eigenvalues for a standard Sturm-Liouville prob
lem. e.g., the problem above with E( replaced by E~, decrease as 

~MniMn -2(1TN)1/2(mre/4N) 2N X O( 1), 

n = 1, ... ,N, (33) 

for an N-dimensional basis. We expect essentially the same error 
estimate to hold here. The extremely rapid convergence results 
from the optimization of the choice of points r; in the Gaussian 
integration. The mean error in the nth eigenvector is expected to 
be of order I~MJMn 1112 • 

C. Tests of square-root matrices 

We have conducted a number of tests of the accuracy of the 
matrix operators E(, Er, and the operator ~ (constructed in the 
Appendix by applying the operators to simple functions. More 
realistic assessments of the accuracy and usefulness of these ma
trices can be obtained by applying the methods to the solution of 
a realistic problem, and checking the rate of convergence of the 
results with matrix size. We have used the equation 

[2Er - air + Br - M]tPr(r) = 0, (34) 

for this purpose, using the parameters m = 1.45 GeV, a = 0.25, 
and B = 0.18 Ge V2 used for the same purpose in Ref. 5. (These 
potential and mass parameters are characteristic of those en
countered in the treatment of charmonium.8

) 

In the radial form of the equation used in Sec. II A, 
tPr = R r, the basis functions .!fj (r) were chosen as associated 
Laguerre functions, 16 

.!fj(r) = rre- (1I2)crL ?f)(cr), 

with 

(35) 

(36) 

a choice that builds in the correct behavior of the wave functions 
for r-O. 

Here c is a scale parameter that was chosen so that the range 
of the points r; [the zeros of L ~I)(cr)] covered the region in 
which the low eigenfunctions are large. We could use c as an 
extra variational parameter; we did not. The integration weights 
w; were determined using standard methods. IS 

The results of the convergence tests using the matrix E( of 
Sec. II A with c chosen so that rN:::::4 fin are shown in Table I for 
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TABLE I. Convergence of the low eigenvalues M" (in GeV) ofEq. (34) with increasing size N of the basis set using the matrix representations Ef and Ef for 
Ef = (- V; + m)'I2. 

N\n 2 

10 3.392 375 3.902142 
15 3.392383 3.902150 
20 3.392385 3.902 152 
25 3.392386 3.902153 
30 3.392386 3.902 153 

10 3.392374 3.902138 
25 3.392386 3.902 153 

N\n 2 

10 3.734535 4.148087 
15 3.734535 4.148082 
20 3.734535 4.148082 
25 3.734535 4.148082 
30 3.734535 4.148082 

10 3.734535 4.148075 
25 3.734535 4.148082 

t = 0,1. The convergence is extremely rapid. A 15 X 15 matrix 
gives results which are sufficiently accurate for practical pur
poses for all the states shown. However, for N = 10, the method 
fails as low-lying complex-conjugate eigenvalUes appear in the 
spectrum. ~ problem can be eliminated by using the symmet
rical matrix E/ developed in Sec. II B, as shown in the extra lines 
in Table I. In the latter calculations, we used the u representa
tion, tP( = u(r) = rR/(r) in Eq. (34), and the corresponding 
basis functions 

(37) 

with 

(38) 

(=0 
3 4 5 

E( 
4.292493 4.626686 4.908474 
4.292488 4.625953 4.923683 
4.292489 4.625955 4.923694 
4.292490 4.625956 4.923695 
4.292 491 4.625957 4.923695 

Ef 
4.292428 4.6093 4.685 
4.292 490 4.625956 4.923695 

(=1 
3 4 5 

Ef 
4.495910 
4.496254 4.804 522 5.085011 
4.496254 4.804 522 5.084965 
4.496254 4.804 522 5.084965 
4.496254 4.804 522 5.804 965 

Ef 
4.492 772 4.730 4.83 
4.496254 4.804 522 5.084965 

The symmetrical square root or E( method based on Gaus
sian integration is somewhat less accurate than the unsymmetri
cal E( method for small matrix sizes, assuming that the latter 
method works. The difference for small N is apparently in the 
approximate nature of the Gaussian integration, since the differ
ential operators are treated equiValently. The two methods are 
completely equivalent for practical purposes for N~ 20. 

To further illustrate the advantages of the present methods, 
we show in Table II the results obtained in Refs. 8 and 11 using 
conventional finite-difference methods to construct the (much 
larger) square root matrices E(. The savings in computer time 
are substantial, especially for more complicated and more singu
lar problems such as those in Eq. (1) and Refs. 1. In the latter 
work on solution of the complete, spin-dependent reduced SaI
peter equation for bb, ce, and ss quark-antiquark bound states, 

TABLE II. Convergence of the eigenvalues of Eq. (34) with increasing matrix size N using the square root method of Refs. 8 and 11. The numbers are from 
Ref. 8. M" is given in GeV. The lines labeled E f are from Table I with N = 25. 

};,) 

25 
33 
49 
77 

E, 
25 
33 
49 
77 

3.392386 

3.3924 
3.3924 
3.3924 
3.3924 

3.734535 
3.7345 
3.7345 
3.7345 
3.7345 

2 

3.902153 

3.9022 
3.9022 
3.9022 
3.9022 

2 

4.148082 
4.1481 
4.1481 
4.1481 
4.1481 
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(=0 
3 

4.292490 

4.2925 
4.2925 
4.2925 
4.2925 

(= 1 
3 

4.496254 
4.4960 
4.4962 
4.4963 
4.4963 

4 5 

4.625956 4.923695 

4.6252 4.9205 
4.6258 4.9228 
4.6260 4.9236 
4.6260 4.9237 

4 5 

4.804 533 5.084965 
4.8033 5.0793 
4.8042 5.0838 
4.8045 5.0848 
4.8045 5.0850 
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we found the 25 X 25 matrix representation of Er to be quite 
satisfactory: it is accurate, and the matrices can be manipulated 
quickly enough that it was possible to use conventional nonlinear 
regression methods to fit the spin-dependent quark-antiquark 
potential. Furthermore, there was no partic~ advantage at 
this matrix size to using the symmetrical matrix Er, as the opera
tors that appear are not easily symmetrized, see, e.g., Eq. (1). 

The final method developed in the Appendix gives a matrix 
If r that reproduces the exact action of Er on the basis functions 
at the points riO However, this method requires the accurate 
evaluation of N 2 integrals, and the advantage of computational 
speed characteristic of the square root methods is lost. More
over, the integrands are singular and must be treated with great 
care, e.g., by extracting the singular pieces and treating them 
exactly, if one is to obtain results with accuracy comparable to 
that shown in Tables I and II. If this is done, the results obtained 
using If r are essentially the same for the test problem above as 
the results obtained with Er or Er. The If r method does provide 
a useful way of checking the accuracy of the square root matrices 
in reproducing the action of the operator E r on simple functions. 

In Table III we compare the ~ r method for t' = 0 and 
N = 15 with a finite-difference approximation for the same inte
gral with N = 100 from Refs. 3 and 5. The singular integrals in 
~ r were evaluated in this calculation using a standard adaptive 
integration routine, with results of limited accuracy. The singu
larities were treated exactly in the calculations in Ref. 5. The 
improvement in accuracy with the present methods is obvious; 
the results from Ref. 5 are still inaccurate in the third decimal 
place even for the very large matrix used. 

D. Discussion 

The general advantages of the method of solution of relativ
istic wave equations presented here are the fact that it allows one 
to work in position space where interaction potentials are easily 
understood and easily varied, its very rapid (exponential or fas
ter) convergence with increasing matrix size, and its simplicity. 
As shown in the Tables, the "spinless Salpeter equation" 

[2Er + VCr) - M]cPr(r) = 0, (39) 

can be solved to high accuracy for potentials VCr) of the type 
which appear in analyses of relativistic quark-antiquark bound 
states using quite small matrix approximations for Er. Thus, 
10 X 10 matrices already give results for the "Coulomb-pIus-lin
ear" potential in Eq. (34) that are accurate to better than 115000 
for all the observed Sand P states in the cc and bb systems, while 
the results for 15 X 15 matrices are accurate to about lIHf. The 

TABLE III. Comparison of solutions of Eq. (34) for ( = 0 obtained using 
the finite-difference approximation of Ref. 11 to the integral operator EI in 
Eq. (A4), with the solutions obtained using the collocation operator if 1 

developed in the Appendix, and the square root operator EI of Sec. II A. 

Ref.5. Wi' UExact", 
n N= 100 N= 15 E/,N= 30 

1 3.3925 3.392 35 3.392386 
2 3.9023 3.902 13 3.902 153 
3 4.2928 4.2923 4.292498 
4 4.6263 4.6260 4.625957 
5 4.9240 4.9238 4.923695 
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very singular effective interactions encountered in the solution of 
the spin-dependent reduced Salpeter equation, I or its spin-inde
pendent part given in Eq. (1), require somewhat larger matrices 
(25 X 25 matrices are more than adequate,I,1O to obtain accura
cies -lIIer), but no change in procedure: operators such as 
E r- I or (E( + m) -I are simply represented as the matrix in
verses ofEr or (Er + m), and differential operators are defined 
by their exact action on the basis functions. 

Other methods are of course available for the solution of 
relativistic wave equations, for example, treatment of the equa
tion as an integral equation in momentum space with solution by 
finite difference methods. The most powerful (and popular) al
ternative is the Rayleigh-Ritz-Galerkin method l2 in which the 
wave functions cPr (r) are expanded in terms of a finite basis, and 
the wave equation is reduced to a matrix equation for the expan
sion coefficients. A complication of the method is the need to 
determine the matrix elements of the operator [2Er + V - M] 
in the chosen basis. Various choices for the basis set have been 
used in the literature on quarkonium. For example, Gupta, Rad
ford, and Repk04 used a basis consisting of functions of the form 
XL e - x that give simple integrals for the matrix elements of V, 
and then reduced the calculation of the matrix elements of E r to 
the numerical evaluation of single integrals involving trigono
metric functions, one integral for each choice of the initial and 
final basis states. Jacobs, Olsson, and Suchyta6 used a basis of 
Laguerre functions in position space, and their Fourier trans
forms-a set of Jacobi polynomials with a somewhat complicat
ed argument-in momentum space, and evaluated the matrix 
elements of Vand Erin position and momentum space, respec
tively, by using generalized Gauss-Laguerre and Gauss-Jacobi 
integration. Stanley and Robson3 and Godfrey and Isguii used 
radial harmonic oscillator bases that have simple properties un
der Fourier transform, but were probably a less appropriate 
choice otherwise. In all cases, there were extra numerical inte
grations relative to the Er and Er methods presented here. Ja
cobs, Olsson, and Suchyta6 also used the Rayleigh-Ritz-Galer
kin method to solve the very singular spin-dependent equations 
for the qq bound states obtained from the reduced Salpeter equa
tion, but found that the calculation of the extra matrix elements 
which appear in that case was not completely straightforward.9 

In contrast, we encountered no particular difficulties in the treat
ment of this problem, or its spin-averaged version given in Eq. 
( 1), using either the Er or the Er method. Other authors have 
modified the extra interactions relative to Eq. (39) to make them 
less singular, or have treated them as perturbations, thus avoid
ing the potential problems. 

There are clearly several methods that can be used effective
ly to solve relativistic wave equations. We recommend the meth
ods presented here for their simplicity, accuracy, and flexibility. 
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APPENDIX 

The action of the non1ocal operator E = [ - V2 + m2
] 112 

is defined in terms of its Fourier transform. If F(r) is a well 
behaved, but otherwise arbitrary test function, 
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[ - V2 + m~ 1I2P(r)Y('(r) 

=_1_ f f d 31 d 3p[p2 + m2] I12tp"(r-r"lP(r')ym(r'). 
(217')3 ' 

This expression can be rewritten in the form 11 

[ - V2 + m~ 1I2P(r) Yrm (r) 

(Al) 

=-I-ffd3r'd 3p 1 P(r')Y"'(r)(-V2 +m2)€!p.(r-r'l 
(217')3 [p2 + m2] 112 ( r' 

=-I-ffd3r'd 3p 1 tp'(r-r'l( _V2, +m2)P(r')Y('(r') 
(217')3 [p2 + m2j 112 r 

= -1-ffd3r' d 3p 1 dP'(r-r'lY('(r) ( -V; + m2)P(I), 
(217')3 [p2 + m2] 1/2 

(A2) 

where V; is defined in Eq. (12). The exponential in Eq. (A2) 
can be expanded in terms of spherical harmonics and spherical 
Bessel functions and the angular integrations performed by us
ing the relation 

A 

e"P'r = 417' L tj(pr)Y(,(p) Y(,*Cr) , (A3) 
f,m 

and the orthogonality of the spherical harmonics, with the result 

[ - V2 + m~ 112P(r) Yrm (r) 

= Y(m (r) [ - V; + m 2
] 1I2P(r) 

= Y(r) ~ roo dl 1 2+(r,r') ( -V,/ + m 2 )P(r'), (A4) 
17' Jo 

where 

I (r I) =ioo 
d 2j(pr)j(pr') , 

( , :p P [ 2 2] 112 
o p +m 

(A5) 

The integral IAr,,') can be evaluated exactly in terms of hyper
bolic Bessel functions K" (z), 11 with a result which increases 
rapidly in complexity with increasing c: 

evaluated for 

y = m2(,z + r'2), z = 2m2rr'. (A7) 

Using the ideas presented earlier, we can develop a matrix 
representation for E( = [ - V; + m2

] 112 by using each of our 
basis functions as the test function P, and evaluating the integral 
for each value r;. Let A Ii be the matrix that gives the exact action 
of E( on..'f'j evaluated at r;, 

Aij=i
oo 

dI12+(r;,r')(-V'/+m2 )..'f'j(r'). (A8) 

Then 

(A9) 

This is essentially a collocation method for approximating the 
action of E( = ( - V; + m2

)1I2. The errors in the approxima-
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tion are not known, but should be similar to the errors in ordi
nary collocation. The integrals can be evaluated to the accuracy 
necessary for consistency. 

The result in Eq. (A9) is easily extended to the full relativis
tic equation 

(Ato) 

considered in the text by introducing the diagonal matrix V with 
elements V Ii = Veri )Dij' The result is the matrix eigenvalue 
problem 

[2W(+V]R(=MR(, (All) 

where R( is the column vector with components RtCr;). The 
Laguerre functions in Eq. (35) provide an appropriate basis set 
for potentials of the type of interest for quark-antiqliark systems. 
With this basis and a reasonable choice of the scale factor c in Eq. 
(35), we have found this approach to be much more accurate for 
a given matrix size than the finite-difference methods used in 
Ref. 11 to treat Eq. (Ato), and to converge much more rapidly 
with increasing matrix size, as shown in Table III. The results on 
accuracy and convergence of this method are similar to those 
discussed for the square root matrices E( and E( in Sec. II C. 
The usefulness of the method is hampered by the necessity of 
evaluating N 2 integrals accurately for a basis of size N, and by the 
complexity of the kernels ItCr,,'). However, the method pro
vides a useful check on the simpler heuristically motivated meth
ods considered in the text. 
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A collision theory of massless Fermions and Bosons is constructed within the framework of a 
Wightman field theory. To this end, using essentially the temperedness of the Wightman 
distributions, the main ideas of the collision theory of Buchholz formulated in a field theory of 
bounded operators are carried over. 

I. INTRODUCTION 

More than 10 years ago, Buchholz developed his famous 
collision theory for massless Fermions and Bosons starting 
from a field algebra of bounded operators. 1-3 

In this paper, we show that a collision theory for mass
less particles in four space-time dimensions also exists within 
a Wightman field theory.4 

Using essentially the temperedness of the Wightman 
distributions, we succeed in adopting the main ideas from 
the collision theory of Buchholz in order to construct the 
collision states also in our case of a Wightman field theory. 

In contrast to Buchholz, 1,3 we construct the asymptotic 
fields of massless Fermions and Bosons in an analogous way. 
The main effort in our investigation consists in carrying over 
Lemma 2 in Ref. 3 to the present case. 

This lemma, which we also formulate for Fermions, 
plays a central part in the collision theory for massless Bo
sons and Fermions. It says that suitable spherical means of 
vacuum expectation values oflocal operators have clustering 
properties. 

Since we are dealing with a field algebra of unbounded 
operators, the present construction is burdened with techni
calities. 

II. THE ASYMPTOTIC FIELDS 

In a Wightman field theory, it turns out to be advanta
geous to use for Fermions the same construction of asympto
tic fields as for Bosons. 

As Buchholz,3 we define the asymptotic fields as strong 
limits of certain sequences of operators. 

Let us first list our assumptions and notations. We con
sider a Wightman field theory without a mass gap4 given by a 
finite set oflocal fields {l,bi (x)}. By go SL we denote the poly
nomial algebra spanned by the l,b i (j) with /E~ (R4) (test 
functions on R4 with compact support), by n. the vacuum 
state, and by go SL (0) the subalgebra of go SL with supp -
/COCR4

• 

The elements in go SL are called strictly local operators 
and those in go SL n. strictly local states. 

In addition to the usual assumptions of a Wightman 
framework we suppose that there exists a continuous unitary 
representation L .... U(L) of the covering group of the Poin
care group go in a Hilbert space Jf" in which there is a sub-

space Jf" Ie Jf", the space of massless one-particle states, on 
which the U(L), LEgo act like a representation of the Poin
care group go with mass m = 0 (by a paper ofYngvason,5 
there are no unphysical representations with m = 0 and con
tinuous spin in a Wightman field theory). To begin with, the 
construction of asymptotic fields let A + and A _ Ego SL be a 
strictly local Bose and Fermi operator and define 

A + (x) = U(x)A + U(x) - I 

and 

A _ (x) = U(x)A _ U(x) - I, 

where (xo, x) = x ..... U(x) is the unitary representation of 
the translations. 

For each tER, we define furthermore a spherical mean of 

A+ andA_, 

A + ,= - 2t J dw JoA + (t,te), 

A _ t = - 2t f dw JoA - (t,te). 

Here, dw = dw(e) is the normalized measure on the unit 
sphere S 2 in R3

, e a unit vector that runs over the sphere, and 
Jo denotes differentiation with respect to the time compo
nent of the translations. 

Let us finally define sequences of functions: 

hT(t): = Inl
1
TI h Cnl

1
TI (t - n), ITI> 1, 

where hE~ (R) is real and normalized according to 
f dt h(t) = 1. Thus we have also f dt hT(t) = 1 and hT has 
support in an interval around T of a length proportional to 
In I T I (instead of the logarithm, one could use any other 
slowly increasing function). 

Consider now, for I T I > 1, 

A+ T:= J dthT(t)A+ 1 and A_T= J dthT(t)A_ 1 • 

By an explicit calculation in Ref. 1, one then establishes the 
existence of the strong limits 

s - lim A + Tn. = PIA + n. 
T- ± 00 

and 
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s - lim A _ TO = P.A _ 0, 
T- ± 00 

where p. is the projection .onto the space K. of massless one
particle states. 

In the next step, we want to prove that A + T and A _ T 

converge not only on the vacuum but also on a dense set of 
vectors. To this end, we need some notations introduced by 
Buchholz3 and a lemma that also will playa central part in 
the further construction of asymptotic many particle states. 
It is suitable to distinguish a family of subsets f!Ji N, NEN in 
f!Ji SL' The elements of f!Ji N are all finite sums of operators of 
the form S dt tp(t)A (tn), AEf!Ji SL' Here, A is a strictly local 
Bose or Fermi operator, n is a positive timelike four-vector, 
and tp(t)E!iJ (R) has a Fourier transform (jJ({J) with an N
fold zero at (J) = O. We formulate now the above mentioned 
lemma that we need in contrast to Buchholz"3 also in the 
Fermi case. 

Lemma 2.1: (i) Let A., ... ,AnEf!Ji N be n Bose operators 
and N sufficiently large (depending on n). Then, 

lim (O,A.T·· 'AnTO) 
T- ± 00 

if n is even. The sum extends over all distinct partitions of 
(1, ... ,n) into ordered pairs. For odd n, the limit vanishes. 

(ii) Let t/J, ... ,t/JnEf!Ji N be n Fermi operators and N suffi
ciently large (depending on n). Then, 

lim (O,t/J.T·· 't/JnTO) 
T_ ± 00 

if n is even. Here, the sum is given as in (i) and Up = ± 1, if 
the permutation P = (i.,i2, ••• ,in ) of (l, ... ,n) is even or odd. 

Before proving this lemma, we establish the strong con
vergence of A + T and A _ T on a dense set of vectors. To 
specify this set, we need a geometrical notation. We call with 
Buchholz· the positive cone 0 + of all points that have a 
positive timelike separation from a bounded region OCR4 

the future tangent of 0 (the past tangent that we use later is 
defined analogously). 

Lemma 2.2: Let A + be an element of f!Ji SL (0) n f!Ji N .. ' 

No sufficiently large where Ois some bounded region OCR4. 
Then, the strong limit 

A O':lp + 0: = S - lim A + TP + 0 
T- 00 

= s - lim P + A + TO 
T- 00 

exists on the dense set of vectors {F + O:F + E f!Ji SL ( 0 + ), 

F + closed}. This defines a linear operator A 0,:1. 

The operator A O~I is defined analogously by 
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A o~IF _ 0 = s - lim A _ TP _ 0 
T- oo 

- s - lim P _ A _ TO 
T-oo 

on the dense set of vectors {F _ O:P _ Ef!Ji sd 0 + ), 

F _ closed}. The operators A 0':1 and A O~I are closable and 
we also denote the least closed extension of these operators 
by A 0,:1 and A O~I. 

Proof We prove the statement for the asymptotic Bose 
operator. The proof of the strong convergence of the se
quence ATffi, where A+ =AEf!JisL(O)nf!Ji No ' No suffi
ciently large, and P=F + closed and localized in 0 + , can 
be reduced to the proof of the following two conditions: 

(i) w - lim ATffi = PP.AO, 
T- 00 

(ii) lim IIATffil1 = IIFP.AOII. 
T- 00 

To prove (i), we show that for AEf!Ji No' ATffi is uniformly 
bounded in T: 

lim IIATffill2 = lim (ATffi,ATffi ) 
T-+oo T-oo 

= lim (P*ffi,A 1-ATO), 
T-oo 

since P commutes with A T for sufficiently large T due to the 
definition of AT and locality. 

The last term can be estimated by 

<11F*ffililim IIA 1-ATO II<c, 
T-oo 

where the constant c does not depend on T. 
In the last step, we used the first part of Lemma 2.1 for 

n = 4 [i.e., No = N(n = 4)]. Thus the sequence ATffi is 
uniformly bounded: 

IIA Tffill <CVAEf!Ji No' 

Therefore, it suffices to prove the convergence of the se
quence ATffi on the dense set of vectors CO, CEf!Ji SL: 

lim (CO,ATffi) = lim (CO,PATO) 
T-~ T ..... oo 

= lim (P*CO,ATO) 
T- oo 

= (P*CO,P.AO) 

= (CO,PP.AO), 

where we used the fact that ATO converges strongly to P.AO 
and that the vector P.AO lies in the domain of F** = F due 
to the uniform boundedness of the sequence ATffi. The 
proof of (ii) follows from 
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lim IIATffill2 = lim (ATffi,ATffi) 
T-~ T-oo 

= lim (ATn,ATF*ffi) 
T-ao 

= (PjAn,F*FPjAn) 

= (FPjAn,FPIAn). 

Here, we considered that ATn converges strongly to PIAn 
and ATF* ffi converges weakly to F * FPIAn where the lat
ter can be shown as in the proof of (i). 

That the above defined operator A out is closable follows 
from the relation 

(F'n,A outffi) = lim (F'n,ATffi ) 
T-ao 

= lim (F'A 'f.n,ffi) 
T-ao 

which holds for arbitrary closed F, F'e9 sdO + ). The 
proof of the statement concerning the operator A o~t can be 
given analogously using the fact that the vectors A 'f.A _ Tn 
are uniformly bounded owing to the second part of Lemma 
2.1. 

Proof of Lemma 2.1: (i) For the first part we adopt the 
main steps given in the appendix of Ref. 3, which is split into 
four parts. We give here a short review of the first two parts 
of this appendix. The strategy of proof consists in converting 
the vacuum expectation value 

(n,AIT" 'AnTn) 

= I dll"'dln hT(tI)"'hT(tn)/I"'ln 

X I dw l " 'dwn(n,BI(t],/le])" 'Bn (tn,lnen )n), 

whereB; = - 2aoAoi = l, ... ,n into a sum ofvacuumexpec
tation values containing only commutators to which the 
consequences of locality can be applied (examples up to 
n = 4 are given in the above-mentioned appendix). 

This procedure is possible because by the spectrum con
dition we may replace each operator B; acting on the vacu
um by a creation operator B / such that B;n = B;+ nand 
(B / )*n =0. 

Here, for every Be9 N' B + is given by 

B + = I dlifJ+ (t)A(tn), Ae9 sL> 

with 

rp + (I) = (21T) -I Lao dwif;(w)e-;IW 

[if; (w) has an N-fold zero at w = 0 and n is a positive time
like four-vector]. Here, B + is quasilocal of order N; i.e., 

II(B + -B;-)nll,cR -N, VR'Ro. 

Here, the local approximation B ;- of B +, which is localized 
in the double cone ~ R of radius R, is defined for R,Ro by 
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f
a(R) 

B;- = dtrp + (t)A(tn), 
-a(R) 

a(R) = 2 - 1/2Inl- I (R - Ro), 

where Ae9 sd~ R..> and Inl is the Euclidean length of n. 
After this preparation, we tum now to the detailed proof that 
we split into the following three sections A-C. 

A. Bounds on products of multIple commutators 

We shall estimate now products of multiple commuta
tors of the operators A ~ + ) = t f dw B ( + ) (t,t€) and their 
time averages where B (+) stands for B or B + [here 
dw = dw (e) is the normalized measure on the unit sphere S 2 

in R3
]. 

For notational convenience, we define for m>2 

[m]: = [BI (Xl)' [B2(X2), .. ·,Bm (Xm)] .•. ], 

and 

with 
X; = (t;,t;e; ),B IR e9 SL (~ R) 

and 
B;e9 SL (~R) i = l, ... ,m. 

Lemma: Let [m; ] and [ ;,; ] for i = l, ... ,k be defined as 

above. If all t i , i = l, ... ,n are positive (or negative) and 
l:~=] m; = n, then 

k m.~- 1 m.~ 

,c1II II I (2/A)-I(Rjl+2Rjlltj-III), 
s=1 j=1 l=j+1 

where Rkl = Rk + RI and the constant CI does not depend 
on tl, ... ,tn. 

'C2{R -N+ '-VI :ij]ll=~l (2/j tl )-1 

X (R 2 + 2R I/j - ttl)} 

and the constant C2 does not depend on Rand li>'oo,ln • 

Proof (a) Due to locality, we only have to integrate in 
fdwl"'dwnll[md'''[mk]nll over a certain region 
GCS 2 X'" XS2. To determine this region, we consider first 
the simplest case k = I and m 1 = 2; i.e., 

I dw] dW211 [Bl (t1,/ le),B2(t2,/2e2) ]nll· 

Owing to locality, the integrand of this expression vanishes 
for all el , e2 for which the two inequalities 
1/1 - 12 ± Rd2,l/le l - 12€21 2 hold. Hence, we have to inte
grate only over the region G]2CS2XS2: 

G]2 = {el,e2:0, I - e]€2 

,(2/2/2)-1 (Ri2 + 2R d /l- /21)}· 
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Thus, if X 12 denotes the characteristic function of G 12, we can 
write 

f dW I dW211[BI(XI),B2(X2)]01l 

= fdW I dW2xdl[BI(xl),B2(x2)]01l· 

With the help of this relation, one can prove by induction the 
following statement: 

f dw l " 'dwn II [BI (XI), [B2(X2),···,Bm (xm )] ••• ] 011 

= f dw l ' . 'dwn mtf i X kl 

k~ll~k+1 

X II [Bl (x l ),[ B2 (X2 ),···,Bm (xm )]··· ]011· 

Here, Xki is the characteristic function of the region Gkl 

which is defined in analogy to G12• 

Using this result, we get 

/1:= f dWI"'dwnll[md"'[mdOII 

= f dW 1 •• ·dwn IT mfi I I XjI 
s~l j~l I~j+l 

xll[ml]···[mdOII· 

The norm appearing in the integrand can be estimated by 
terms in the form of liB;, (x;,)·· 'B;" (x;" )011. We consider 
one of these norms, say N = IIBI (XI)" 'Bn (xn )011 and use 
the invariance of the vacuum under translations to get 

N = IIB I (ax l )B2(x2 + (a - l)x l)" ·Bn(xn 

+ (a - l)xl)OII, 

where aER is arbitrary. 
Now the B;E9 SL (CCf R,) are finite sums of operators 

<P I, (It, ) ... <p 1m ( Iton ), 

where ItE9'(R4
) with suppltCCCf R • Then B;(x) 

j j , 

= U(x)B; U(x) - I is a finite sum of operators 
<PI, (It,.x)·· '<Plm (A,.x) whereltj.x is the test functionltj shift
ed by x. 

A typical term of the above norm N reads 

N' = 11<p1 (/LI~x, ) .. '<Pm, (/~,~ax, ) 

x'" (/(2) ) ... ", (/(2) ) ... 
¥'1 1,x.2+(a-l)x, 'f'm:!. m,2,x:!+(a-l)x. 

x'" (/(n) ) ... 'f'l l,x,,+ (a-l)x. 

x <Pm" (/~~;'x,,+ (a- I)x, )011· 

According to the temperedness of the Wightman distribu
tions, which are continuous in each argument, we can esti
mate further 

N',,:;.cll/(I) II .. '11/(1) II 
"'<::::: Lax. s,sl m.,ax 1 sm,s:n, 

xll/\~l,+(a-l)x,II"'I···II/m".x,,+(a-l)x,lIr r' . 
I mil '"II 

Here 11'1155' denotes the s,s' norm on y4 which, for the trans
lated function/x, is bounded by a polynomial in the compo
nents ofx. 

Denoting such a polynomial by pc, we have 
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N'<P~ (ax l )PHx2 + (a - l)xl)"'P~(xn + (a - 1)xl ). 

Now, the components of the vectorax 1 = (atl,atle l ) can be 
estimated by latd = latlell<lalltll and those of the vectors 

x; + (a - 1)xl = (t; + (a - 1 )tl,t;e; + (a - 1 )tIel) 

by It;e; + (a - 1 )tled < It; I + la - 11 ltd, i = 2, ... ,n. We 
get, therefore, 

N'<c(l + lalr'ltdr')(l + [lt21 + la - Illtd]'2) ... 

(l + [Itnl + la-Illtll]''') 

<c'(l + lal
r
'l t d

r
'[lt21 + la-Illtlll"'" 

[ It n I + I a-III t d ]'''), 

where c, c' are constants and r;, i = I, ... ,n are the degrees of 
polynomials appearing above. 

Since aER is arbitrary we choose especially a = O. Then 
N' and, therefore, also N is bounded by a constant so that we 
get for the original expression 

/I<clf dw i ' .. dwn SUI ~ijll I~i I Xjl' 

where C I is a constant. Using 

f L
(21h)-I(R!k+2Rikll;-tkl) 

dw; X;k = dt, 
o 

we can perform the spherical integrations to get 
k m,-l m, 

/1<C 1 II II L (2tjtl)-I(Rfi+2Rjtltj-tll>, 
s~1 j~1 l~j+1 

which proves the first part ofthe lemma. 
(b) We split every operator B / in the expression 

[~I]· .. [n:k]O into two parts, B/ =B;~ +B;, 
B; = B;+ - B;R and get 

[~I]"'[';;k ]0 
= [';;I]"'['::k ]0+ f.: [md'~"[mdO+". 

/\,. 

+ L [md"'[md O +'" 
/\, 

+ [ml]"'[ind O (*), 

where we used the definitions (suppressing the coordinates) 

[';;;] = [B 1R , [B 2~,· .. ,B ~R] ... ], 
[m;] = [B1R , [B2 , ... ,Bm ; ] ••• ], 

/\, 

and [ m I ] ... [ m k] means that one has to substitute in 

[ ,;; I ] ... [ ,:: k] r operators by the corresponding operators B 
such that the first operator in each multiple commutator 
does not change. 

Finally ~ /\, denotes the sum over all r such distinct se
lections. Now we substitute relation (*) into the expression 
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which we have to consider. To the first term in (*) we can 
apply part (a) of the lemma. A contribution of the second 
term in (*) yields 

I; = J dcu,"'dcunllB'R(X,)"'(B k+ -Bk~)(Xk)'" 

XB~: )(x" )011 

Xf{J +(t')Ak(t'n+xk)"'B~:)(xll)OII, 

due to the definition of the operators B k+ and B i!R. Thus we 
get 

X IIB'R (x,)B i: ) (x2)·· 'A k (t 'n + x k )··· 

XB~: )(xn )011· 
Now, the norm N appearing in the integrand can further be 
converted and estimated as shown in the first part of the 
proof: 

N = IIB'R (px,)B it )(X2 + (P - 1)x,)'" 

XAk(t'n +X2 + (P-1)x,)'" 

XB~: )(x" + ( P - 1 )x,)OII, 

where PER is arbitrary. Then, 

N<c'(1 + IPlr'lt,lr'[it21 + IP-ll1t,I1" ... 

X[lt'Ino+ Itkl + IP- 11I t.l1"··· 
X[ltnl + IP- 111 t ,I1''', 

with a constant c' and positive integers r;. i = 1, ... ,n. Putting 
especially P = 0 implies N <c' and, therefore, 

I;<c' J R,(-u.a) dt'lf{J +(t')I· 

Hence, from a(R) = 2 - 112Inl-' (R - Ro) and 1f{J + (t) I 
<cit 1- N- " which One can verify taking into accounttheN
fold zero of cp(cu) at cu = 0 we get the inequality I; <cR - N 
for sufficiently large R > RD· A 

Those terms in Iz that contain two or more operators B 
can be estimated analogously. Altogether, we get 

Iz<c, SUI ~ij,' C=~, (2tjtl) -'(R 2 + 2R Itj - ttl») 

+ -C2(R - N + R - 2N + ... + R - (n - k)N) 

<C{R -N+ SUI ~ij,' C=i, (2tj t l )-' 

X(R
2
+2R Itj -tl!»}' 

where C,' Cz, and c are suitable constants and this completes 
the proof ofthe lemma. We apply now the above lemma for 
an estimate of products of multiple commutators of the time 
averages A ~+) = f dt hT(t)A; +). 

To this end, we define for m > 2, 
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[( +)] 
m T = (AIT>(Aii>' .. ·,A~})]"·], 

Proposition I: Let B" ... ,Bn be operators in & Nand 

[( +)] 
mj T for i = 1, ... ,k be defined as above. If ~~=, mj = n, 

then, 

<cl T 1- [N(n - 2k) - 2n(" - k»)/[2(n - k) + N), 

for large I T I. The constant c does not depend on T. 
Remarks: (i) If k = 1, we get the bound given by Buch

holz for the norm of a multiple commutator3 which, for n> 3, 
decreases with ITllike ITI-(n-2). 

(ii) If k = n12, we have a product of simple commuta
tors and the above bound increases with 1 T I like 1 T 1,,'/(" + N). 

(iii) However, if there is at least one multiple commuta
tor with m i >3 and if k>2, the two relations ~7=, m i = n 
and m i >2 imply the inequality n - 2k>1. Thus for suffi
ciently large N the bound decreases like I T I - (n - 2k). 

Proof By definition we have 

To the spherical integrations, we apply now the second part 
ofthe above lemma. This is possible since for R>R;. we can 
substitute every local operator 

f
aiR;) 

Bi = dtf{Ji(t)Ai(tn)E&s,(C(}' R)' 
-aiR,) 

f{JiE.~([ -a(Ri),a(R i )]), 

appearing in the above expression by 

f
a(R.) 

BiR = dt f{Ji(t)A i (tn)E&\dC(}' R) 
- a(R;) 

Further, we see from the proof of the second part of the 
above lemma that all terms containing less than (n - k) 
quasilocal operators can be estimated by the bound given in 
this lemma which yields 

M<c' J dt,"·dt"lhT(t,)·"hTCtn)/lt, .. ·t" I 

X{R -N+ SUI ~ij,' C=#+' (2tA)-' 

X (R 2 + 2R Itj - ttl»)} . 

Taking into account the support properties of h T we get after 
integration 
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M<cITln{R -N + (R 2 + ~~ In1Tlr7~ l(mi-lJ} 

= CITln{R -N + [~:( 1+ 2 I~TI) r- k

} , 

for sufficiently large I T I with a constant c, which does not 
depend on R and I T I. 

This inequalilty holds for arbitrary R > 0 and if we put 
R = IT 12 (n - k)/2(n - k) + N the statement follows. 

B. The vacuum expectation value of two commutators 

For later applications our bound on the norm of 
[ A I T,A i:; ) ] 0 is too weak. We shall estimate in the follow
ing the vacuum expectation value of two such commutators. 
To this end, we adopt, with an obvious change of notation, 
the strategy of proof given in part (c) of the appendix in Ref. 
3 to get the following. 

Proposition n· Let B I , ••• ,B4 be operators in 9 N' Then, 
for large I T I, 
1(0, [ A IT> A 2j] (1 - Po) [Am A 4j ] 0) I 

<clnITIITI- 2(N-14)/(N+7) , 

where Po is the projection onto the vacuum and c is a con
stant which does not depend on T. 

C. Proof of part (i) of Lemma 2.1 

Weare now prepared to complete our argument. By 
converting the vacuum expectation values (O,A IT' .. A nTO) 
into a sum of terms containing only commutators there are 
two types of contributions. In the first one, 

there is at least one multiple commutator with mj ;;;.3. Such a 
term can be estimated by 

which, by the remark after Proposition I, coverges to zero in 
the limit of large I T I provided all operators B I ... B n are in 
9 N with N sufficiently large. 

If n is even the remaining contributions are of the form 
Mn(T):= (0[AIT,A2j], ... ,[An_IT,Anj]0). We shall 
prove by induction that for sufficiently large N, Mn (T) con
verges in the limit of large I T I to a product of one particle 
scalar products. 

For n = 2, the statement follows from the strong con
vergence of the vectors ATO: 

lim M 2(T) = lim (0,[A1T,A2j]0) 
T-±oo T---±co 

= lim (A TTO,A2TO) 
T-- ± 00 

= (0,[A I,PIA2]0). 

Let us assume now that the statement holds for (n - 2). 
We split Mn (T) into two terms: 
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Mn (T) = (0, [AIT,A 2j] 0)(0, [A3T,A 4j]··· 

X [An-1T,A nj ]0) + (0, [AIT,A 2j] 

X (1- Po) [AmA 4j]'" 

X [An-IT,A n+T ]0). 
The first term converges by assumption to 
(0,A IPIA20)'" (O,An_ I PIAnO). 

The second term can be estimated using Propositions I 
and II, by 

1(0, [AI T,A 2j] (1 - Po) [A3T,A 4j] ... [An _ IT,A n+T] 0) I 
<11(1 - PO>[AIT,A 2j] *01111 [A3T,A 4j]··· 

X [An_ IT,A n+T ]011 

<c(lnl T I) 1/21 T 1- (N - 14)/(N+ 7) I T I(n - 2)'/(n - 2 + N). 

If N is sufficiently large (depending on n) this expression 
converges to zero in the limit of large I T I and therefore 
limT_ ± ",Mn (T) = (0,A IPIA20)'" (O,An_IPIAnO). 
Summing up all contributions of the type Mn (T) the first 
part of the lemma follows after some combinatorics. 

(ii) For the proof of the second part of the lemma we 
proceed as in part (i) substituting the Bose operators Aj by 
the Fermi operators tPj and converting the vacuum expecta
tion values (O,tPl T" . tPnTO) = (I' .. n) into a sum of vacu
um expectation values containing only commutators and an
ticommutators. We give the first two expressions using an 
obvious notation: 

+ + 
n=2:(12) = (12) = ({1,2}). 

+ + + + 
n = 4:(1234) = ({t, 4 }{2, 3}) - ({2, 4 }{I, 3}) 

+ ({3,4}{1,2}) -([[{1,4},i],2D 

- ([[ 1,{2,4}], i D - ([[ {3,4}, 2], r D 

+ ([[{2,4}, 3], r D + ([[ 1,{3,4}], 2 D 

+ ([[ 2,{3, 4}], r D + ([ 1,[ 2,{3, 4}] D. 

Analogously to the proof of part (i) one can show that those 
terms which contain multiple commutators vanish in the 
limit oflarge I T I and that the remaining vacuum expectation 
values containing only products of simple anticommutators 
converge to the sum given in the second part of Lemma 2.1. 

Remark: An elementary consequence of Lemma 2.1 is 
that the sequences AlT" 'AnTO and "'IT" . "'nTO are uni
formly bounded in T: 

IIA IT " 'AnTOII<c, IltPIT·tPnTOII<c. 

III. THE COLLISION STATES 

A. Construction of asymptotic collision states for 
massless Fermions 

We construct the asymptotic many particle states for 
massless Fermions with the help of the asymptotic fields 
f/l'ut(",=A _ ) using essentially part (ii) of Lemma 2.1 and 
methods already developed in Refs. I and 3. 
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The main step of this construction consists in showing 
that the anticommutator of two asymptotic operators is a c 
number. Consequently, ifJout may be extended to a bounded 
operator on the whole Hilbert space. Further one can point 
out that ifJout has all the properties of a smeared free field. 

Then, as in Ref. 1, the asymptotic outgoing n-particle 
states are defined by 

out out 
<1>1 X ..• X <I> n: = ifJ~ut( + ) ... ifJ~ut( + )n, 

where ifJ~ut( + ), i = 1, ... ,n is the creation part of ifJfut. To begin 
with, we show, adopting the proof of Lemma 3 in Ref. 3, that 
the sequence of vectors ifJI T' •. ifJnTn converges weakly in the 
limit of large T due to their uniform boundedness. 

Lemma 2.3: Let ifJ,ifJI, ... ,ifJn be elements in f!lJ Nand N 
sufficiently large. 

(a) Then the weak limit 

w - lim ifJIT" 'ifJnTn = qJout(ifJl,···,ifJn) 
T-oo 

exists. It is multilinear in ifJI, ... ,ifJn and depends only on the 
one particle states PlifJln, ... ,PlifJnn. 

(b) qJ0ut(ifJI, •.. ,ifJn) is in the domain ofifJout* and 

ifJout*qJout(ifJl, •.. ,ifJn) = qJout(ifJ*,ifJl, ... ,ifJn). 

(c) If, in addition, ifJ is closed and localized in & and 
ifJI, .•. ,ifJn are localized in the future tangent & + of &, then 
qJout ( ifJ, ... , ifJ n ) is also in the domain of ifJout and 
ifJoutqJout(ifJl, ... ,ifJn) = qJout(ifJ,ifJl, ... ,ifJn)' 

Owing to the part (c) of this lemma tPzutn is in the do
main D ( ifJ~ut) of ifJ~ut and ~utifJ~ut n = qJout ( ifJ I' ifJ2) provided 
the ifJ; are localized in (1' i' i = 1,2, ifJI is closed and 
&2 C (&I)+' 

In the next step, we want to extend this relation to arbi
trary regions oflocalization & 1'& 2' To this end it is conven
ient to define the following vectors for any closed ifJ;.ifJjEf!lJ N' 

N sufficiently large 

out 

= .I,.out· .I.*out· n - (n .1 •. P .1. n ) n 
'Pi o/J ''f', 1'1-'1 • 

out 
Here, <l>i is a massless one-particle state and <1>; X<I>j is the 

normal ordered product of the operators ifJrout* ifJ;out* ap
plied to the vacuum. 

Now we can proceed as after the proof of Lemma 4 in 
Ref. 3. Accordingly, for any vectors <1>1' <1>2&0/'1 we can 
specify sequences of operators ifJ\n), ifJ~n)Ef!lJ N' localized in 
dIn), &~n) with &~n)c(&\n»+ such that the strong limits 
s - limn PlifJ\n)n = <1>1 and s - limn p,ifJ~n)n = <1>2 exist. 

Further, we can show that 

out 
S = lim <I>\n) X<I>~n) = <1>1 X <1>2' 

n 
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out 
where <I> I X <1>2 is the vector which we introduced above for 

arbitrary ifJ2,ifJ2Ef!lJ N' 

By definition, we get for & 2 C ( & ,) + 

out 
~utifJ~utn = ifJ~ut<l>2 = <1>1 X <1>2 + (p,ifJTn,<I>2)n. 

This relation can be extended to arbitrary <1>" <1>2&0/'\. To 
this end let <I>~n) be defined as above, i.e, 

s - lim <I>}n) = <1>;, i = 1,2 
n 

and 
out out 

S - lim <I>\n) X <I>~n) = <I> X <1>2' 
n 

Now <I>~n) is in the domain of the closed operator ifJ~ut and 
ifJ~ut<l>~n) converges strongly: 

n 

out 

Since ifJ~ut is closed, we have the desired extension: ifJ~utn is an 
element from D( ifJ~ut) and 

out 

for all ifJ" ifJ210calized in arbitrary regions & " &2' This im
plies the following lemma. 

Lemma 2.4: Let ifJ;Ef!lJ SL (& i)' i = 1,2 be in f!lJ N' N suf
ficiently large. If FEf!lJ sd (& I U & 2) +) is closed then 
tPzutffi is in D( ifJ~ut) and ifJ~utifJ~utffi = FifJ~utifJ~ut n. 

This relation defines the operator ifJ~utifJ~ut on the dense 
set of vectors {ffi:FEf!lJ SL « & I U & 2) + ), F closed}. 

Proof' According to the proof of part (c) of Lemma 1 in 
Ref. 3, we can verify that the relations 

FD(<p°ut ) CD(ifJout) and {ifJDut,F}<I> = 0 

hold for arbitrary <l>ED (<pout) provided I/JE f!lJ N is localized in 
&, N is sufficiently large, and F is closed and localized in 
& + (the existence of the strong limits appearing in the 
proof can be shown in analogy to Lemma 2.2). If we put 
<I> = ifJ~utnED( ifJ~ut) in the above relation, the statement fol
lows. 

The next lemma will be used in order to prove that the 
anticommutator of two asymptotic operators is a c number. 

Lemma 2.5: Let ifJ;Ef!lJ SL (& i)' i = 1,2 be in f!lJ N' N suf
ficiently large. Then 

{ifJ~ut,ifJ~ut(x)}n = 0, 

provided & 2 + x lies in the future or past tangent of & ,. 
Proof It suffices to show that {ifJ~ut,tPzut}n = 0 if & 2 lies 

in the future or past tangent of & ,. 
For FEf!lJsd(&IU&2) +) and &2C(&,) +' we con

sider the scalar product 
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(ffi,\f10UI(t,bI,t,b2)) = lim (ffi,t,bITt,b2TO) = lim (t,bTTFO,t,b2TO) = lim (t,bT0Ulffi,t,b2TO) = lim (ffi,t,bT°UI·t,b2TO) 
~~ ~~ ~~ ~~ 

= - lim (ffi,t,b2Tt,bT°UI·0) = - lim (t,b'fTffi,r/ftUIO) = - (~uI·ffi,r/ftuIO) = - (ffi,~Ulr/ftUIO). 
T-oo ,T-oo 

Here, we used that t,b2TO is for large Tin D( t,bT0UI.) owing to 
locality and further to the fact that r/ftUIO is in D(~UI) also 
for arbitrary regions & I' &2' 

From the last equation, we get for & 2 C ( & I) + : 

(ffi,{t,b~U"t,b~UIO) = o. 
Since the set {ffi:FE&' SL « & 1 U & 2) + )} is dense the state
ment follows for &2 C ( & I) + . If & 2 is localized in the past 
tangent of & 1 we have & 1 C (& 2) + . Therefore, the state
ment follows also in this case (change the indices 1 and 2 in 
the above proof). 

In analogy to the proof of Lemma 4 in Ref. 1, we are now 
able to prove that the anticommutator of two asymptotic 
operators is a c number. 

Lemma 2.6: Let t,b~UI and t,b~UI be two asymptotic opera
tors. Then, 

From this lemma, we can conclude that ~UI may be ex
tended to a bounded operator on the whole Hilbert space. 

We denote this bounded operator also by ~UI. 
The following lemma which also can be proven as in 

Ref. 1 tells us that the operators ~UI have all properties of a 
smeared free field. 

Lemma 2.7: Let ~UI, r/ftUI and ~U' be asymptotic opera
tors. Then, (a) ~UI(X) is a solution of the wave equation 
a1La1L~UI(x) = 0 and (b) {t,b~U"t,b~UI} = 0 if t,bl and t,b2 are 
localized in two spacelike or timelike separated double 
cones. 

We construct now the collision states for massless Fer
mions with the help of the operators ~UI. To this end, we 
split t,b0UI into a creation part (t,b0UI) < + 1 and a destruction 
part (~UI) (-) 

Now let t,b~u" ... ,r/f:.UI be n asymptotic operators that create 
one-particle states <l>1, ... ,<I>n6:W'1 from the vacuum. Then, 
the outgoing collision states of these particles are defined by 

out out 

<1>1 X '" X <l>n = (r/ftUI) < + l ... (t,b~UI) < + lO. 

Following Buchholz in Ref. 1, one can prove finally that 
the Hilbert space ~u" which is generated by 

out out 

<1>1 X .,. X <l>n, nEN and 0 is aFock space over the one-parti-

cle space J¥'\ of massless Fermions. 
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out out 

Thus the vectors <I> 1 X ... X <I> n can be interpreted as 

outgoing configurations of noninteracting particles 
<I> I"'" <I> n' Of course the incoming collision states can be de
fined analogously. This allows the usual definition and inter
pretation of an S-matrix that completes our investigation for 
the massless Fermions. 

B. Construction of asymptotic collision states for 
massless Bosons 

In the case of massless Bosons, we can adopt the con
struction given by Buchholz in Ref. 3. Accordingly, one con
siders first for n Bose operators A 1, ... ,AnE&' N' N, sufficiently 
large, the vectors 

\f1OUI(A I ," ',An) = w - lim AlT' "AnTO 
T-~ 

which are well defined. 
oul 

Then the outgoing asymptotic n-particle states <1>1 X ... 

oul 
X <I> n are defined recursively with the help of the vectors 

\f1OUI(A 1, ... ,An) as follows: 

oul 
<1>,. X <l>j =A rou'.<I>j - (O,A,.PIAjO)O 

out out out out out 

<1>,., X <1>,., X ... X <1>,." = A r,ou'.<I>,., X ... X <1>,." 

n out 

L (O,A,., PIA"k 0) <1>,., X 
k=2 

j 

;" out 

V'" X <1>,.", 

where the symbol V denotes omission of the one-particle 

state <l>j. 
out out 

One can show that <I> I X ... X <I> n is the normal-ordered 

product of the operators A rou,., ... ,A !ou,. applied to the 
vacuum. The most important properties of the vectors 

out out 

<I> I X ... X <I> n' nEN are that they, together with the vacuum 

0, generate the Hilbert space ~u', which is the usual Fock 
space over the one-particle space KI and that they can be 
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interpreted as outgoing configurations of noninteracting 
particle ct», ... ,ct>n' 

This allows the usual definition and interpretation of an 
Smatrix. 

To conclude our investigation let us list some relevant 
facts which follow with the help ofthe collision states. 

One can show as in Ref. 3 that the sequence of vectors 
AlT" 'AnTO converges even strongly and that due to 
Theorem 8 and Theorem 9 in Ref. 3 the asymptotic operator 
A out has all properties of a smeared free field. 
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Beginning with the anti-self-dual Yang-Mills (ASDYM) equations for an arbitrary Lie 
algebra on Minkowski space, this paper specializes to the case in which the vector potentials 
are independent of all the space-time coordinates, i.e., are space-time constants. The resulting 
equations are three algebraic equations on the algebra. These equations are then simplified by 
using a null basis. Two of the equations can be immediately solved while the third remains, in 
general, quite difficult to deal with. Two general cases are considered: finite-dimensional Lie 
groups and the infinite-dimensional diffeomorphism groups on finite-dimensional manifolds. 
In a few of the special cases, e.g., SL(2,C) and the Virasoro algebra, the solutions can easily be 
found. The study of the the diffeomorphism groups leads unexpectedly to the Monge-Ampere 
equation. In particular, the four-dimensional volume preserving diffeomorphism group is 
identical with the vacuum anti-self-dual Einstein equations. In conclusion, the question of the 
associated Lax pair equations and its relation to the Riemann-Hilbert splitting problem on S2 
is examined. 

I. INTRODUCTION 

This paper is motivated by two main considerations: (a) 
In the past several years, a great deal of progress has been 
made in understanding the structure of the anti-self-dual 
Yang-Mills (ASDYM) equations and various solution gen
erating methods. In one approach, 1.2 the ASDYM equations 
are thought of as the integrability condition on a pair of first
order linear differential equations, the so-called "Lax pair." 
The Lax pair leads, by several ingenious techniques, to the 
subject of Biicklund transformations,3-5 where the basic idea 
is to generate new solutions of the ASDYM equations from a 
seed solution. Another approach, due to Ward,6 and with a 
slight variation by Sparling,7 establishes the correspondence 
between solutions of the ASDYM equations and holomor
phic vector bundles on twistor space. Solutions are then gen
erated by a Riemann-Hilbert splitting of the patching func
tions defining the bundle. 

(b) Recently, Mason and Newman8 showed there is an 
unusual relationship between the Yang-Mills equations and 
the Einstein equations by first considering the Yang-Mills 
theory for an arbitrary Lie algebra with the symmetry condi
tion that the connection one-form and curvature are con
stant on Minkowski space. This leads to a set of algebraic 
equations on the connection components. When the Lie al
gebra is specialized to be the (infinite-dimensional) Lie alge
bra of the group of diffeomorphisms of some auxiliary mani
fold, the algebraic equations become differential equations 
for vector fields on this auxiliary manifold. In the anti-self
dual case, if one chooses the connection components from 
the Lie algebra of the volume preserving four-dimensional 
diffeomorphisms, the resulting equations become the anti-

self-dual Einstein vacuum equations. Other generalizations 
are also possible and will be discussed. 

Motivated by the above considerations, this paper will 
be split into two parts: (i) First we will impose the symmetry 
restrictions on the connection one-form and show how the 
ASDYM equations can be simplified to three algebraic equa
tions. We then study these three equations for two general 
classes of Lie algebras, the finite-dimensional ones and the 
diffeomorphism algebras on an n-dimensional manifold. 
Several special cases are worked out in detail. (ii) We then 
show how the above approach is related to the more general 
Riemann-Hilbert splitting problem on S 2 for the general 
ASDYM equations. Specifically, in Sec. II, we discuss the 
ASDYM equations on Minkowski space and the algebraic 
equations obtained by imposing the maximal symmetry con
ditions. In Sec. III, we study solution generating methods for 
the two classes of Lie algebras just mentioned, and finally in 
Sec. IV, we examine the associated Riemann-Hilbert prob
lem. 

II. THE REDUCED YANG-MILLS EQUATIONS 

Consider a vector potential or connection Ya on Min
kowski space, M, where for each a = 0, ... ,3, YaEl, for some 
Lie algebra I. The curvature is then given by 

Fab == [Db,Da] = [Jb - Yb' Ja - Ya] 

=2J[aYb]-[Ya'Yb]' (2.1) 

The full Yang-Mills equations are 

(2.2) 

and the anti-self-dual Yang-Mills (ASDYM) equations are 
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F* -I cdF 'F ab =~Eab cd = - lab' (2.3) 

where the asterisk is the Hodge duality operator. It is now 
possible to impose various symmetry reductions on the con
nection y. For example, if we consider the case in which the 
Ya only depend on t = xo, we are led (in the anti-self-dual 
case) to Nahm's equation.s In our case though, we wish to 
impose the maximum symmetry by assuming that the con
nection components, in some choice of gauge, are indepen
dent of all the space-time coordinates, i.e., the Ya are each 
constant elements of the Lie algebra. The full Yang-Mills 
equations then reduce to 

[ya,[Ya'Yb]/]1 =0, (2.4) 

and the ASDYM equations reduce to 

[Ya'Yb]1 =i!EabCd[Yc'Yd]/' (2.5) 

where the brackets, [ , ] I are the Lie algebra brackets for I. 
The Jacobi identity, ~bcd[Yb' [Yc'Yd] 1]1 = 0, implies that 
solutions of (2.5) also satisfy (2.4). If we introduce null 
coordinates instead ofthe ordinary Minkowski coordinates, 
i.e., 

U=!(t-z), v=!(t+z), 

W = !(x + iy), W = !(x - iy), 

so that the Minkowski metric is 

ds'l = 4(du dv - dw tfiij), 

(2.6) 

(2.7) 

the transformed field equations (2.5) become the triple 

[Yu,Y ... ]1 = 0, (2.Sa) 

[Yv,Yw]1 = 0, (2.Sb) 

[Yu,Yv]/- [Y""Yw]1 =0, (2.Sc) 

where Yu,Yv,Y ... ,Yw are the connection components in the 
new coordinate system. The study of properties and solu
tions ofEqs. (2.S) will be our main concern in the next two 
sections. 

III. SOLUTIONS 

We will consider Eqs. (2.S) for two different classes of 
Lie algebras: finite-dimensional algebras and the diffeomor
phism algebras on finite-dimensional manifolds. 

A. Finite-dimensional algebras 

If we consider the set ofyu' Yv' y"" Yw as finite-dimen
sional matrices and assume that they are all diagonalizable, 
then it is easy to see that the general solution to (2.Sa) and 
(2.Sb) is 

Yu = G1 ~G 1- \ Y,o = G1 r,;G 1- \ (3.1a) 

yv=G2~G2-1, Yw=G2YGG 2-1, (3.1b) 

where D indicates an arbitrary diagonal matrix, and G1 and 
G2 are arbitrary nonsingular matrices (needed to diagona
lize the y's). When (3.1) are substituted into (2.Sc), one 
obtains the algebraic equation 

~Jy;J - 1 _ Jy;J - I~ 

= ygJr,;J - 1 _ Jr,;J - Iyg, 

for the determination of 
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(3.2) 

(3.3 ) 

(With no loss in generality one can always take, say, G1 

= I.) 
Example: SL(2,C). 
In this case, each component of Y is a 2 X 2 trace-free 

matrix. Assuming that the four y's #- 0, then a simple calcu
lation shows that 

Yu=AY", and Yv=IlYw' (3.4 ) 

The third equation of (2.S) implies that 

(AIl-1)[Y""YwL =0. (3.5) 

Thus, either Y has at most one linearly independent compo
nent, or else All = 1. In the former case, the Yang-Mills field 
would be trivial. Thus the only nontrivial solution for this 
case is that Y wand Ylii are two arbitrary linearly independent 
components of y, and 

Yu = AYw' Yv =..1. -Iyw ' 

where A is an arbitrary nonzero complex constant. From this 
we can write down the components of the field Fab as 

Fv;;; = Fu,o =0, 

Fuw = -AFww ' Fvw =..1. -IFw(;j, 

Fuv =Fww = - [Y'O'Ylii]/' 

(3.6) 

An alternate promising method of studying the field 
equations (2.S), which has not yet been fully explored, is to 
change the order of solving them; namely first solve just 
(2.Sa), i.e., as in (3.1a) with yDu and yD w in diagonal form, 
then substitute this into (2.Sc), which can be solved for the 
Yv in terms of the unknown Ylii and known yDu and yD,o; and 
finally use (2.Sb) to determine the Ylii' 

More specifically, for SL(n,C), given yDu = diag(u j ) 

and yD,o = diag(w j ), then from (2.Sc), with [Yv] = vij and 
[Yw] = wij' we have 

vij = «w j - Wj )/(u j - uj ) )wij' (3.7) 

for the off-diagonal terms. The diagonal terms of vij and wij 
are undetermined and are given freely. When (3.7) (with 
the diagonal terms) is substituted into (2.Sb), i.e., into 

[Yv,Yw]1 = 0, 

there are n(n - 1) quadratic equations to determine the 
n(n - 1) off-diagonal elements of wij (and hence vij) in 
terms of the diagonal elements of all the y's. In the case of 
n = 3 when this procedure was carried out, four of the six 
equations were independent, thus determining only four of 
the six off-diagonal wij; the other two being freely chosen. In 
this calculation, we assumed that the diagonal elements were 
chosen generically, avoiding special cases of vanishing coef
ficients. We thus can solve the generic SL(3,C) case. 

Equivalent to the above method of solving (2. S) is the 
following: Again (2. Sa) is solved by selecting Y u = yD u and 
y,o = yD w' Eq. (2.Sc) is solved by constructing the commu
tator of (2.Sa) with an arbitrary matrixf(to be determined 
later). The Jacobi identity then leads to 

[Yu, [f,yD", L]I = [y"" [f,yDu] ai' 
which yields, from (2.Sc), that 
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Yv = [J,yD",] [ + yDv and Yw = [J,yDu L + yDw' 
(3.9) 

Note that we have added on the diagonal elements to Yv and 
Yw' as they are not determined by (3.S). Finally, Yv and Yw 
are substituted into [Yv,Yw L = 0, i.e., (2.Sb), yielding the 
equation for the determination of the off-diagonal terms of 
[f] = /;j (the diagonal terms can be taken as zero), namely 

(3.10) 

This again is easily solved in the generic SL(3,C) case. 

B. Diffeomorphism algebras 

We now consider a manifold Wl of dimension n and the 
module m of COO vector fields, {s}, on it. In local coordi
nates, we have that 

S = SI'.i... 
axl' 

An infinite-dimensional Lie algebra can be constructed on m 
by defining the bracket as the Lie derivative, i.e., 

[S,7]][=2" 7]= [S,7]]· (3.11) 
{; 

We now ask for four vector fields, {SI ,S2,S3,S4} = {Ya}that 
satisfy (2.S), yielding three differential equations, 

[ Y u ,Y,u] = 0, 

[Yv,Yw] =0, 

[Yu,Yv] - [Y""Yw] =0. 

(3.l2a) 

(3.12b) 

(3.12c) 

Equations (3.l2a) and (3.l2b) can be solved immediately in 
the following manner: For (3.l2a) one can always introduce 
a coordinate system xl-', so that Yu and y", are coordinate 
derivatives, i.e., 

a 
Y =- and 

u axl 
a 

Y,u = ax2 ' 
(3.13a) 

Likewise, for (3.l2b), we have in a different coordinate sys
temx'l-', 

a 
Yv = ax'3 

a 
Yw = ax,4 . and (3.13b) 

The last equation, (3.l2c), determines the coordinate trans
formation between the XiI-' and xl-' coordinates. 

A second possible procedure is to again first solve 
(3.12a) by (3.13a) and note that (analogous to the finite
dimensional case) (3.13c) can be solved (using the Jacobi 
identity) by 

Yv = [J,Y,u] and Yw = [J,Yu]' (3.14 ) 

Substituting (3.14) into (3.l2b) yields a differential equa
tion for the vector field! 

We illustrate these procedures in several special cases. 
Case 1: The one (complex) dimensional diffeomor

phism algebra, i.e., the Virasoro algebra, is trivial. We can 
takeYa =Ia ala~ wheref., = ifuJ",J.Jw) arefouranalyt-
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ic functions of the complex variable~. The bracket [Ya'Yb] 
is given by 

aJ;, af., 
[Ya'Yb] =Ia a~ - J;, a~ =Iah,{; - lJa,{;, 

and (3.12) becomes the system of differential equations for 
the unknown functionsf., (~), 

I Jw,{; - /"fu,{; = 0, 

Iulw,{; - Iwfv,{; = 0, (3.15) 

luIv,{; - Iulu,{; =IJ,-;;,{; - /.J",,{;. 
The first two of these yield 

(3.16) 

where A and f-l are two complex constants. The third equa
tion of (3.7) yields 

(Af-l - 1) if J,-;;,{; - /-;;/u,{;) = 0, (3.17) 

which again implies either Y,u and Yw are linearly indepen
dent and Af-l = 1, or that there is at most one independent 
component of Y and a zero curvature. Thus the solution in 
the case of the Virasoro Lie algebra is similar to that of 
SL(2,C), and the relationships between the components of 
the Yang-Mills field are given by Eqs. (3.6). 

Case 2: In this case, we will consider the special (volume 
preserving) diffeomorphisms in two dimensions. Equation 
(3.12a) can be solved, in general, by choosing two coordi
nate vectors, namely 

Yu = a~1 =! and y", = a~2 = ~ . (3.13a' ) 

Rather than choosing (3.13b) as the solution to (3.12b), we 
will write 

Yv = via laxi, Yw = (i/a laxi, i = (1,2), 

and substitute them into (3.12c), yielding 

v:1 - (i):2 = 0, 

which implies that 

wherep is an arbitrary vector function of Xi to be determined 
by (3.12b). If we now impose the (coordinate) divergence
free condition on Vi and (i)i, we can write Ii = «P,2' - t/J, I ), 

which when substituted into (3.12b) yields 

(t/J,1It/J,22 -t/J,12t/J,12),i =0, 

which in turn yields the "real" Monge-Ampere equation, 

It/J,ijl = (t/J,1It/J,22 -t/J,I2t/J,I2) = constant, (3.1S) 

as the final equation for the "special" two-dimensional dif
feomorphisms. 

Case 3.' In the case of the four-dimensional diffeomor
phism group, it has been shown8 that the field equations 
(2.5) or (2.S), when augmented by the condition that they 
be volume preserving (or equivalently, that the vector fields 
be divergence-free), become equivalent to the anti-self-dual 
vacuum Einstein equations. 

More specifically, suppose that there is some non vanish
ing four-form a, on a four-manifold, such that 

( 3.19) 
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for all four vector fields Ya' Then satisfaction of (2.8) or 
(3.12) implies that the Ya are proportional to a normalized 
null tetrad, i.e., Ua = / - IYa, with the scalar / defined by 

(3.20) 

so that theframeua definesametricg = Uu ® Uv - Uw ® U{,j, 
which satisfies the anti-self-dual Einstein equations. 

Conversely, given an anti-self-dual space-time, there 
will always exist a null tetrad U a and a nonvanishing func
tion/, such that Ya =/ua preserves some volume form a, 
and also satisfies (3.12). 

Though the details will be given elsewhere, we mention 
that the field equations (3.12) and the volume preservation 
condition are equivalent to the following. 

Defining Ta and va (a = 1,2) by 

(3.21 ) 

the field equations (3.12) become 

[Ta,Tb] =0, [va,vb] =0, [Ta,Va] =0. (3.22) 

Introducing the coordinate system (qa and Qa', with a and 
a' = 1,2), the solutions can be written as 

T =-.!!...-, va=saa'~, 
a aqa aQa' 

with S aa' being the inverse matrix to 

a2s 
S'= , aa aqa aQa' 

(3.23) 

(3.24 ) 

and with Saa' satisfying, this time, the "complex" Monge
Ampere equation, i.e., 

detlSaa, I = 1. (3.25 ) 

IV. THE RIEMANN-HILBERT SPLITTING PROBLEM 

In the last section, we saw how the ASDYM equations 
could be studied and solved, at least for certain simple alge
bras, both finite and infinite dimensional, under the strong 
symmetry assumption. In this section, we will approach the 
problem from a different point of view, namely in terms of a 
Riemann-Hilbert splitting. 

With this in mind, we review the Riemann-Hilbert ap
proach to (2.3). A set of equations equivalentS to (2.3) is 

Fab L ab = FabMab = FabNab = 0, (4.1) 

where Lab, M ab, and N ab are any three independent self-dual 
antisymmetric tensors. Equation (4.1) follows from the 
orthogonality of self-dual and anti-self-dual tensors. A suc
cinct version of ( 4.1) is 

Fabmab = 0, (4.2) 

with mab a self-dual skew tensor written as 

mab =L ab +;Mab+;2Nab, (4.3) 

where; is an arbitrary point on the (complex) Riemann 
sphere, C + (00). 

A normalized null tetrad, associated with the null coor
dinate system (2.6), is defined by 

D = I "Va = at + az = av' 

t:.. = n"Va = at - az = au, 
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D=maVa = -ax+iay = -aw ' 

;5 = m"Va = - ax - iay = - a{,j, 

(4.4 ) 

with lana = - mama = 1 and all other products vanishing. 
From this null tetrad, we define the following vectors: 

L a(;) = la + ;ma, M a(;) = ma + ;na. (4.5) 

We then take the skew tensor L[aMb] as mab in (4.3). 
This tensor, at any point P, defines a self-dual two surface 
through that point. As ; ranges over the complex Riemann 
sphere, this tensor ranges over all self-dual totally null two
planes through that point. The vectors L a(;) and Ma(;) 
are two independent vectors in these planes. The set of all 
such two-surfaces in Minkowski space is (projective) twis
tor space PT, with coordinates L = Laxa, M = Maxa, and 
;. 

For future reference, we note that 

L = 2u + 2tzij, M = 2eu + 2;v, (4.6) 

where u, v, eu, ware again defined by (2.6). 
In a similar fashion, by contracting both sides of (4.5) 

with Ya (instead of with xa), we obtain 

Ya L a=YL = Yv - ;Yw' YaMa=YM = - Y;;; + ;Yu' 
(4.7) 

We now exhibit the linear differential equation (the Lax 
pair) for a function G(xa,;) whose integrability conditions 
are the ASDYM equations: 

L a(;)VaG = YLG, Ma(;)VaG = YMG. (4.8) 

The integrability conditions are precisely (4.2) with 

niab(;) = L IaMb]. 

Knowledge of a solution G(xa,;) allows one, directly from 
( 4. 8), to construct the Y Land YM and hence the full set of 
Ya's. If a solution, Go (xa,;), which is analytic in ; in the 
neighborhood of ; = 0, is known, a second solution 
G", (xa,;) can be easily constructed in the following manner: 

(4.9) 

where P is an arbitrary function of its three arguments. This 
result follows from the fact that the operators L a (;) Va and 
M a (;) Va both annihilate P(L,M,;). With the proper choice 
of P, one can make G", (xa,;) analytic near; = 00. 

This procedure of beginning with a given solution and 
finding a different solution via an arbitrary P can be re
versed. One can begin with an arbitrary P(L,M,;) analytic 
in an annular region between; = 0 and 00 and try to find the 
two functions G", (xa,;) and Go (xa,;) that satisfy (4.9) or 

P(L,M,;) = G.:;- I (xa,;) Go (xa,;), (4.10) 

so that G", (xa,;) and Go (xa,;) are analytic, respectively, 
around; = 00 and O. Note that Pis referred to as the patch
ing matrix, and finding the two functions G is referred to as a 
matrix Riemann-Hilbert problem or Riemann-Hilbert 
splitting. A solution to this problem automatically solves the 
Lax pair and hence yields a solution to the ASDYM equa
tions. Though there is no known method to accomplish this 
splitting for general P, there are large classes or choices of P 
where the splitting can be accomplished, e.g., P's that are 
either upper or lower triangular. 
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To see the relationship of the Riemann-Hilbert problem 
to the symmetry reduction of Sec. II, we note that when the 
connection components are independent of the space-time 
coordinates, the ASDYM equations (4.2) become 

[YL'Y"M] = 0, (4.11 ) 

which are equivalent to (2.8). Solving the Lax pair with 
constant y's satisfying (4.11), we obtain 

Go (xu,t) = exp{yLv - yMw}go, 

Goo (xu,t) = exp{ - YLwt -I + Y"Mut -I}goo, (4.12) 

withgo andgoo arbitrary matrix functions of L, M, and t that 
are analytic, respectively, near t = 0 and 00. From this, we 
see that the patching matrix must have the form 

P(L,M,t) = g;; 1 exp{YLwt -I _ Y"Mut - I} 

Xexp{YL V - Y"Mw}go, 

or since the Y Land Y"M commute, 

P(L,M,t) = g;; Ipo (L,M,t)go, 

with [using (4.6)] 

Po (L,M,t) = exp HYLMt -I - Y"MLt -I}. 

(4.13 ) 

(4.14 ) 

Though a patching matrix of this form always splits into 
(4.12), it is of no use, since one must already know the com
muting pair YL,Y"M in order to write (4.14). We would have 
to find a more general form for P, a form that is translational 
invariant up to gauge, i.e., has the following property. 

If the (u,v,w,w), in the defining equations for the Land 
M, are replaced by (u',v',w',w') = (u,v,w,w) + (a,b,c,c), 
i.e., undergo a translation, thenL-L' = L + 2(a + tc) and 
M-M' = M + 2(c + tb). We then have thattranslational 
invariance, up to gauge, is defined by 
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(4.15 ) 

where go and goo are holomorphic functions of L, M, and t, 
analytic, respectively, near t equals zero and infinity. Unfor
tunately, though from the general theory one knows that P 's 
satisfying (4.15) exist, it is not known how to find or con
struct them. 

(An alternate approach to this problem of finding a 
patching matrix for ASDYM with symmetries has been de
veloped by Mason and Woodhouse9 and applied successfully 
to stationary-axial symmetry. Again, unfortunately, it has 
not been applied to our case of maximal symmetry.) 
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The Chern-Simons theory of an SU (2) gauge theory in three dimensions is looked at from a 
perturbative point of view. The pure Chern-Simons action is generalized by adding a 
conventional Yang-Mills action term. This acts as a singular perturbation. The resulting 
theory has a moduli space containing that of the pure Chern-Simons version; for certain 
discrete values of the perturbation parameter lying in the spectrum of an appropriate elliptic 
operator the enlargement of the moduli space can be made explicit. The extrema can be 
classified by a Hessian with a finite index and nullity without recourse to spectral flow. 
Corrections to the resultant quantum theory are also calculated. Also, the quantum theory of 
the present model should be better behaved than in the unperturbed case. 

I. INTRODUCTION 

We look at the three-dimensional Chern-Simons theory 
from a different point of view. This leads to advantages in the 
mathematics and physics. On th mathematical side we shall 
see that there is no need to employ the notion of spectral 
flow. On the physical side we shall have a quantum theory 
that we expect to have improved properties. 

II. THEORY 

In three dimensions Yang-Mills theories can be con
structed in several important ways: One can take the point of 
view that the three-dimensional theory is a dimensionally 
reduced four-dimensional theory, or one can work directly 
in three dimensions. To do the former choose the four-di
mensional theory to be a pure Yang--Mills theory in R4

, 

with the Lagrangian L given by 

L = - tr(FA *F), (1) 

where F is the curvature form of a connection A and tr de
notes the trace defined by the Killing form on the Lie alge
bra, which we take in this paper to be su(2). Then demand
ing that the connection A be independent of time, one obtains 
a Yang-Mills-Higgs system with the three-dimensional in
terpretation that the finite-energy solutions to the equations 
of motion are monopoles in R 3 (see Ref. 1); if one replaces 
invariance under time translations by invariance under rota
tions one obtains hyperbolic monopoles.2

-4 

However, one can start in three dimensions and use the 
Lagrangian 

L = - tr(F A *F), (2) 

where F denotes the curvature form of a connection A de
fined on an SU(2) bundle over a three-manifold M; this 
three-manifold has a Riemannian metric gij and the Hodge * 
is with respect to this metric. Now if the manifold Mis taken 
to be R3 and the action S is given by the usual expression 

s=-trL,(FA*F), (3) 

then the critical points of the action are given by the usual 
e01lation 

dA *F= 0, (4) 

where d A denotes the covariant exterior derivative with re
spect to the connection A. However, there are no finite-ac
tion solutions to Eq. (4) except F = 0, which for these cir
cumstances is trivial. Throughout this paper we shall be 
interested in finite-action theories and so we can improve 
things by modifying either the action S or the manifold R3_ 
in fact, in the end we shall do both. 

If we just substitute a compact, closed three-manifold M 
for R3

, then the zero-curvature solutions F = 0 are no longer 
always trivial. Instead, they depend on the holonomy of the 
connection A around closed loops and this is classified by a 
group homomorphism from the fundamental group into the 
gauge group SU (2); thus such flat connections are classified 
generally by the space of all such homomorphisms, which we 
write as Hom(1T 1 (M), SU(2». Rather than considering this 
situation we wish to modify the action by adding a Chern
Simons term to the action, so that it becomes 

S= -tr fM {(FA*F) +a(dAAA+ ~ AAAAA)}, 

(5) 

where a is a constant. This results in the topologically mas
sive gauge theories of Refs. 5-7. In such theories the coeffi
cient a has the dimensions of a mass whch must be quantized 
in order to render the amplitude exp[iS] single-valued; cf., 
also, Refs. 8-10. 

Recently, a bold step has been taken by Floer (cf. Ref. 
11 and references therein) which is to drop the conventional 
Yang-Mills term tr(F A *F) and to regard the Chern-Si
mons term as an action in its own right and to study its 
critical points. To this end we set 

S = Scs = 8~ tr fM {d AAA + ~. AAAAA}, (6) 

whose critical points are given by 

F=O. (7) 

Thus we know that the space of critical points consists just of 
the flat connections and we are led to consider the space 
Hom (1T 1 (M), SU(2» of representations of 1T1 (M), SU(2); 

2258 J. Math. Phys. 31 (9), September 1990 0022-2488/90/092258-05$03.00 © 1990 American Institute of Physics 2258 



                                                                                                                                    

we shall restrict ourselves to (nontrivial) irreducible repre
sentations. We observe that if we restrict ourselves to M's, 
which are homology three-spheres, so that HI (M; Z) = 0, 
then the "Abelian part" of 1T1 (M) is trivial; now, because an 
Abelian 1T1 (M) can only be represented reducibly in SU(2) 
this has the consequence that the only nontrivial representa
tions will be the irreducible ones. 

A further point is that the group SU(2) acts on Hom 
(1T I(M), SU(2» by conjugation and representations that 
differ by this adjoint action are equivalent; thus we form the 
quotient 

Hom(1T1 (M),SU(2»/ Ad(SU(2», (S) 

from which we delete the trivial representation, leaving us 
with the irreducible ones. 

Now the curvature F=F(A) can be regarded as a func
tion on the space d of all connections whose zeros give the 
critical points of the Chern-Simons action Scs. [Actually, 
for a fixed A, F(A) is a one-form on the space d, where we 
are thinking of a one-form as being a linear functional on the 
tangent space TAd =lll(M) xsu(2); we then denote the 
action of F(A) on an arbitrary aETA d by Fa (A), where 
Fa(A) =SM tr(aAF(A».] However, the zeros of Fare 
gauge-invariant quantities and thus we should pass to the 
space of gauge orbits given by the quotient d / Y , where Y 
is the group of gauge transformations. An interesting techni
cal matter here is that the Chern-Simons action is not gauge 
invariant and hence is not a single-valued function on the 
orbit space d / Y = ~, say; however, under a gauge trans
formationg, which can be regarded as a map g:M-+SU(2), 
Scs always changes by an integer k, where k is the degree of 
g. Thus Scs actually takes values in R/Z; this is one way of 
regarding Scs. Alternatively, and equivalently, one can pass 
to the covering space ~ ° of ~ on which Scs is a single
valued function. 

Given the zeros of F one can imitate a standard con
struction in ordinary differential topology and construct a 
"Euler characteristic" for F by taking the signed sum of the 
zeros provided that this sum converges in this infinite-di
mensional context. This imitation is successful and the re
sulting integer is the "Euler characteristic" for the Floer 
homology of M. 

This homology theory is constructed 11 using the proper
ties of the critical points of the function Scs; crucial in this 
construction is the role played by the Hessian of a critical 
point. In the present situation the Hessian is a differential 
operator with real eigenvalues and one would like to define 
the number of negative eigenvalues to be the index of a criti
cal point. However, it is easy to calculate the Hessian and 
discover it to be the differential operator 2*d A' One then 
encounters the problem that this operator has no lower 
bound, so that the index of a critical point would in general 
be infinite. Floer gets around this problem in his homology 
construction because he only needs to define the difference 
between the index of a pair of critical points; this is a quantity 
which can be "renormalized" by using the spectral flow of 
the Hessian along a gradient flow path in d connecting the 
pair of critical points. 

In this paper we would like to replace the function Scs 
by the function S, where 
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S=kScs +Atr JM (FA*F), (9) 

with k '1= 0 an integer and Many orientable closed three
manifold. Thus for nonzero A we have essentially a perturba
tion of the Chern-Simons function; for reasons that will be 
made more precise below we will refer to S as a singular 
perturbation of the Chern-Simons function. The critical 
points of S are, of course, not the same as those of Scs and 
indeed, the equation for the critical points is more complicat
ed, being given by 

(k /Sr)F(A) + AdA *F(A) = O. (10) 

It is still true that flat connections or irreducible representa
tions of the fundamental group give critical points; however, 
the space of solutions requires some analytic investigation in 
the present case since there are nonflat critical points. Also, 
we do not assume M to be a homology sphere, so that there 
can be a moduli space of critical points. 

With A '1= 0 the equation for the critical points of S is a 
partial differential equation of second order, whereas that 
forScs is only ofjirstorder. ThusasA-+O, Scan be viewed as 
a singular perturbation of Scs. We wish to investigate the 
neighborhood of a general critical point, say A, and also to 
classify it by assigning it some kind of index. To this end 
consider a path of connections through A given by A ( t). For 
small t we can write A(t) = A + fa + "', with 
aEll 1(M) Xsu(2). Then we wish to calculate the tangent 
space to the moduli space: Using the path A(t) and Eq. (10) 
we find that this is given in part by 

However, we also have to project Eq. (11) onto a gauge 
orbit. To do this we make use ofthe fact that when we work 
in the space of connections d and construct the tangent 
space TA d, then this space decomposes into a direct sum of 
the tangent space comprising directions within the orbit Ag 
through A plus its orthogonal complement. More precisely, 
we have 

TA d = T[ A.] d Ell ker d! (12) 

and d: is the adjoint of the operator d A: 
llO(M) X su(2) -+ll 1 (M) X su(2). Thus in order to be prop
erly gauge invariant we must project from TA d onto 
ker d!. The tangents to the moduli space must also there
fore be realized as a quotient by the space T[ A.] d; its full 
description is that it is given by those aElll (M) Xsu(2) that 
satisfy 

d! dAa + *(*F Aa) + k/SrA *dAa = 0, d!a = 0 
(13) 

but because we are working effectively with d! = 0 we can 
modify this to the elliptic form 

d!dAa + dAd!a + *(*F Aa) 

+ k/SrA *dAa = 0, d!a = O. (14) 

Now, since d !dAa + dAd!a is elliptic it has a finite-dimen
sional kernel on M and thus the moduli space is finite dimen-
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sional, having a finite-dimensional tangent space. This di
mension, say D, depends on A, but will in general be positive 
and indeed, we have the inequality 

D>dim Hom(1TJ(M),SU(2»/Ad(SU(2». (15) 

Moreover, for appropriate A we can be certain that inequali
ty ( 15) is a strict one. To see this we assume that A is flat, so 
that the tangent directions are given by those 8eker d ;:satis
fying 

*dAb + (k ISrA)b = 0, (16) 

where b = *d.8. Then since this is an eigenvalue problem for 
*dA, we know that there is a solution when kl(SrA) be
longs to its spectrum: Denoting the spectrum of *d A by { ... , 
/L _ J ,/Lo,/LJ' .. .}, then ifeneO J (M) X su(2) has the eigenval
ue /L n =1= 0, we require A to satisfy Sr A = - k I/L nand 8 to 
satisfy *dA8 = cen , with c a constant. Thus 8 has the eigen
value /Ln' Of course, the eigenvalue /Ln may be degenerated, 
but if r n > 1 is its degeneracy, then the moduli space will 
have increased its dimension by at least this amount. 

A further property ofS to examine is its Hessian at the 
critical points. The Hessian is obtained by expanding 
S(A + tal in t: 

S(A + tal =S(t) = S(O) + t dS(O) 
dt 

t 2 d 2S(0) +- + .... 
2 dt 2 

(17) 

Having made expansion (17) we define the Hessian H by 
writing 

d
2
S(0) _ < H:) 

2 - 8, 8, 
dt 

(1S) 

so that 

H= 2{A.(d;: dA + 2*(*F/\ .» + (kISr)*dA }. (19) 

ThusH: OJ(M) Xsu(2) -+OJ(M) xsu(2) is a partial differ
ential operator which we must restrict to ker d;: in order to 
obey correctly the requirements of gauge invariance. Now, 
on ker d ;:, the combination Ad;: dAis a non-negative Her
mitian elliptic operator and a standard coercivity argu
mene 2 can then be applied to deduce that H is bounded 
below and positive if A is large enough. Thus we can define 
the index of a critical point to be the dimension of the largest 
subspace ofker d;: on which H=H(A) is negative definite. 
It follows that all the critical points ofS havefinite index. On 
the other hand, if in H we allow A -+ 0, then we revert to the 
pure Chern-Simons case and the index of all critical points 
becomes infinite. We have seen already, though, that the 
Hessian in this case is 2*kd A' so that H is indeed a singular 
perturbation of 2*kdA ; this accounts for the difference 
between the spectral behavior in the two cases. 

We can view our model as being a regularization of the 
pure Chern-Simons model-a regularization that is A de
pendent and which also can depend on the metric used. No
tice, also, that S is also the action for the topologically mas
sive gauge theory. Thus our model provides us with a 
physically nontrivial interesting model in which to study the 
phenomena of the Chern-Simons theory, as well as provid-
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ing us with a small finite-dimensional Hilbert space of modu
li. 

We proceed now to examine some properties of the 
quantum theory based on the action S. This leads us to con
sider the partition function 

(20) 

where .9 d denotes some appropriately chosen integration 
measure and the 21T is inserted for single-valuedness. Note 
that in the pure Chern-Simons case, where A = 0, the action 
is odd in the gauge fields. This leads to problems in the func
tional integral since the action is not bounded below. This 
sort of problem also occurs in simpler theories such as the 
scalar ¢3 theory, which is similarly afflicted. Here, provided 
that A =1= 0, we do not have this difficulty; this is part of the 
benefit of studying this model. We wish to work in a limit 
where the stationary phase approximation is applicable. To 
do this we can take the limit where k -+ 00 and A is fixed; 
other limits in which A increases are also of interest, but we 
shall look at these elsewhere. In any case, in the former limit, 
which corresponds to weak coupling, we write 

Z = f .9d exp{ !~ [tr fM d A/\A + ~ A/\A/\A 

+ S:A tr L (F /\ *F) ]} . (21) 

Then as k -+ 00 the partition function should be dominated 
by those configurations that have stationary phase and obey 
the extremal equation 

(lISr)F(A) + (A Ik)dA *F(A) = O. (22) 

Thus in this limit we expand about these extremal connec
tions, say A E , and obtain a large k limiting form ZL of Z, 
which we write as the expression 

ZL = L exp[21TikS(AE )]F(AE ), (23) 
AE 

where F(AE ) is a factor that is about to be calculated: To do 
the integration over the space d we have to fix a gauge so as 
to integrate correctly over the orbits. In view of our above 
discussion of the orbits the natural gauge choice is 

(24) 

where we have set A = AE + 8. Let LY denote the Lie alge
bra of the group of gauge transformations, so that 
LY = Te Y, where e is the identity gauge transformation; 
and as a space, LY =Oo(M) xsu(2). With this completed 
the gauge fixing is carried out by enlarging TA d to 
TA d E9 Te Y and then projecting onto ker d;:. We also have 
that TA d = 1m d A E9 ker d;:, so that the ghosts are repre
sented by the space LY E9 1m d A' The gauge fixed action 
with its attendant ghosts then results in a new form for the 
limiting partition function ZL: 
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ZL = L exp [21TikS(AE )) f .@a.@b.@g.@g 
AE 

X exp [~! {(a, {*d A + 8: A (d t d A 

+ 2*(*F /\.»} a) + 2(b,dt a) + (g,(dt dA 

(25) 

In Eq. (25) the inner product has the usual definition (w, 
v) = f M tr(w /\ *v), withw, ve!lP (M) xsu(2). Also,grep
resents an anticommuting ghost field belonging to 
!l°(M) Xsu(2) and b is necessarily an element of 
!l3(M) Xsu(2), which implements the gauge condition. 
Thus the integration is over the space 

(26) 

To carry out the integration we single out the subspace 
(!lI(M) EB !l3(M»Xsu(2) and note that we can write 

p 2 = [
Q

2 + dA *dA * QdA * ] 
dA *Q a3 (A) 

= [(A 2/k 2)h 2 + (A /k)(h *dA + *dAh) + al(A) 

dA*Q 

(a,Qa) + 2(b,dt a) = (v,Pv), 

with 

V=[:], P=[d:* d~*], 
Q = (8~A /k)(dt dA + 2*(*F /\.» + *dA. (27) 

Assembling these facts gives us the result that the partition 
function Z L is given by the expression 

- det(d! dA + dA d!) L exp[21TikS(AE )] -------

AE ~det(P) 

so that 

A 
det(d! dA + dA d!) 

F( E) = -------
~det(P) 

(28) 

For convenience in further elucidating the expression for 
F(AE ) we introduce the notation ap (A), which stands for 
the covariant Laplacian on!lP (M) Xsu(2), i.e., ap (A) is 
the operator (d! dA + dA d!):!lP(M) Xsu(2) -+!lP(M) 

Xsu(2). We can then realize det (P) as ~det(p2) and if we 
let h = 8~(d! dA + 2*(*F /\.» we find that 

(29) 

Actually, the off-diagonal terms in (29) can be shown to contribute zero; thus we obtain 

F(A _ det(ao(A» 
E) - det{(A 2/k 2)h 2 + (A /k)(h *dA + *dA h) + a l (A» det(a3 (A»1I4 

(30) 

Also, using Hodge duality to relate the various ap (a) we find det(a3 (A» = det(ao(A» and so we now have 

Z -" [2 'kS(A )] det(ao(A»3/4 
L - of:: exp 1Tl E det{(A 2/k 2)h 2 + (A /k) (h *dA + *dA h) + a l (A»1I4 . 

(31) 

Now we employ a formal rewriting of the determinant in the denominator of expression (31) for Z L as 

( 
(A2/k2)h2+ (A/k)(h*dA +*dAh») 

det(a l (A) )det 1+ . 
al(A) 

(32) 

This allows us to write 

Z =" ex [21TikS(A )] det(ao(A»3/4 / (A), 
L of:: p E det(a l(A»1I4 

where 

Thus if we denote by Z~s the pure Chern-Simons contribu
tion to Z L' which is, of course, a phase times the Ray-Singer 
analytic torsion T(M) ,13-15 then formula (33) allows us to 
calculate corrections: 

ZL = Z~(1 + CoA + ... ), 
Co = (- 1I4k) tr«h *dA + *dAh)/al(A». (34) 

In the analysis above the summation .IAE can be a sum 
over discrete configurations or an integral over the moduli 
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(33) 

space of extrema: If it is the latter, then Q 2 + d A *d A * has 
zero modes which must be projected out before calculating 
its determinant; alternatively, one can perturb A slightly so 
as to avoid them. Also, the determinants of each elliptic op
erator 0 are calculated using their associated zeta function 
;0 (s) and, because they are real and positive, there is no 
need to calculate a phase, as is necessary in the pure Chern
Simons theory cf. the breakthrough made by Witten 13 in 
establishing the connection between Chern-Simons theory 
and the Jones polynomial. 
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III. CONCLUDING REMARKS 

In conclusion, we point out that to study the present 
model a certain price has to be paid; we have in mind the fact 
that in order to introduce our perturbation, a metric has to 
be introduced, while in the unperturbed case no metric is 
needed at the defining stage. However, in the pure Chern
Simons case a metric is also needed to introduce the spectral 
flow and to do the Fadeev-Popov gauge fixing. In the end 
one can show that some of the data, such as the Ray-Singer 
torsion, are nevertheless metric independent; in the per
turbed case there may also be metric-independent features. 
In addition, we find that the quantum theory of the present 
model is both calculable and should be better behaved for 
large fluctuations in the gauge field. A further avenue of 
investigation is provided by considering M, which are, at 
least locally, ofthe form l: X R, where l: is a Riemann sur
face. This effectively allows us to employ results and tech-
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niques from two-dimensional conformal and Yang-Mills 
theories. This will be reported on elsewhere. 
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The Fock representation of the Lie superalgebra osp( 00 I 00), from which is derived the super 
boson-fermion correspondence of osp ( 00 I 00 ) is discussed. Solutions of the OSp--SKP 
hierarchy in terms of the neutral super free fermions are constructed. 

I. INTRODUCTION 

In this paper we investigate a relationship between a 
representation of the infinite-dimensional Lie superalgebra 
osp( 00 I 00) and the orthogonal symplectic super KP (OSp-
SKP) hierarchy. In the investigation of the super Toda lat
tice hierarchy, we have found osp( 00 100) as a symmetry of 
the equation. 1.2 On the other hand, osp( 00 I 00 ) emerges in 
the theory of the SKP hierarchy.3 We are now interested in 
the Lie superalgebra osp( 00 I 00) itself and its representa
tions. Kac and van de Leur studied the representation theory 
of the Lie superalgebra a", I '" (Ref. 4) and b", I '" (Ref. 5). 
We apply their theory of a", I '" to B-type Lie superalgebra 
osp( 00 I 00 ). Then we get the formula of boson-fermion cor
respondence of osp ( 00 I 00 ). Through this paper we employ 
Z as the indices of osp ( 00 I 00 ) and the theory of its represen
tation. On the other hand, in Ref. 5, they use! Z for indices. 
By the transposition of indices, we see that the theory of 
osp ( 00 I 00 ) and its representation in this paper corresponds 
to the theory of b", I '" • 

For the representation of osp ( 00 I 00 ), we deal with the 
superalgebra SBCL generated by the "neutral super free fer
mions" ¢" n (nEZ, f-l = 0,1) and the unit 1. And we construct 
the fock spaces F S and F S

' from SBCL. Let.Y be a space of 
superfields with (anti) commutative variables. We denote 
the tensor product of SBCL and .Y by SBCL. The 
supergroup G( V, V) is defined by G( V, V) 
= {gESBCLlgVg- 1 = V}, where V is the space of linear 

combination of ¢" n over Y. Then gEG( V, V) defines the ele
ments glO)EFs and (OlgEFs', where FS and FS* are Fock 
spaces defined by SBCL. We call a basis vector ofFs and of 
FS* a state vector. By definition of G( V, V), the state vector 
¢o ~IO) (resp. (Olg¢O 0) breaks into the sum of new state vec
tors, g¢" n 10) (resp. (Ol¢" ng)· We call the equation 

1 

¢O~IO) = L L a°ltong¢"n 10) 
1t=0 nEZ 

(resp.(Olg¢Oo = Itto ~ bOlton (Olg¢"n). 

"the scattering of glO) (resp. (Olg)," where a°lt On and bOlton 
are superfields. For the Hamiltonian <1>, we consider the ele
ment go<l>ge:G(V,V), where go, ge:G(V,v) and go is a con
stant element. Considering the scattering of (Olgo<l>g under 
the condition, (Olgo<l>g¢Oo = a(OI¢o~o<l>g, where a is a cer
tain superfield, we get the Grassmann equation:6 

t(Wj )eXP(OA + xA 2 + L tn r n
)::: = 0, 

n=2.3(mod 4) 

where Wj (jEl), is a superfield that depends on g, and :s is a 
superframe of the orthogonal universal super Grassmann 
manifold (USGM) determined by go. Thus we have a solu
tion of the OSp--SKP hierarchy. 

The knowledge of the representation theory of the infi
nite-dimensional Lie algebra of B typeo( 00) (cf. Refs. 7-9) 
is indispensable to our study. We review the representations 
of o( 00). Let Eij (i,jEl) be the matrix unit. Put Zij 
=Eij - (- )i+jE_ j._ i. 

We define the Lie algebra 0 ( 00 ) over C by 

o( 00) = t~ aijZijlaij = 0 if Ii - jl ~o}. 
The Lie bracket of 0 ( 00 ) is defined by 

[Zmn,Zkd =/)nkZml-/)lmZkn - (- )k+l/)n,_IZm._k 

+ (- )k+l/)k._mZ_t.n· 

The Chevalley generators of 0(00) are hi =Zu(i>O), 
ei = Zi.i+ 1 and /; = Zi+ I.i (i>0). Let u! consider the 
one-dimensional central extension o( 00) = o( 00 ) EEl Ce. 
The Lie bracket of 0 ( 00 ) - is defined by 

[Zmn + AC,Zkt +pc( = [Zmn,Zkd + C(Zmn,Zkt)C, 

where [ ] is the Lie bracket of o( 00). The two-cocycle 
C(',' ) is defined by 

C(Zmn,Zkt) =(/)nk/)ml- (- )k+l/)m,_k/)t,_n) 

X(YB ( - m) - YB ( - n», 

where 

{

I, i>O, 

YB (i) = ~, i = 0, 

0, kO. 
Let us consider a representation of o( 00) -. Consider the 
Clifford algebra BCL generated by ¢n (nEl), and the unit 1 
with the defining relation 

¢n¢m + ¢m¢n = (- )mnt5n._ m, n,mEl. 

Put 

Wann = EEl C¢i and Wer = EEl C¢i' 
;<0 i>O 

We define the Fock space F= BCL/(BCL' Wann ). We de-
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note the residue class of 1 in Fby 10). Note that Fis a left 
BCL module with vacuum vector 10) satisfying ifJn 10) = 0 
for n < O. Similarly, we introduce a right BCL module 
F* = (Wer ' BCL}'\BCL. The residue class of 1 in F*, de
noted by (01, satisfies (OLPn = 0 for n > O. Let us define the 
representation of o( 00) on F as follows. For vEE', put 
p(zij)v= (- iifJiifJ_j:V andp(c)v = v, where 

{

ifJiifJj, 

:ifJiifJ/O, i=j=O, 

- ifJjifJi> I;pO(i,j) =1= (0,0). 

We see that p is a representation of o( 00) -, that is, 
p( [A,B]-) = [peA ),p(B)], where the bracket on the right
hand side is that of Ende F. We see that Fbreaks into two 
irreducible components as an o( 00) module such as 
F = FO Ell F I, where FO and Flare the o( 00 ) module with 
highest weight vectors 10) and ifJo I 0), respectively. We define 
the Hisenberg subalgebra H = Ell nE2 Z + 1 Hn Ell Cc of o( 00 )-, 

where Hn ::: ~iEZZi.i + n' We see that Hn satisfies the relation 
[Hn,Hm] = 2nbn, _ mC' Hence, we have 

exp(I ~p(Hn »)/(P(H_ 1),P(H_3), ... ) 
n>O 2n 

=/(P(H_ 1) +).I,p(H_3) +).3"")' 

and 

[( 1/2n)p(Hn ),/(p(H _1),p(H -3),.··)] 

a/ =-(p(H_1),p(H_3), ... ), n>O, 
aXn 

for /(X)EC[[X1,X3, ... ]] in the universal enveloping algebra 
U (Ende F). The linear functional on BCL, (): BCLEg 
-+ (g)EC, is defined by 0) = 1, (g) = 0 if glO) = 0 or 
(Olg = O. We define the map u from F to C[[XI,X2, ... ]] by 
u(gIO» = (exp(H(x»g), where 

00 

H(x) = I x 2n + IP(H2n + I)' 
n=O 

Let a be an element of Ende F and suppose a(Fi) CFi 

(i = 0,1). We define the differential operator E(a) by 

E(a) (exp(H(x»g) = (exp(H(x»ag). 

The map E is an algebra homomorphism from Ende F to 
the algebra of differential operators on q[XI,X3, ... ]]. One 
can verify that 

and 

a 
E(P(H2n + I» = -a.--

x2n + 1 

E(P(H -2n-I» = (2n + 1)x2n + 1 for n>O. 

Put ifJ(z) = ~nEZifJnzn, ZECX. We have the following 
theorem. 

Theorem 1.1 (cf. Refs. 8 and 10): Let qbe a linear opera
tor on F such that qifJn = ifJnqnE'l and qlO) = ifJoIO). Then 
ifJ(z) is represented as 

ifJ(z) =qr _(z)r +(z), (Ll) 

where 
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r () - - '" ± (2n + I) 
( 

p(H )z+ (2n + I)) 
± z - exp + £... . 

n>O 2n + 1 
Proof: As an element of Ende F, ifJ(z) acts on F tran

sposes one component for another, that is, ifJ(z)FoCF 1 and 
ifJ(Z)F 1 CFo. Therefore, we can suppose that ifJ(z) = qa(z), 
where a(z)FiCFi. One can easily verify that 

[ifJ(z),p(Hn)] = - 2znifJ(z),nE2'l + 1. 

This means that [a(z),p(Hn)] = - 2zna (z). Put X(z) 
= E(a(z». Then we have 

[
X(Z), a ] = _ 2rn + IX(Z), (1.2) 

aX2n + 1 

[X(Z),X2n + l ] = -2(2n+1)-lz -(2n+l)x(z). (1.3) 

From (1.2), (1.3), and Lemmas A and B below (shown in 
Ref. 8), we have 

X(z) = m'exp(I x 2n + Irn+ l)exp(I z- (2n+ I) 
n>O n>O 

X(2n+1)-1 a), 
ax2n + 1 

where m is a constant. Then a(z) = m' r _ (z)r + (z) and 
ifJ(z) = m·qr + (z)r _ (z). Comparing both sides of 

ifJ(z) 10) = m'qr +(z)r _(z)IO). 

and 

ifJ(z)ifJoIO) = m'qr _(z)r + (z)ifJoIO), 

we see that m = 1. 
LemmaA:SupposethatX(z) satisfies (1.3). ThenX(z) 

is represented as 

X(z) = M(X,Z)exp( - I z- (2n+ 1)(2n + 1)-1 a ), 
n>O aX2n + 1 

where M(X,Z)Eq [x 1,x3, ... ,Z,z-1 ]]. 
Lemma B: Suppose that M(X,Z)Eq[XI,X3, ... ,z,z-l]] 

satisfies 

[ M(X,Z), a ]= -2rn+ IM(x,z). 
ax2n + 1 

Then M(x,z) =m'exp(~n>Ox2n+lrn+I), where m is a 
constant number. Q.E.D. 

The formula ( 1.1 ) is called a boson-fermion correspon
dence of o( 00 ) and r ± (z) are called the vertex operators. 

In Sec. II we will introduce osp( 00 100) and its cen
tral extension osp ( 00 I 00 ) -. We realize the osp ( 00 I 00 ) - in 
terms of the super Clifford algebra generated by the neutral 
super free fermions and discuss thh Fock representation of 
osp( 00 I 00 ) -. As an analogy of the theory ofKac and van de 
Leur,4 we deduce the formula of boson-fermion correspon
denceofosp( 00 I 00) - and the super vertex operator. We also 
mention the correspondence the theory of boo I 00 (Ref. 5) to 
our osp ( 00 I 00 ). In Sec. III, the transformation group 
G( V, n will be defined. And we give the precise definition of 
the "state vector" glO) and (Olg (geSBCL), and the "scat
tering" of the state vector. We define the Hamiltonian in 
terms of the Heisenberg algebra of osp( 00 I 00 ) - and obtain 
solutions of the OSp-SKP hierarchy under some "scatter
ing" conditions. 
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II. FOCK REPRESENTATION OF osp( 00 1 00 ) 

Let E "\j (i, jEZ, ,u, ve{ 0, 1}) be the following blocks of 
:l X:l matrices: 

E OO . =(Eij 
I} ° ~). EOI .. =e 

lJ ° Eij) 

° ' 
ElOij = (;. 

I} 
~). Ellij=(~ ;J. 

Put ZOOjj = E oo ij - ( - )j+jE OO 
_j, _ I' Z lIij = E lIij 

_(_)I+jE II .. and ZOI.. =EOI .. 
-J-1l-l-l, IJ 'J 

+ ( - ) I + JEW _ j _ I, _ I' The infinite-dimensional Lie su-
peralgebra osp ( 00 I 00 ) over C is defined by 

osp(ooloo) = { ~ ,L aP"ijZP"ijlaP"ij 
P," - 0, I lJEZ 

The element Z P" ij satisfies the following bracket relations: 

[ ZOO ij ,Z 00 kl ] 

=8jkZOOi/-t5liZOOkj - (- )k+18j._IZOOI._k 

+ (- )k+lt5k,_IZOO _Ij' (2.1) 

[Z II ij'Z II kl ] 

£ ZII £ ZII ()/+k£ ZII =Ujk iI-UIi kj+ - UI._k_1 -I-IJ 

- (- )/+k8_ j _I,IZII I._k_l, (2.2) 

[Z OO ZOI ] - £ ZOI ( )I+j£ ZOI ij' kl - Ujk if - - U - I.k _ jl' (2.3) 

[ZlIij,ZOlk/] = -8i/ZOlkj 

+ (- )1+j8j,_I_IZOlk._I_P (2.4) 

[Z OI ZOI] ()k+lr:: ZOO ()k+1 ij' kl + = - Uj. - 1- I I. - k + -
Xt5 _ l,kZ II -I-IJ' (2.5) 

The bracket relation (2.1) is that of 0 ( 00 ). There is a trian
gular decomposition 

osp(ooloo) =n+ffJhffJn_, 

where 

h= ffJCZoojiffJ ffJCZ I\, 
;>0 ;;>0 

is a Cartan subalgebra, 

n+ = .ffJ.CZ ooij ffJ ffJ.CZOlij ffJ .ffJCZ lIij(resp.n_ = .ffJCZ ooij ffJ .ffJ.CZOlij ffJffJ.CZ Ilij) 
,<} 1<J '<1 I>} 1>1 I>J 
j>o j>o j<o j<o 

is upper (resp. lower) triangular part. 

Furthermore, we consider the one-dimensional central 
extension osp( 00 I (0) - = osp( 00 1(0) ffJ Cc. The bracket re
lation of osp( 00 I (0) - is defined by [A + ,uc,B + AC ]-( + ) 

= [A,B ] ( +) + C(A,B)c, for A,BEOSp( 00 1 00 ),,u,AEC, 
where 

C(Zoomn,Zookl) = (8nk t5ml - (- )/+kt5m._ k8 n._ /) 

X(YB ( - m) - YB ( - n», 
C(Zllmn,ZIIk/) = (t5mI8 nk - (- )k+18m,_k_ l t5n,_I_I) 

X (Y e ( - n - 1) - Ye ( - m - 1), 

C(ZOlmn,ZO\/) 

= (- )k+18n._1_18m._dYB(k) - Y e ( - n - 1», 

C(ZOlmn,Z""kl) =C(ZOOmn,ZlI kl ) =0, .u=0,1, 

with 

Y . {I, 
e(1) = 0, 

t;;.o, 

kO. 
Let us consider the representation of osp ( 00 I 00 ) -. We intro
duce the superalgebra SBCL whose generators are ¢I' n (nE:l 
,u = {O, 1}) and the unit 1 satisfying the relation, 

¢l'ncrm + (- )"Vcrm¢l'n = (- )m8"v t5n._m_v· 

We call ¢I' n the neutral super free fermion. Let g be a mono
mial of SBCL, such as 
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and m, = 1 if.u, = 0. We define 

j 

deg!. (g) = L. ,u,m,. 
'~I 

The :l2-grading of SBCL is defined by SBCL 
= SBCLo ffJ SBCLI, where the degl of monomial of 

SBCLj is congruent to i mod 2. Put -

WScr = ffJ ffJ C¢" n 
,,~O.I n>O.,,+n>O 

and 

We define the super Fock space ps by ps 
= SBCL/(SBCL' Wann ). We denote 10) the image of 1 of 

the canonical map SBCL .... ps. Note that ¢l'n 10) = 0, for 
n < O,.u = 0, 1. We also define the right SBCL module ps. by 
( Wer . SBCL) \ SBCL. We denote the image of 1 of the ca
nonical map SBCL .... ps· by (01. The vector (01 satisfies 

The :l2-grading of ps and ps· is introduced canonically from 
SBCL. 

We consider the representation of osp ( 00 1 00 ) - on P s. 

PutX"V ij = ( - )H" + v:¢I'iCPV _j_ v: (i,jEZand.u,v = 0,1), 
where 
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j<O, 

i = j = ft = v = 0, 

I;;. 0 (i,j,ft, v) i= (0,0,0,0). 

For ZI-'vij' we define r(Zl-'vij)EEndcFs by r(Zl-'vij)v 

= (,;-=:T)V-I-'Xl-'vijv(vEFS). Furthermore, define r~)v 
= v(vEFS). We obtain the representation ofosp( 00 1 00) on 
P, that is, the following equation holds 

r( [A,B C( +») = [r(A),r(B) L +)' A,BEOSp( 00 1 00 )-. 

As an osp( 00 1 00 ) - module Fs breaks into two irreducible 
components FlO and FSt, where FlO(resp.FSI) is the 
osp( 00 1 00 ) - module with the highest weight vector 10) 
(resp. tP°oIO»). _ 

The Heisenberg algebra H S of osp ( 00 1 00) is defined by 

H s ..... uOO ..... ull ..... uOI ..... ~ = E9 'Un 2n + I E9 Ell 'uH 2n + I Ell Ell 'Un n Ell "-"', 
neZ neZ neZ 

where 

[HOIn,HOlm(+ = I [ZO\i+n,ZOljJ+m(+ 
iJEZ 

HI-'I-'n = I ZI-'I-'i.i+n' ft = 0.1, nE2Z + 1 and HOI n 
iEZ 

= IZOli,i+n, nEZ. 
iEZ 

We use the notation HI-'vn (ft,v=O.I, nEZ), regarding 
H 00

2n andH I1
2n =OfornEZ. 

Proposition 2.1: The elements H I-'V n satisfy the following 
relations: 

[HOOn,H OO m]- = 2n8n. _ m C' 

[Hlln,Hllm]- = -2n8n._ mc, 

[HOOn,H OI
m ]- = 2Hol

n+ m' 

[H II HOI]- 2Hol 
n' m = - n+m' 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

[HO\,Holm(+ =(-)m(Hoo
m+n+ 1 +Hllm+n+l) 

(2.10) 

Proof' We only show (2.10). The left-hand side of 
(2.10) is calculated as 

= (- )m(Hoo
m+n+1 +Hllm+n+I) + (- )mI8n._ m_ I(YB(j) - Yc(j+m))c. 

jEZ 

Suppose m < O. Then we have 

I 8n._ m-I (YB(j) - Yc(j + m) 
jEZ 

=8n.- m _ 1 I (YB(j) - Yc(j+m) 
O<;.j< - m 

=8n.- m_ 1 (- m -1 +~) = (n + p8n.- m- l . 

Hence we have (2.10). If we suppose m ;;'0, we get the same 
formula. One can show (2.6)-(2.9) similarly. Q.E.D. 

As an HS module, F S also breaks into two irreducible 
components, FlO and F sI

• To show this fact we refer to super 
boson-fermion correspondence of osp( 00 1 00 ) -. Put tPl-' (z) 
= ~nEZ~nZn (ft = 0,1, ZECX

). We get the following result. 
Theorem 2.2: Let Q be the operator on F S such as 

Q~n = ( - )1-'~nQ and Q 10) = tP°oIO). Then 

tPo(z) = Qr _(z)r +(z), (2.11) 

,;-=:TZtPI (z) = - 2Qr _ (z)r(HOI(z)r + (z), (2.12) 

where 

and 

r () - " ± (2m+ I) 
( 

r(Hoo )z+(2m+I») 
± Z =exp + £.. 

m>O 2m + 1 

HOI(Z) = I( - )jHOljz-j. 
jEZ 

Proof' The formula (2.11) is nothing but Theorem 1.1. 
We show (1.12). By a simple calculation, one sees 
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[r(HOlm),tPo(z)] = (- )m,;-=:Tzm+ltPl(z), 

especially, [r(HOlo),tPo(z)] =,;-=:TZtPI(Z). From (2.11) 
we have 

[r(HOIo),tPo(z)] = - Q(r(Holo)r _(z)r +(z) 

+ r _(z)r +(z)r(Hol
o ))' 

(2.13 ) 

The first term of the right-hand side of (2.13) is calculated as 
follows: 

00 

= r _ (z) I Pj( - ad r(HOO _ 2m -I ):m;;,O) 
j=O 

xzjr(Holo ) r + (z), 

where the polynomial Pj (x) is defined by 

(2.14 ) 

expCto x2n+ I (2n + l)-lr n+ I) = jtoPj(X)zj. 

From (2.8) and (2.14), we have 

r(Holo)r _(z)r +(z) 
00 

= r _(z) I Pj( - 2)zjr(HOI _)r +(z). 
j=O 

Kaoru Ikeda 
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Similarly, we have 

r _(z)r +(z)y(HOI
O) 

00 

= r _(z) LPj( - 2)z-jy(HOlj )r +(z). (2.16) 
j=O 

Note that 

exp(L ( - 2/2n + 1)rn + I) = LP/ - 2)zj 
n;;.O j;;.O 

and 

L - 2 (2n + 1) - I rH I = log 1 - z . 
n;;.O 1 + z 

Then 

Kac and van de Leur this paper 

(..r=T)2(i- li»t/J2(i- li])lil 

Pj( - 2) = g'( _ )j, ~:o~' 
From (2.15) and (2.16), we have 

[p(HOIO),t/Jo(z)] = - 2Qr _(z)y(Hol(z»r +(z). 
Q.E.D. 

From Theorem 2.2, we have the following corollary. 
Corollary: As H S modules, FsO and F si are irreducible. 
In conclusion of this section, we mention the relation 

between our result and that ofKac and van de Leur. In Ref. 
5, the indices of neutral super free fermion and matrix units 
belong to !Z. Through the following correspondence, we see 
that the notations of the present paper are equivalent to that 
of5: 

Eij 

where [i] = sup{kEZlk..;i}. 

E 2(i - li»,2(j - [j». . i J'ElZ 
1,1,1) I" :2' 

III. THE ORTHOGONAL UNIVERSAL SUPER 
GRASSMANN MANIFOLD (USGM) AND THE OSp-SKP 
HIERARCHY 

We denote by d the arbitrary superalgebra. Let us re
call some notations of Lie supergroup. The Lie supergroup 
SGL(d) is defined by 

{eoo AOI) SGL(d) = IAijEMat(ZXZldi+), 
10 Al1 

Aoo and A II are invertible} . 

The supertranspose "st" is defined by 

sl Aoo Aol ) _ ('Aoo 'A 10) 
\.410 All - tAo I 'All' 

Put J = « - )iOi, -j)iJEZ and K = AI, where A 
= (Oi + IJ) iJEZ' The Lie supergroup OSp( d) is defined by 

{ (J 0 )st (J 0) 
OSp(d) = AESGL(d)1 0 _ 'K A 0 _ K 

=A -I}. 

We define SBCL by SBCL ® d. The Z2-grading SBCL 
= SBCLo EDSBCL I is given SBCLf = ED a +(J=i(mod2) 
X SBCL.a- ® d (J' We assume the following (anti) commuta
tion relation 0(41' n nEZ, Il = 0,1, and d. 

41' na - ( - )/Jia4l' n = 0, where aEd!. 

Put 

v = ED ED C4l'n 
/J = 0,1 nEZ 

and V = V ® d. We introduce the transformation group of 
Vas G(V,V> = {gESBCLo Ig is invertibe, gVg- I = V}. For 

- , 
I 

I 
gEG(V,V> , we define the matrix l1(g) by l1(g) 
= (11 (g)/Jvij)/J.v = 0.1' where 

iJEZ 
I 

g4l'ng- 1 = L L l1(g)/Jvnm t/Jvm· 
v=OmeZ 

IfgESBCLo, theng4l'ng-IESBCLy and deg(l1(g)v/Jnm) + v 
=Il(mod i). Then one sees that deg(l1(g)/Jvnm ) 
=Il + v(mod 2). We show the following fact. 

Fact: Ifg,hEG(V,V>. Then l1(gh) = l1(h)l1(g). 
Proof By definition, gh4l' n (gh) - I 

I 

L 2.. l1(gh)/Jvnm t/Jvm· Notice thatgESBCLQ, we have 
v=O meZ 

gh4l'n(gh)-1 =g(h4l'n h -I)g-I 

=g( ± 2..11 (h)/JPn,¢i>,)g-1 
p=O/EZ 

I 

= L 2..11 (h)/JPnlg¢i>,g-1 
p=O/EZ 

Then we have the conclusion. Q.E.D. 
From the above fact, we see l1(g-l) = l1(g) -I for 

gEG(v'V>. One can see l1(g)ESGL(d) for gEG(V,V>. 
Proposition 3.1: l1(g)EOSp(d) for gEG(v'V>. 
Proof From the relation of 41' n' we have 

g4l'mg- lgt/Jvng-1 + ( - )/JVgt/Jvng-lg4l'mg-1 

= ( - )no/Jvom. _ n - v' 

The left-hand side of (3.1) is calculated as 

(3.1) 

2.. L {( - ) (v+ P,)P'l1(g)/JP'mil1 (g) vP'nj¢i>'i¢i>'j + ( - )/Jv + (/J + p,)p, + (v + p,)(v + P')l1(g)/JP'mil1 (g) vP'nj¢i>j¢i>'J 
P,.p, = ° iJEZ 

I 
= L L ( - )(v+ P,)P'l1(g)/JP mil1(g)VP'nj{¢i>'i¢i>'j + ( - )/Jv+ (/J+P,)P,+ (v+p,)(/J+P,) + (v + P,)P'¢i>'j¢i>'J. (3.2) 

p,.p, = ° iJEZ 
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Note that 

,uv + (,u + PI)P2 + (v + PI)(,u + P2) + (v + PI)P2 

='PI P2(mod 2). 

Then we have 

(3.2) = I I ( - )(v+P,)P'll(g)/l-P'm;'Tl(g)VP'nj(¢f";¢f"j 
p,.p, = ° ;,jEZ 

+ ( - )P,P2¢f"j¢f";). 

From (3.1), we have 
1 I I( - )PV+;+ nll(g)I-'Pm;ll(g)VPn._;_P (g) 

p=o iEZ 

= t>l-'vt>m. - n - V' 

This implies that 

ll(g)(~ -~K rll(g)(~ o ) = 1. 
-K 

Then we see that ll(g)eOSp(d). Q.E.D. 
In the rest of this section we construct the OStrSKP 

hierarchy in terms ofthe Fock representation. Let us review 
the theory of the OSp-SKP hierarchy. Let 8 and t4n + 3 

(n>O) be odd variables and x and t4n + 2 (n>O) be even 
variables. The superalgebra Y of superfields defined by 
Y = C [ [x,8,t4n + 2 ,t4n + 3 ,n>O] ] ® r, where r is a Grass
mann algebra. Super derivation on Y is defined by 

D=~+~. 
a8 ax 

The super vector fields on Y is defined by 

a 
D4n + 2 =-a--' 

t4n + 2 

a a 
D4n +3 =--+ I t4k +3 , n>O. at4n + 3 k>O at4n + 4k + 6 

We can verify that [D4n + 3 ,D4m + 3] + = 2D4m + 4n + 6' The 
operator 

00 

W= I WjD -j(wjeY1, wo = 1) 
;=0 

is called the wave operator of the OSp-SKP hierarchy if W 
satisfies 

D4n +2 W= - (B4n +2 W - WD4n+2), 

D4n+3W=B4n+3W- WD 4n +3, 

D-1W*D= W-t, 

where W* is the formal adjoint of W defined by 
00 

W* = I ( - )EjD -jwj , 
j=O 

where Ej = j( j + 1 )/2, and Bn is a differential operator part 
of WD n W -I. To solve the OSp-SKP hierarchy we consider 
the following linear algebraic equation (Grassmann equa
tion) : 

'w( 8,x,t)exP(8A + xA 2 + I t4n + 2 r 4n + 2 

n>O 

+ I t4n + 3 r 4n 
+ 3)::: = O. 

n>O 

(3.3 ) 
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Here we have put w(8,x,t) = ( ... W1,WO,W_ I ... ) (wjeYj 

and Wo = 1, Wj = 0 for j<O), r = {( - );t>;+ Ij);,jEZ and 
::: = (Sij);jEZ with Sijeri.±! and Sij = t>ij for ;<.j; ::: is the 
superframe ofUSGM~ the largest cell in USGM. In general, 
if'w = 'w(8,x,t) satisfies (3.3), then the operator 

W= IwjD-j 
J">O 

solves the SKP hierarchy for tn [n=.2,3(mod 4)]. For a 
matrixA = (aij) iEZ , put A = (aI-'Vij)iEZ 1-'.1'=0,1 where 

jeZ(NC
) v jeZ(NC

) 

al-'Vij = a2; + 1-'.2j + v' Put ::: = (s/V)j<O , where 
1-'.1'=0.1 

= (S 1-'1' ij);eZ' Add the constraint (3.4) to E such as 

(SOO;,SOO) B - (SIO;'SIO)C = 0, 

(SOO;.SOlj)B - (SIO;'Sllj)C = 0, 

(soo;.SOOj) B + (SI\'SlOj) C = 0, 
(3.4) 

(SOI;.SOlj)B + (SIl;.Sllj)C = 0, 

where 

and 

«a;)iEZ,(bj)jeZ)c = I( - )kakb_ k_ l · 
keZ 

The set of superframes satisfying the condition (3.4) is 
called orthogonal USGM~. We quote the following theorem 
from Ref. 3. 

Theorem 3.2: Suppose that E is the superframe of the 
orthogonal USGM~ and 'w = '(wj)jeZ satisfies (3.3). Then 
the operator 

W= IwjD-j 
J">O 

solves the OSp-SKP hierarchy. 
For geG(V,V), the state vectors glO)eF s and 

(OlgeFs' are defined, where pS(resp.Ps') = ps ® Y (resp. 
Fs' ®Y). Put 

<1>( 8,x,t) = exp(8jO - 1 - xlo + I t4n + 2l n 
n>O 

where 

and 

In = - ~{r(HOO -2n- + ) + r(H\1 -2n-1 )}, 

r -I = ..r=Tr(H01
_ 1) 

rn =..r=Tr(HOI_2n_2)(n>0). 

Theorem 3.3: Suppose geG( V, h satisfies the following 
scattering conditions: 

(i) I,6O~-IIO) = g-II,6°010), 
(ii) (Olgo<l>gl,6° 0= a(OII,6° ~o<l>g, for a constant element 

goeG(V,V), where aeY. If ll(go)l-'l-'ij = t>ij for j>i and 
l,6(go)l-'vij = 0 for ,u =1= v and j + ,u>i, then the operator 
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I 

w= L L 1](g)OI'O.-nD -2n-1' 
I' = ° n;.O 

solves the OSp--SKP hierarchy. 
Proof We first show the lemma 
Lemma C: 

1](g)OI'Oj = {jol'{jOj for i~O. 

Proof By definition we have 
I 

1,6°0&>- 110) = L L 1](g)OI'Ojg-It,6I'jIO). 
I' = ° j;.O 

From (i), one sees that 
I 

L L 1](g)OI'Ojg-It,6I'j IO) =g-ltP°oIO). 
I' = ° j;.O 

(3.5) 

Multiplying by g the both sides of (3.5) from the left, we 
have 

I 

L L 1] (g) OI'Oj t,6I'j 10) = 1,6°010). 
I' = OJ;.O 

Since the elements t,6I'j lO) (f-l = O,I,j~O) are linearly inde
pendent over Y, we have 1] (g) OI'Oj = {jp.O{jjO for f-l = 0,1 and 
j~O. Q.E.D. 

From (ii), we get the equations 

1](gocl>g)OI'Oj = 0 for j < 0 and f-l = 0,1. (3.6) 

The equations (3.6) are equivalent to 
v 

1(1](g)OI'Oj)jEZ 1](cI»1](go)'2.p = 0, 
I' = 0.1 

where 

'2.p = ({jiJ) iEZ' (3.7) 

LemmaD: 

1](cI» =exp(OA+XA2 + L t4n+2r4n+2 
n;.O 

Proof From the commutation relations of HI'Vn, we 
have [l'nJ()m] =0, n~O and m~ -1. [l-IJ()m]+ =0, 
m~O. and [l'nJ'em ] = 0, n,m~O. 

One sees that 

[t4n+2l'n,t4n+3jOn] =0, n,m~O, 

[xl'0,t4n +Jion] =0, n~O, 

[OjO-I,t4n +Jion] =0, n~O. 

From (3.8), (3.9), and (3.10), we have 

x 1](exp(Oj ° _ I - xl'o»' 

First, we calculate 

We have 
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(3.8) 

(3.9) 

(3.10) 

One can easily verify that ad l' n t,6I'm = - t,6I' m + 2n + I . 

Therefore, 

exp( L 14n + 2 ad l' n)t,6I' m 
n;'O 

= LPI(t4n+2adl'n;n~0)t,6I' m 
1;.0 

= LPI( - t4n+2;n~0)t,6I'm+I' 
1;.0 

where we have defined 

exp(L 14n +2:rn+ I) = LPr(t4n+2;n:>0)zl. 
n;'O 1;.0 

Thus we have 

1]( exp(~ 14n + 2f n )) = exp(~ t4n + 2 r4n 
+ 2). 

Next let us calculate 

In general, we have 

exp(L t4n + 3l n)t,6I' m exp( - L t4n + Ji on) 
n;.O n;'O 

Note that 

ad t4n + Ji on ad t4k + Jiokt,6l' m 

= (- )l't4n+3t4k+3t,61'm+2n+2k_I' 

Then we see that [ad t4n + Ji °n,ad t4k + J Ok] + = O. Thus 
we have 

Proceeding the calculation we see that 

( 1 + L ad t4n + 3ln)t,6I' m 
n;.O 

= t,6I'm - (- )I'L t4/ +3t,61'+ 1/+2n+2+1" 
1;.0 

where we regard 1,61 + In = tP°n, and we have 

1](exp(~ t4n +Jon)) = exp(~ t4n + 3 r4n
+ 3). 

One can similarly verify that 

1](exp(Ol_1 - xl'o) = exp(OA + XA2). 

The three matrices 

exp(L t4n + 3 r4n 
+ 3), exp(L t4n + 2 r4n 

+ 2), 
n;'O n;'O 

and 

exp(OA + xA2
) 
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commute with each other. Hence we can write 

7]($) = exp(OA + XA2 + L tnrn). (Q.E.D.) 
n=2,3(mod 4) 

From Lemma D, Eq. (3.7) is 

t(17(g)Ol'oj)~o.1 exp(OA + xA + n=2'~Od4) tnrn) 

(7] (go)l'vij);ez =0. (3.11) 

From the hypothesis for go, (3.11) coincides with the _ _ v 

Grassmann equation (3.3). Since goEG( V, V), 7] (go)'2", 
€Orthogonal USGM"'. Hence, from Theorem 3.2, the opera
tor 

I 

w= L L 17(g)Ol'o-nD -2n-1' 

I' = ° n>O 

solves the OSp-SKP hierarchy. This completes the proof of 
Theorem 3.3. Q.E.D. 

In Theorem 3.3, we assume that 7](go)2", belong to 
USGM"'. For g'o = 1 - « - )irpO; + ( -J/¢o _j) 
X (rpo _ i + ¢OJ ),j> i> 0, one can verify that 7] (g'0)'2", does 
not belong to USGM'" but to another cell ofUSGM. Unfor
tunately it is not unclear how to deduce the OSp-SKP hier-

v 
archy in case of 7](go)E", q:USGM"'. In Ref. 11, Bergvelt 
constructs the representation of (gl( 00 100) ® v)o on the ho
lomorphic section of dual Berezinian bundle of the USGM. 
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We expect that the OSp-SKP hierarchy can be analyzed 
over the whole USGM applying his idea to osp( 00 I 00). 
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Classical and quantum nonrelativistic interacting systems invariant under local supersymmetry 
are constructed by the method of taking square roots of the bosonic constraints that generate 
timelike reparametrization, leaving the action unchanged. In particular, the square root of the 
Schrodinger constraint is shown to be the nonrelativistic limit of the Dirac constraint. Contact 
is made with standard models of supersymmetric quantum mechanics through the 
reformulation of locally invariant systems in terms of their true degrees of freedom. Contrary 
to the field theory case, it is shown that locally invariant systems are completely equivalent to 
corresponding globally invariant systems, where the latter are the Heisenberg picture 
description of the former with respect to some fermionic time. 

I. INTRODUCTION 

Supersymmetric quantum mechanical (SSQM) models 
viewed as one-dimensional field theories provide explicit re
alization of the basic supersymmetry algebra. I The interest 
in such SSQM models has been mainly twofold: On one hand 
we find the search for realistic applications ofthem,2 while 
on the other hand, they are considered merely as a simplified 
arena where new ideas in supersymmetry are generated, test
ed, and subsequently generalized. A distinguished example 
of the latter point of view constitutes the introduction of the 
Witten index as a characterization for spontaneously broken 
supersymmetric theories. 3 

Generally speaking, the construction of SSQM models 
has been characterized by the use of supercharges that are 
linear in the Grassmann variables and generate a global sym
metry of the system. That is to say, the parameters of the 
induced transformation do not depend on time, being just 
constant Grassmann numbers. Having in mind the richer 
structure and interesting possibilities exhibited by systems 
possessing gauge supersymmetry, i.e., those coupled to su
pergravity,4 the question of how to extend the above-men
tioned quantum mechanical models to include time-depen
dent supersymmetry transformations naturally arises. Most 
of the work along these lines has been done in the realm of 
the relativistic point particle, which then naturally includes 
the concept of the relativistic spinning particle because the 
additional Grassmann variables can be interpreted as intrin
sic spin degrees of freedom. 5 There are some recent works 
that deal with the problem of constructing nonrelativistic 
systems having local supersymmetry.6-8 In this paper we 
present an alternative systematic method for such construc
tion, which is based on the idea that the generators of time
dependent supersymmetry, when considered as constraints 
on the system, are square roots of the constraints that gener
ate the reparametrization invariance of the same system.9 

Within the context of quantum mechanics, this method has 

a) On sabbatical leave from Instituto de Ciencias Nucleares, Universidad 
Nacional Autonoma de Mexico, Circuito Exterior, C. U. 04510 Mexico, 
D. F. Also at Centro de Estudios Cientificos de Santiago, Casilla 16443, 
Santiago, Chile. 

h) Centro de Estudios Cientificos de Santiago, CasiIla 16443. Santiago, 
Chile. Also at Departmento de Fisica, Facultad de Ciencias, Universidad 
de Chile, Casilla 653, Santiago. 

been applied mostly to the relativistic point particle, where 
the reparametrization invariance of the original action is 
manifest. 10 The corresponding constraint is the Klein-Gor
don operator, while its square root, leading to the fermionic 
constraint, is the Dirac operator. 

One can proceed along similar lines in the nonrelativis
tic case by considering the free particle as a constrained sys
tem invariant under time reparametrization. As is well 
known, this is achieved, for example, by introducing a new 
coordinate t( 1") and rewriting the free particle action as II 

11 l:e 
S= d1"--. (1) 

o 2m i 
The condition oS = 0 reproduces the usual dynamical equa
tions if the coordinates x ( 1"), t( 1") are kept fixed at the end
points 1" = 0, 1" = 1. The canonical action is given by 

S = f d1"[Pot + p·x - NJY], (2) 

where Po, P are the momenta canonically conjugated to t, x, 
respectively; N is a Lagrange multiplier; and 

(3) 

is a first-class constraint. The two extra degrees offreedom t 
and Po that we have added to the phase space are removed by 
constraint (3) upon gauge fixing. The action (2) is invariant 
under the local transformations generated by JY: 

oV= (V, E(1")JY) , (4) 

where V is any function of the canonical variables and (,) 
denotes the usual Poisson bracket. The Lagrange multiplier 
transformation is given by oN = e-( 1").12 The parameter E( 1") 
is restricted only at the endpoints by E(O) = E(1) = 0, as 
required by the action principle. Using the standard lan
guage, we refer to the above symmetry of the action as a 
gauge symmetry, even though one is dealing with a noninter
nal symmetry. 

Upon Dirac quantization, JY becomes the Schrodinger 
operator and the constraint condition becomes the Schro
dinger equation 

(5) 
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This can be naturally extended to the interacting case by 
redefining the constraint as 

dY'=Po+H, (6) 

where H is now the full physical (gauge invariant) Hamilto
man 

H = (l/2m)p2 + Vex). (7) 

The paper is organized as follows. In Sec. II we con
struct the square root of the Schrodinger operator in the free 
case, which is obtained by taking the nonrelativistic limit of 
the Dirac operator, as suggested by the fact that the Schro
dinger operator is the nonrelativistic limit of the Klein-Gor
don operator. In Sec. III the interacting case is disucssed. It 
is shown that the gauge field associated to the invariance 
under local supersymmetry can be completely eliminated. 
This is in contrast with the case for a field theory, where local 
supersymmetry requires the introduction of a physical spin-
3/2 field: the gravitino. In fact, one can see that the local 
supersymmetric Witten model reduces to the global one in 
the appropriate coordinates through a finite supersymmetry 
rotation. This transformation can be interpreted as the pas
sage from a Schrodinger to a Heisenberg picture with respect 
to some fermionic time. Finally, Sec. IV contains a short 
summary and the conclusions. 

II. THE SQUARE ROOT OF THE FREE SCHROOINGER 
EQUATION 

In Sec. I we briefly reviewed how the Schrodinger equa
tion can be understood as a bosonic constraint restricting the 
allowed states in a reparametrization invariant description 
of a nonrelativistic system. This is a useful remark that al
lows us to construct a locally supersymmetric action for a 
nonrelativistic system. There is a standard procedure for 
constructing a locally supersymmetric extenstion of a bo
sonic system invariant under general coordinate transforma
tions: The generators of the local supersymmetry transfor
mations are the square roots of the bosonic constraints re
sponsible for the invariance under general coordinate trans
formations.9 

In the case of the relativistic point particle such a proce
dure starts from the Klein-Gordon equation as the original 
bosonic constraint and leads to the Dirac equation as the 
resulting fermionic constraint. Both constraints obey a 
closed graded supersymmetry algebra. Having in mind that 
the Schrodinger equation is the nonrelativistic limit of the 
Klein-Gordon equation, we look for a fermionic constraint 
that can be obtained as the corresponding nonrelativistic 
limit of the Dirac operator. We first study the noninteracting 
case in order to determine the basic structure of the con
straints. 

Let us consider the following form of the Dirac equa
tion: 

(iYsY"PI" + mys)tf! = 0, (8) 

where PI" = (l/i)al"' {Y" , yv} = 27J"v, 7J"v = diag 
( - , +, +, + ), Ys = -;pylfy\ rl = - 1, and fz = 1. Us
ing a representation for the Dirac matrices given by 
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.(1 
-;P=10 0) . (00') '(01'\ 

-1' r' = i _ dO' Ys = - I 1 0)' 

we obtain the nonrelativistic limit for Eq. (8): 

( u
op 

Po ) (tf!) = 0, 
2m' - u-p X 

where Po = (l/i)(alat)4,m. 
Defining 

A i (U-p 
y= - 2Im 2m 

Po ) 
- U-p , 

we easily verify that 

{Y, Y} = - (p2/2m + Po)l=. - 21, 

[2, Y] =0, [2,2] =0. 

(9) 

( 10) 

(lla) 

( l1b) 

Here, 1 is the 4 X 4 identity matrix. The normalization of Y 
is such that when we consider the classical theory according 
to the prescription 

A A 

(l/i)[A, B ] ± -+ (A, B), (12) 

with A -+A, the first relation in (11) reads as 
(Y, Y) = i dY'. In order to b~tter understand the nature of 
the symmetries generated by Y, we look at the classical lim
it. Following Ref. 13 we introduce the new variables 

81" = (l/.j2)iysY", 

'Os = (l/.j2)ys, (13) 

which allow us to rewrite the fermionic constraint as 

Y = (l//2nl)(poO + Po(8s + 8°)/2 

+ 2m(8s - 8°)/2). (14) 

The classical limit is now obtained by considering the 
bosonic operators ;xI', PI" as real numbers with the usual 
Poisson bracket relations, while the fermionic operators are 
replaced by the real Grassmann variables (J", ()s' According 
to prescription (12), the only nonvanishing Poisson brack
ets of (J" , ()s are l3 

(15) 

The physical system that we are considering at this stage 
is the free, nonrelativistic spinning point particle of mass m. 
The fact that a constrained description is employed means 
that the phase space contains extra coordinates, bosonic as 
well as fermionic, besides the dynamical ones (x, p, 0) and 
that the action is to be varied with respect to all of them. The 
classical version of the algebra (11) ensures that both con
straints are first class and consequently, we need two extra 
variables of each type: t, Po and () 0, ()s, respectively. The fer
mionic contribution to the kinetic part of the action is 

1
1 • 

d1'~(9·0 - iJO()o+ iJs()s)' 
° 2 

(16) 

We introduce the following combinations of the extra fer
mionic variables: 

()+ =!«()s+()o), ()-=()s-()O; (17) 

the corresponding kinetic term in the Lagrangian is 
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• 0 o' . d 
- () () + (}s(}s = 2()+(}_ - -«(}+(}_). (18) 

dr 
The complete action for our system, which generalizes (2), 
is then 

S = f dr[ i·p + rpo + ~ 9·0 + iO+(}_ 

( p2) 1 
-N(r) Po+- -iM(r)--

2m ..}2in 

X(O·p+ (}+Po+ (}_m)] + ~ [0(0)·0(1) 

+ «(}+(O) - (}+(1»«(}_(0) + (}_(1»], (19) 

where M( r) is a fermionic Lagrange multiplier. The varia
tions at the endpoints are restricted so that the action is sta
tionary under arbitrary changes of the coordinates around a 
classical trajectory for 0 < r < 1; they are 

8b(0) =8b(1) =0, 8/(0) +8/(1) =0, (20) 

where band/ denote the bosonic coordinates x, t and the 
fermionic coordinates 0, () +, () _, respectively. Conditions 
(20) are chosen in such a way that they provide a unique 
solution for the equations of motion. 10 

The action ( 19) possesses two kinds of local symmetries 
generated by 

JY = Po + p2/2m, (21a) 

(21b) 

respectively. The local supersymmetry transformations of 
the dynamical variables are induced by Y and given by 

8xi= (1/~2m)1f(}i, 8Pi =0, 

& = (1!~2m )1f()+, 8po = 0, 

8(} i = - (i/~2m )1fPi' 8()+ = - i( ~m12 )1/, 

8(}_ = - (i1..}2in)Po1/, 8N = iM1/, 8M = 7], (22) 

where 1/ = 1f( r) is an arbitrary local Grassmann parameter 
restricted by 1/(0) = 1/(1) = 0 because of the fixed end
point conditions. 

The action (19) can be rewritten in second-order form 
by eliminating p, Po, N in favor of the velocities from the 
following equations of motion: 

N= r- iM(}+/~2m, 

Po = - p2/2m, 

Pi Xi iM (Xi (}i) 
-=-+-- -() -- . 
m r ~2m (2 + ( 

(23a) 

(23b) 

(23c) 

There is no conflict between the already prescribed endpoint 
conditions and the defining relations (23). Substituting 
(23) into (19) we obtain 

II r( ·2 . mx I' . 
S = d ---;- + - 0·0 + i(}+(}_ 

o 2 t 2 

+iM - --+-() -()_ +BT . ~( i.O i
2 

)) 
2 I 212 + , 

(24) 

where BT stands for the boundary terms. 
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The result (24) coincides with the starting point taken in 
Ref. 8 in discussing the free spinning nonrelativistic particle. 

It is sometimes found in the literature that e = i is con
sidered as an independent coordinate6

,7 However, this is in
correct unless e is also the Lagrange multiplier that goes 
together with the generator of time reparametrizations in the 
canonical action. 

In closing, let us identify the true degrees of freedom of 
the theory described by the action ( 19). This can be done by 
rewriting the action of the system in terms of supersymme
tric invariant quantities. 14 In order to achieve this, the vari
ables Po, N, M are substituted in the action (19) using Eqs. 
(23a), (23b), and the equation obtained by varying () _. The 
result is 

11 [ 2 • . . p' I' I' 
S= dr x·p--t +-O·O--(}+ 

o 2m 2 m 

X(O.p- ~; ()+)] +BT. (25) 

We observe that () _ has dropped out from the action: The 
only reference to this variable remains in the boundary term 
through the combination a _ = () _ (0) + () _ (1 ). When the 
action (25) is varied with respect to ()+, we find the bound
ary contribution 

- i(8()+/m)(0·p - (p 2/2m)()+)!b 

+ (i/2)(8() + (0) - 8()+ (1) )a_, (26) 

which must be set equal to zero. Recalling the endpoint re
striction 8(} + (0) + 8(} + ( 1) = 0 we obtain 

8(}+(1)[(}_(l) + (}_(O) -a_l =0. (27) 

Here, () _ is a shorthand notation for 

(28) 

It would be incorrect to consider (28) as a definition of 
() _ valid for the whole history of the system because the 
condition 8( () _ (1) + () _ (0» = 0 is not recovered from 
(28). Nevertheless, imposing the correct boundary condi
tion (27) effectively means that we are using such a defini
tion, but only at the endpoints. 

Returning to the action (25) we notice that it is invar
iant under reparametrization and also under the following 
local supersymmetry transformations: 

8x= (ilm)1/(r)(O-p«(}+lm», 8p=0, &=0, 

80 = 1/( r)(p/m), 8(}+ = 1/( r), (29) 

as can be verified by direct substitution. The transformations 
(29) are generated by s = TI+ + i(O·p - (p2/2m)(}+), 
which arises as a constraint s"", 0 from the action (25). This 
results when TI+, the momentum canonically conjugated to 
() +, is defined to be the left derivative of the Lagrangian in 
(25) with respect to 0 +, as is usually done. The constraint s 
must be proportional to Y, with Po = - p2/2m in the latter. 
This allows us to identify TI + = i(} _, together with the Pois
son bracket «() +, TI +) = - 1. Let us remark that TI + is 
purely imaginary with the conventions adopted. 

Let us now introduce the combinations 

X = x - (l/m)(}+O, e = 0 - (p/m)()+, (30) 
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which are invariant under the local transformations (29). In 
terms of these new variables, the action (25) is rewritten as 

2 • ] .L t + -.!... a·a + BT 
2m 2 ' 

(31) 

which corresponds to the first-order formulation of nonin
teracting three-dimensional bosonic and fermionic degrees 
of freedom and where all information concerning local su
persymmetry invariance is lost. 

III. LOCAL SUPERSYMMETRIC SYSTEMS WITH 
INTERACTIONS 

In this section we extend the previous results in order to 
include interactions which will produce after quantization 
the locally invariant generalization of the standard super
symmetric quantum mechanics. I To do this we redefine the 
fermionic constraint (21b) in the form 

y (1/~2m)(Q +PoO+ +mO_),:::::O, (32) 

where the supercharge Q is required to be a function of the 
variables x, p, 6 only. In the general case we would like to 
maintain the basic square root relation between Y and JY', 
where the constraint 

JY' = Po + H(x, p, 6) =0 (33) 

now includes interactions. The already assumed dependence 
of Q upon the dynamical variables implies that the super
charge Q turns out to be the square root of the physical Ham
iltonian H. That is, 

H = (1I2im) (Q, Q). (34) 

As a consequence of the Jacobi identity and Eq. (34) we 
obtain 

(Q, H) =0. (35) 

Equation (35) implies that the constraints Y and JY' re
main first class, exactly as in the noninteracting case. 

We recognize the basic structure of Witten supersym
metric quantum mechanics 15 in Eqs. (34) and (35). It is now 
possible to promote this supersymmetry to a local one gener
atedby Y. 

The above construction can also be generalized to in
clude n fermionic constraints Yo, a = 1, ... , n, which are 
required to satisfy the following algebra: 

(Yo, Y b) = ioobJY', (Yo, JY') = O. (36) 

A realization of an algebra such as (36) is given by extending 
definition (32) in an obvious manner: 

Yo = (lI,J2m)(Qo +PoO+a +mO a), (37) 

where Qo is still a function of x, p, 6 only. The n super
charges Qa are such that 

(Qo,Qb)=2imoab H, (Qo' H) =0, (38) 

which again guarantee that Y a and JY' are first-class con
straints. 

We will further comment on Eqs. (38) after we discuss 
the one-dimensional locally invariant Witten model as a par
ticular realization of the previous ideas. The Witten model 15 

corresponds to n = 2, with 
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QI = 01fJ + 02 V(X), Q2 = O,p - 01 Vex) 

leading to the physical Hamiltonian 

H = !(p2 + V 2 + 2iO I 02 V'), 

with V' = dV /dx and m = 1. 
The action for the system is 

S = f d1'[ qp + tpo + ~ 00 + 0 + a 0 - a 

- NJY' - MaYa] + BT. 

(39) 

(40) 

(41) 

The action (41) possesses the same two local gauge in
variances as the free case: (i) under the transformations gen
erated by ya and (ii) under time reparametrizations gener
ated by JY'. This fact, together with the explicit form (40) of 
the physical Hamiltonian, allows us to interpet the action 
( 41) as describing the original Witten model having its glo
bal supersymmetry promoted to a gauge supersymmetry. 

In order to distinguish the true dynamical degrees of 
freedom from the gauge variables associated to local super
symmetry, we proceed in complete analogy to the free case 
and eliminate the variables N, Po, and Ma from (41). The 
result is 

S = f d1'[ qp - Hi + ~ 00 

-iO+o(Qo HO+o)]+BT. (42) 

Again, the variables 0 0 automatically drop out from the 
action and the corresponding boundary conditions a _ a are 
correctly recovered in the same manner as described follow
ing Eq. (25). 

The action (42) is invariant under the local supersym
metry transformations 

/)x = ita (00 - pO +0)' /)p = ito ( - eo V' + ~~ 0 +a). 

&=0, oOa=top-EaV+iV'eotbO+b' (43) 

generated by the constraints Sa n + 0 + i( Qa - HO + 0 ) 

arising from the action (42) in a manner similar to the non
interacting case discussed after Eq. (29). Here, ta = to (1') 

and ea = EabOb, with EI2 = - E21 = 1. Now we can intro
duce new variables (denoted by the corresponding capital 
letter) that are invariant under the transformations (43) 
and generalize the analogous expressions of the free case giv
en in (30): They are 

X = x iO +aOa iVO+ 10+ 2, 

P= p(1 - iV'0+10+2) + iV'(010+2 - 020+ 1 ), 

e a = 00 - pO +a + Ve +a + iV'OaO+10+2, (44) 

and can be shown to satisfy the Poisson brackets correspond
ing to the bosonic and fermionic canonical degrees of free
dom. In terms of these variables, the action (42) reduces to 

s= f d1'[XP-Ht + ~ eaea] + ~ e a(1)ea(O), 

(45) 

whereH=H(x(X, P, e),p(X, P, e), O(X, P, e». The re
sult is 
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- 2 2 0 'X H = !(P + V (X) + 2iO I 2V ( ». (46) 

Let us observe that the functional form ofH(X, P, 0) is the 
same as that of H(x,p, e). 

If the action (45) is deparametrized, setting t = 1 in the 
Lagrangian, the result is the canonical first-order action of 
an unconstrained system with the phase space coordinates 
X(t), P(t), Oa (t) and Hamiltonian given by (46). At this 
level of the description, all reference to the previous invar
iance under local supersymmetry is lost and only a global 
supersymmetry remains. This global invariance cannot be 
considered as a restriction of the local supersymmetry be
cause, for example, it would be inconsistent with the fixed 
coordinate conditions at the endpoints. However, the alge
bra of the global symmetry is isomorphic to (36): 

(47a) 

(47b) 

where Qa = Qa - 2iHe + a is obtained by replacing Xi - X, 
Pi ..... Pi' (j - Oi in Qa. It would not surprise us to find that 
under the change of variables (44) H is form invariant, 
whereas Qa is not. The reason is that (44) is a canonical 
transformation (generated by Qa ) and H commutes with its 
generator, while Qa does not. Now it is easy to see that the 
supersymmetry transformation generated by Qa on each 
variable produce a net shift at the endpoints of the action 
(45), as appropriate to a global symmetry. These transfor
mations are precisely those of global supersymmetry in the 
Witten model. 

Nevertheless, our calculation has shown that the local 
supersymmetric Witten model is just a parametrized form of 
the globally invariant model and hence they are physically 
equivalent. In order to understand this point further let us 
discuss the quantum version of the theory described by the 
action (41). For simplicity we will assume only one super
charge Q (n = 1), so that the classical properties previously 
discussed will have a more transparent origin. We proceed in 
the most direct way by changing the Poisson brackets into 
commutators or anticommutators and by imposing the first
class constraints as null conditions upon the wavefunction 
that depends on the real coordinates t, X, e, e +. We recall 
that e, e + are Grassmann numbers with the derivatives tak
en from the left and that they anticommute (commute) with 
every fermionic (bosonic) operator. The wavefunction then 
satisfies 

(48a) 

(48b) 

where the Schrodinger equation (48b) is a consequence of 
Eq. (48a). 

The fact that in the classical caSe we were able to effec
tively eliminate the coordinate e + has as a counterpart here 
the fact that Eq. (48a) has the general solution 

tP = e- (),Qlm¢(x, e, t). 
Substituting (49) into (48a) we obtain 

e + (Po + R) ¢ = 0, 
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(49) 

(50) 

which is satisfied in terms of the Schrooinger equation for ¢ 
obtained from (48b). 

The solution (49) suggests that the coordinate e + can 
be interpreted as a kind offermionic t~e whose dynamics is 
governed by the evolution operator Q.16 In this sense, the 
description of the system in terms of tP or ¢ is like going from 
the Schrodinger to the Heisenberg picture with respect to 
this fermionic time. To carry the analogy further we can shift 
the e + independent operators a to their Heisenberg picture 
expression by means of the unitary transformation 

(51) 

This expression is the quantum mechanical analog of the 
classical variables, invariant under local supersymmetry,in
troduced in (44). It should be stressed that this supersym
metry is the one generated by 5 = n + + i( Q - iRO + ). Us
in~ the x.xplicit expression (51) it is possible to verify that 
tSA = [A, 11( 7)5] is indeed equal to zero for any bosonic for 
fermionic operator. 

The quantum analog of the description of the system in 
terms of the classical action given by Eqs. (45) and (46) for 
the n = 1 case corresponds to the use of a full Heisenberg 
representation for both the bosonic and fermionic times t 
and e +, respectively. The transition from the Schrooinger 
picture (tP (x, e, e +, t), a) to the Heisenberg picture (¢ (x, 
e), A (t, e + ) ) is achieved by means of the following unitary 
transformation: 

- t .::. t ¢(x, e) = V tP(x, e, t, e+), A(t, e+) = rav , (52) 

where 

(53) 

The wavefunction ~(x, e) describes the initial condition of 
the system at t = 0 and e + = 0 a,&d J"he arguments x, e are 
the eigenvalues of the operators X, 0 at this particular in
stant. TheJ!ynamical evolution is now fully contained in the 
operators A, which are the quantum analogs of the classical 
canonical variables A (t, e + ) introduced in Eq. (44). In par
ticular, the physical evolution with respect to the real time t 
is given by the Hamiltonian 

(54) 

!tv e~pl~i~ a.EPlication of Eq. (52), we c~n~ude that 
H = H~, P ~ 0). On the other hand, using [Q, H] = 0 we 
obtain H = H(x, p, e). In this way we have recovered in 

.::. "'-
quantum mechanics the form invariance of Hand H which 
we found previously at the classical level. 

The above exercise using a simple model with one super
charge shows that given a globally invariant supersymmetric 
theory [which means knowledge of the corresponding alge
bra (38) ] it is always possible to construct a locally invariant 
extension of it by taking the square root of the Schrodinger 
operator in the form given by Eq. (37). Nevertheless, both 
theories are in fact the same because the locally invariant 
extension turns out to be just a Heisenberg picture descrip
tion of the globally invariant original theory. This result can 
be easily extended to the general case of a system possessing 
n-global supersymmetry and any number of physical degrees 
of freedom. Again, the locally invariant extension is con-
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structed by adding 2n extra variables e + a' e _ a and defin
ing the generators of local supersymmetry as in Eq. (37). 
When quantizing the system, there will be one equation of 
the form (48a) for each of the n constraints and the Schro
dinger equation (48b) will be the square of anyone of them. 
The general solution of the n fermionic equations will again 
be of the form (49), with e + Q replaced by e + a Qa and <P 

depending on the original physical degrees offreedom only. 
The reason why this method works is that the graded algebra 
(38) implies [e + a Qa' e + b Qb] = 0 for fixed a and b with 
a=/b. Now, the local extension of the original theory will 
correspond to a Heisenberg picture defined by n fermionic 
times e +a' 

IV. CONCLUSIONS 

We have presented a systematic way to construct non
relativistic systems having bosonic and fermionic degrees of 
freedom (x, p, 9) that are invariant under local supersym
metry transformations. This is achieved by reformulating 
the original bosonic problem in terms of a gauge-type action 
that is invariant under time reparametrizations, in analogy 
with the relativistic point particle. The associated constraint 
is the Schrodinger operator. Subsequently, and according to 
Refs. 9 and 10, local supersymmetry is introducted by con
structing the corresponding generators Y a as square roots 
of the Schrodinger constraint in the sense of satisfying the 
graded algebra of first-class constraints given in Eq. (36). 
These generators are obtained as the nonrelativistic limit of 
the Dirac operator and hence local supersymmetry is under
stood as the nonintemal gauge symmetry associated with 
these fermionic contraints. Consequently, the fermionic 
phase space also had to be enlarged by adding the variables 
e + a and e _ a for each supersymmetry generator Y a con
sidered, in complete analogy with the bosonic situation. 

The basic structure underlying local supersymmetry is 
understood from the analysis of the free nonrelativistic spin
ning particle. An important point that arises from the nonin
teracting situation is that a reparametrization-invariant de
scription of nonrelativistic systems is correctly achieved 
only in terms of a velocity t, according to Eq. (1), for exam
ple, instead of a coordinate e, as sometimes done in the litera
ture. 

The construction is extended to include interactions by 
redefining the constraints Y a [cf. Eq. (37)] via the intro
duction of the supercharges Qa, which are assumed to de
pend upon the physical degrees offreedom only. The closure 
of the graded algebra of first-class constraints d¥, Y a then 
requires that the physical Hamiltonian H and the super
charges Qa satisfy the graded algebra of standard SSQM. 
This algebra is the usual starting point for discussing global 
supersymmetry and in our approach is recovered from the 
locally invariant formulation. 

In particular, the local supersymmetric version of the 
Witten model is analyzed [cf. Eq. (41)] in order to better 
elucidate the relation between local and global supersym
metry. The basic idea is to identify the true degrees offree
dom of the model by rewriting the action in terms of canoni
cal variables invariant under local supersymmetry.14 After 
this is done, a first-order action corresponding precisely to 
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the global Witten model described by the physical Hamilto
nianH = (112i) (Q., QI) = (1I2i) (Q2' (2) is found. Be
sides, in terms of these new variables, the Hamiltonian H has 
the same functional form as the one appearing in the original 
constraint d¥. All reference to local supersymmetry is then 
lost and the extra variables introduced previously are com
pletely eliminated from the action. 

The above result is an indication that in the nonrelativis
tic case, any system invariant under local supersymmetry is 
equivalent to the corresponding globally invariant one con
structed by using gauge-invariant degrees offreedom. In or
der to test this idea at the quantum level we finally consid
ered the quantization of a simple model with the constraints 
d¥ and Y. In this case, the relation between the locally and 
globally invariant descriptions is achieved by means of a uni
tary transformation that can be interpreted as describing the 
passage from a Schrodinger to a Heisenberg picture defined 
with respect to the real time t, together with a fictitious fer
mionic time e +. The new operators in this Heisenberg pic
ture correspond to the canonical variables invariant under 
local supersymmetry introduced at the classical level. Natu
rally, the form invariance of the respective Hamiltonians is a 
direct consequence of the unitary transformation involved. 
This argument was generalized to arbitrary global systems 
and no inconsistencies, as previously reported,6 were found. 

The general point of view taken in this article starts with 
the well-known assertion that any bosonic Lagrangian theo
ry can be written in a parametrized form, for instance, intro
ducing an extra time parameter 1', as is done here, or the 
extra space-time coordinates 1', d. The resulting theory nat
urally possesses a gauge invariance corresponding to the 
group of reparametrizations and, therefore, has a set of first
class constraints satisfying a closed algebra. The results ob
tained in the case of SSQM discussed in this article suggest 
that the square root of such constraints will give rise to a 
local supersymmetric theory that is merely equivalent to a 
globally invariant theory. The passage from the local to the 
global theory could then be obtained by deparametrizing the 
former (e.g., setting t = 1', e + = 0). This deparametrization 
cannot be achieved by a gauge transformation (it is not a 
gauge choice) and corresponds to a canonical transforma
tion to gauge invariant (physical) coordinates in phase 
space. In quantum mechanics this transformation is seen to 
correspond to a unitary transformation, which can be inter
preted as the change from a Schrodinger to a Heisenberg 
picture in some fermionic time. 

Clearly, local and global supersymmetry give rise to dif
ferent dynamical systems if the former theory cannot be de
parametrized. This happens, for instance, when the param
eters are coordinates on a manifold with dynamics of its own, 
i.e., strings, membranes, gravity, etc. This explains why in 
the case of a point particle the two theories are equivalent: 
The world line of the particle is flat and can sustain no geo
metrodynamics. 
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Kac distinguished between typical and atypical finite-dimensional irreducible representations 
of the Lie superalgebras sl(m/n) and provided an explicit character formula appropriate to all 
the typical representations. Here, the range of validity of some character formulas for atypical 
representations that have been proposed are discussed. Several of them are of the Kac-Weyl 
type, but then it is proved that all formulas of this type fail to correctly give the character of 
one particular atypical representation of sl( 3/4). Having ruled out, therefore, all such 
formulas, a completely new extension of the Kac-Weyl character formula is proposed. The 
validity of this formula in the case of all covariant tensor irreducible representations is proved, 
and some evidence in support of the conjecture that it covers all irreducible representations of 
sl(m/n) is presented. 

I. INTRODUCTION 

Lie superalgebras and their representations play an im
portant role in the understanding and exploitation of super
symmetry in physical systems. An early review of their use 
was given by Corwin et a/. I Since then, the Lie superalgebras 
ofthe type under consideration here, namely sl(m/n), have 
found applications, for example, in quantum mechanics,2 

nuclear physics,3 particle physics,4 and string theory.5 
A complete classification of the finite-dimensional sim

ple Lie superalgebras over C has been given by Kac6-8 and by 
Scheunert et al.9

.10 Kac showed that the subclass of these 
with a nondegenerate bilinear form, called basic classical Lie 
superalgebras, are closely analogous to the finite-dimension
al complex simple Lie algebras. In particular, they can be 
constructed from a (super)Cartan matrix or, equivalently, 
from a Kac-Dynkin diagram. 7. I I However, unlike the Lie 
algebra case the Kac-Dynkin diagram of a given Lie super
algebra is not unique, but depends on the choice of a particu
lar Borel subalgebra. 

In his seminal paper l2 on the representations of the ba
sic classical Lie superalgebras Kac proved that all inequiva
lent finite-dimensional complex irreducible representations 
may be labelled by means of Kac-Dynkin labels that serve to 
specify the highest weight A, of the corresponding irreouci
ble module, V(A). In the case of sl(m/n), choosing what 
Kac called the distinguished Borel subalgebra, these labels 

[a l ,a2 ,oo.,am _ I ;am;am + I ,oo.,am + n - I] 

are such that ai EN = {O, 1,2,oo.} for i =l=m and am E C. 

aJ Aangesteld Navorser N.F.W.O. (National Fund for Scientific Research 
of Belgium). 

For any complex reductive Lie algebra, Go, each finite
dimensional irreducible module over C has a weight struc
ture that is completely determined by the Weyl character 
formula 13 

ch VO(A) = L 0- 1 L E(w)ew(I\+Po>, (1.1 ) 
WE W 

where Vo( A) is the irreducible module of highest weight A, 
W is the Weyl group of Go, Po is half the sum of the positive 
roots !:J..o+ of Go, and 

L o = II (ea / 2 - e - a/2) . ( 1.2) 
aEll.o+ 

Kac12
•
14 showed that the irreducible finite-dimensional 

modules of a basic classical Lie superalgebra G = Go E9 Or 
fall into two classes, referred to as typical and atypical. For 
G = sl(m/n), the irreducible module V(A) of highest 
weight A is said to be typical if and only if 

(A + pl/3) =1=0, for all /3 E !:J.. I+, (1.3) 

where (.I.) is a nondegenerate bilinear form, and P = Po 
- PI' with Po and PI half the sums of the even and odd 

positive roots !:J..o+ and !:J.. I+, respectively, ofsl(m/n). Con
versely, if 

(A + pl/3) = 0, for any /3 E !:J..t, (1.4) 

the module is said to be atypical. 
The weight structure of a typical module V(A) is com

pletely determined by the Kac character formula: 12
•
14 

LI ch V(A) =- L E(w)ew(A+p), 
L o WE W 

( 1.5) 
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where Lo and Ware defined as above for Go 
= sl(m) Ell C Ell sl(n), and 

LI = II (eP12 + e- f3l2
). 

/3Ed,+ 

( 1.6) 

For atypical modules, for which necessarily am E Z, the 
situation is far from clear and no such classification of the set 
of weights in terms of character formulas has been given so 
far, although many partial results have been obtained. In the 
case ofsl(mln) the application offormula (1.5) to the case 
of an atypical module with highest weight A does not give 
the character of that irreducible module, but instead gives 
the character of a reducible indecomposable module, V( A), 
with highest weight A, which we shall refer to as the Kac 
module. This Kac module possesses a unique maximal prop
er submodule M such that the irreducible module V( A) is 
the quotient V( A) 1M. In this paper we are not concerned 
with the explicit construction of the modules VeAl but only 
with their character formulas that determine and are deter
mined by their weight structure. Nonetheless we exploit cer
tain general properties of the underlying modules that have 
been established through a variety of approaches. 

Progress has been made in understanding the properties 
of atypical modules of sl(mln) through the use of a rich 
variety of methods: the decomposition of tensor powers us
ing a graded version of the symmetric group action;IS-17 the 
use of power sum supersymmetric functions; 18 the exploita
tion of Young diagrams and supertableaux;19-2s the explicit 
determination of the action of the superalgebra on weight 
vectors;26-29 the consideration of induced modules and the 
identification of submodules by various means.30--38 To date, 
however, these methods have not provided character formu
las for all atypical modules of sl (min), except in such special 
cases as sl(2Il),26 sI(3/1),28 sl(3/2),23 or 
sl(mll ).21,29-31,37 

It is possible to express the characters ofsl(mln) mod
ules in terms of Schur functions, also known in the literature 
as S functions,39,40 This approach was followed by Berele 
and Regev l6 and Serge'ev l7 who derived a character for
mula, first given by Dondi and Jarvis, IS which is appropriate 
to all irreducible covariant tensor representations of 
sl(mln). 

The extension of this approach to the case of irreducible 
mixed tensor representations was thwarted by the fact that 
mixed tensor products give rise to reducible, but indecom
posable, representations. ls ,20--22 Interesting results were cer
tainly obtainedls,19-2s but the separation of the resulting 
characters into their irreducible constituents was not accom
plished in general. 

A number of quite different investigations3U
,JJ,41,42 have 

led independently to the consideration of character formulas 
of the Kac-Weyl type, by which we mean any formula of the 
type: 

ch VeAl =L o-
I I E(w)eW(A+po) II (1 +e- w(3), 

WE W /3Ed(A) 

( 1.7) 

where ll(A) is some subset of llt . This is a generalization of 
the formula ( 1. 5) due to Kac in the sense that ( 1. 5) may be 
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recovered from (1. 7) merely by setting II (A) = II t and 
exploiting the Weyl invariance of lll+ . This covers the case of 
all typical modules. 

In trying to accommodate atypical modules an impor
tant formula of the Kac-Weyl type (1.7) was reported by 
Bernstein and Leites. 30 This formula, which we refer to as 
the Leites formula, is given by (1.7) with 

(1.8 ) 

Whereas this formula is certainly correct for all typical mod
ules and a large number of atypical modules, it is not cor
receS,41-43 for some "low-lying" modules, i.e., modules for 
which A is close to the Weyl reflection planes. In particular, 
if n, m>2, it does not give correctly the trivial character of 
the identity module of sl( min) with highest weight A = O. 

On the other hand, if #{J3 E llt I (A + piP> = o} = 1, 
in which case we say that A is singly atypical, the Leites 
formula, (1.7) with (1.8), does give the correct character 
for V( A), as we have recently shown elsewhere44 byexploit
ing a technique outside the domain of the present article. 

Realizing the failure of the Leites formula in certain 
multiply atypical cases, for which 
#{J3 E llt I (A + piP) = o} > 1, new attempts were 
made3s,41,42 at obtaining a character formula with a wider 
range of validity, In particular, both Hughes and King41 and 
Serganova and Serge'ev42 found formulas ofthe Kac-Weyl 
type that yield the correct character in many cases where the 
Leites formula failed, including the identity module. One 
great merit of the Serganova-Serge'ev formula is that Pra
gacz4S has recently shown, by exploiting a characterization 
of supersymmetric polynomials,46 that this formula is equiv
alent to the S function formula of Berele and Regev l6 in the 
case of all covariant tensor representations. It is therefore 
valid in all these cases, whether or not they are typical, singly 
atypical, or multiply atypical. Unfortunately, for the sim
plest of all mixed tensor representations, namely the adjoint 
representation, the Serganova-Serge'ev formula42 fails if 
m,n>2. The Hughes-King formula41 has a similar defect for 
other cases. 

Bearing these successes and failures in mind we have 
explored more systematically all formulas of the Kac-Weyl 
type, arriving at yet another Kac-Weyl type formula that is 
identical to the Serganova-Serge'ev formula for these covar
iant tensor modules, but which differs from it for certain 
multiply atypical modules. It yields the correct character 
formula in very many cases, including the adjoint modules 
for which the Serganova-Serge'ev formula fails. 

Despite our new formula surviving many checks in 
cases where the characters are unambiguously known and a 
variety of self-consistency checks in others, the computer 
programs developed to carry out these checks eventually re
vealed an example of an irreducible module of sl (3/4) for 
which closer scrutiny seemed to be required. By means of 
further tests described here we were finally able to show that 
for this module no Kac-Weyl type formula, including our 
own generalization of the Serganova-Serge'ev formula, can 
yield the correct character. 

Faced with the failure of Kac-Weyl type formulas (1.7) 
to give the correct weight structure of all sl(mln) modules, 
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but having acquired a great deal of information concerning 
the cases for which breakdowns occur, we are forced to con
sider other types of formula. 

It is not difficult to see that the characters of all irreduci
ble modules may be expressed in terms of Kac characters, 
(1.5), even though the Kac modules are themselves reduc
ible in general. Moreover the Leites character formula, ( 1.7) 
with ( 1.8), can be re-expressed as an infinite alternating sum 
of Kac characters. This has led us to conjecture the validity 
of what we call an extended Kac-Weyl character formula. 
This also involves an infinite sum of Kac characters, but in 
certain critical cases all terms corresponding to weights be
yond certain truncation planes in the weight space, and 
which are included in the Leites formula, are excluded. 
These truncation planes are uniquely determined, for each 
highest weight module V( A), as symmetry planes under the 
so-called "dot" action of particular elements of the Weyl 
group that connect the various atypical roots. For singly 
atypical modules, no truncation planes exist and so the ex
tended formula is identical with the Leites formula, which as 
we have already mentioned, is correct for all these cases. 

In the case of irreducible covariant tensor modules, 
whether they be typical, singly or multiply atypical, we 
prove in this paper that the extended formula gives the same 
character as the Berele-Regev formula, and so it is correct 
for these modules. For the other multiply atypical modules, 
we have no proof that the extended formula is correct. How
ever, using Pascal programs, we have tested it out on a large 
number of modules and have found no counterexamples, 
even amongst those modules for which all the Kac-Weyl 
type formulas discussed above fail. We therefore conjecture 
that the extended Kac-Weyl formula is indeed the correct 
character formula for all irreducible sl(m/n) modules. 

The structure of the paper is as follows: In Sec. II the Lie 
superalgebra sl(m/n) is introduced, and in Sec. III we give 
some general definitions concerning modules and char
acters. In Sec. IV the important construct known as the atyp
icality matrix is defined for sl(m/n) and used to determine 
two generating matrices whose specification allow us to 
write down the two Kac-Weyl type character formulas: Xs, 
due to Serganova and Serge'ev, and XJ' our own. Their rela
tionships to other formulas are discussed and their ranges of 
validity are described, and we discuss in detail our counter
example to all possible formulas of the Kac-Weyl type. In 
Sec. V we restrict attention to covariant tensor irreducible 
representations and discuss the equivalence of the X s for
mula and the Berele-Regev formula. 

Section VI is concerned with singly atypical modules: In 
particular we show that for such modules the Leites formula 
follows from a simple proposition, Proposition 6.8, concern
ing primitive weight vectors of the Kac module, V(A), 
whose validity is proved elsewhere.44 The connection is 
made with one particular supertableaux method34 and it is 
shown that each character defined by the Leites formula can 
be written as a sum of Weyl conjugates of the character of an 
induced module. 

The above-mentioned extended Kac-Weyl formula is 
then introduced for doubly atypical representations in Sec. 
VII, Definition 7.19, and for multiply atypical representa-
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tions in Sec. VIII, Definition 8.11. We show how the applica
tion of this extended formula to the identity module gives 
rise to Cauchy'S identity. We also prove the validity of the 
extended formula, X Tt in the case of all covariant tensor rep
resentations ofsl(m/n), and in Sec. IX summarize the evi
dence in favor of the validity of our Conjecture 8.14 for the 
characters of all irreducible modules of sl( m/ n). 

ll. NOTATION AND CONVENTIONS 

A complex Lie superalgebra G is a Z2 -graded linear vec
tor space, G = Go e Glover C with a bracket [ , ] such that 
VaeGa , VbeGp , VeeG,and Va,{3e Z2: 

[a,b] e Ga + p , 

[a,b] = - ( - 1)ap [b,a], 

[a,[b,e)) = [[a,b ],e] + (-l)aP[b,[a,e)). (2.1) 

The simplest example is given by gl(m/n)7.lo with 
m,n e N. Its natural matrix realization takes the form: 

gl(m/n) = {x = (~ ~):A EMmxm,BeMmxn' 

CeMnxm,DeMnxn} , (2.2) 

where Mpx q is the set of all p X q complex matrices. The even 
subspace gl(m/n)o has B = 0 and C = 0; the odd subspace 
gl(m/nh has A = 0 and D = O. Note that 
gl(m/n)o = gl(m) e gl(n). In thecaseofG = gl(m/n), the 
bracket is determined in the natural matrix representation 
by 

[a,b] = ab - ( - 1 )aPba, Va eGa and Vb e Gp , 

(2.3) 

where on the right-hand side, juxtaposition denotes matrix 
multiplication. 

Ifwe denote by gl(m/n) + I the space spanned by matri
ces (g g) and by gl(m/n) _ I the space of matrices (~ g), 
then G = gl(m/n) has aZ grading that is consistent with the 
Z2 grading: 

G = G _ I e Go e G + I' Go = Go, 

and 

~ = G _ leG + I • (2.4 ) 

With the definition of supertraee l
•
7

•
10 as str(x) 

= tr(A) - tr(D) one can define the subalgebra sl(m/n): 

sl(m/n) = {x e gl(m/n): str(x) = O}. (2.5) 

If m =I- n then sl ( m/ n ) is the simple Lie superalgebra 
A (m - 1,n - 1), otherwise it contains a one-dimensional 
ideal CI2m and thenA(m - I,m - 1) = sl(m/m)/C. 

A Cartan subalgebra of gl( m/ n) is given by the vector 
space b of diagonal matrices and has dimension m + n. The 
restriction to sl(m/n) requires the supertrace condition to 
be satisfied. Hence the Cartan subalgebra f) ofsl(m/n) has 
dimension m + n - 1 and is spanned by 

Hi =Eii -Ei +1•i +1 , I<J<m, 

Hm+o =Em+a.m+a -Em+o+l.m+o+I' l<a<n, 
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where Eij is the matrix with entry 1 at position (iJ) and 0 
elsewhere. For m = n the Hi inA (m - I,m - 1) satisfy the 
extra relation 

m m 

L iH; - L (m-a)Hm+a =0. (2.7) 
;= I a= I 

The Lie superalgebra sl(m/n) (m:f:n) contains the special 
element 

n m. m n 
c=-- L IH; --- L (n-a)Hm+ a, 

n-m ;=1 n-m a=1 
(2.8) 

which is a central element in sl(m/n)(j = sl(m) E9 C E9 sl(n). 
In particular, with the 1. grading (2.4) we have the proper
tylO 

[c,x] = kx, for x E Gk (k E 1.). (2.9) 

The dual space f)* is described in the basis of forms E; 

(i = 1, ... ,m) and tJa (a = 1, ... ,n), where E;: x-+aij and 

tJa: x-+daa . Then the roots and corresponding root vectors 
ofsl(mln) are given byl2 

E; - Ej~Eij (I <.iJ<.m) (even), 

tJa -tJb~Em+a,m+b (I <.a,b<.n) (even), 

E; -tJa~E;.m+a (I <.i<.m, 1 <.a<.n) (odd), 

- Ei + tJa~Em+a,i (1 <.a<.n, 1 <.i<.m) (odd). 
(2.10) 

We denote by 1:1 the set of all roots, by 1:10 the set of even 
roots, by 1:11 the set of odd roots, and by e ( a) the root vector 
corresponding to the root a E 1:1. Then G has the root space 
decomposition 

G=f)E9(E9Ce(a»). (2.11) 
aEli 

There are several choices for a basis of simple roots for 1:1. 

Here we shall take the following distinguished basis 12 as the 
simple root system II = {al ,a2 , ... ,am + n _ I}: 

0--0-" '-®--O-' ··--0----0; 
(2.12) 

then the even and odd positive roots are given by 

1:10+ = {Ei - E/1<;i <j<;m,tJa - tJb:1<;a <b<;n}, 

and 

I:1t = {Ei - tJa:1<;i<.m,1<;a<;n}, (2.13) 

respectively. It will be convenient to denote the odd positive 
roots by 

Pia = Ei - tJa (l<.i<;m;l<;a<.n). 

Ifwe put 

n± = span{e(a)laE 1:1±}, 

(2.14 ) 

(2.15) 

then the root space decomposition (2.11) implies that 

(2.16) 

where n - and n + are nilpotent subalgebras. As usual, 

B = f) E9 n + ( 2.17) 

is called a Borel subalgebra. 
The invariant nondegenerate inner product on G is giv

en by (xly) = str(xy). The restriction of this to f) is also 
nondegenerate and therefore for a E f)* there is a corre
sponding element ha E f) defined by 

(h Ih a ) =a(h)h a , VhEf). (2.18) 

This induces a nondegenerate inner product on f)*: 

(2.19) 

The inner product for the weight space of gl( m/n) is expli
citly determined by 

(EiI E) =tJij' (EiltJa) =0, (8a ltJb) = -8ab . 
(2.20) 

An element A E f)* with A = ~iILiEi + ~a vatJa can be writ
ten in terms of its components in this EtJ basis as 
A = (ILJ!.J'2·· 'ILm IVI V2" ·vn ). If G = sl(m/n) with m:f:n 
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then these components satisfy the extra condition 
~iILi + ~a Va = 0, while if G = A(m - I,m - 1) then both 
~iILi = 0 and ~a Va = O. 

With the choice of the distinguished Borel subalgebra of 
sl(m/n) implicit in (2,12), the element A E f)* may be writ
ten in terms of Kac-Dynkin labels as A = [a l a2 

. "am_l;am;am+ I" 'am+ n _ I ], wherea i = A(Hi ) for l<;i 
<;m + n - V,12 To be explicit: 

ai = ILi - ILi+ I (l<.i <m), 

am=ILm+vI' (2.21) 

am+ b = Vb - Vb+ I (l<;b<n). 

If m = nand G = A(m - I,m - 1), it follows from (2.7) 
that 

a l + 2a2 + 3a3 + ... + mam - (m - 1 )am + I 

- (m-2)am+ 2 -'" -a2m _ 1 =0. (2.22) 

The level of an element A E f)* is defined for sl(m/n) 
(m:f:n) by 

level(A) = ACc), (2.23 ) 
where c is the element (2.8). Hence 

n m m n 
'level(A) =-- L ILi +-- L Vb' (2.24) 

n-m i=1 n-m b=1 

For sl (m/ m) (2.24) is not appropriate as it stands, but since 
~iILi + ~b Vb = 0 we can define the level by 

m 

level(A) = L ILi' (2.25) 
;=1 

There is a partial ordering for the elements of f)*: for 
A,A' E f)* we say 

A>A'<;:}A - A' = L taa, with every ta >0. 
aEd+ 

(2.26) 
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The Weyl group of G (= gl(mln) or sl(mln) or 
A(m - I,m - I» is by definition the Weyl group Wof Go. 
Hence W is the direct product of the Weyl group of sl (m) 
with the Weyl group of sl (n), or to be explicit, W = S m X S n' 

where Sp denotes the symmetric group of order p!. There are 
two distinctly defined actions of Won A E q*. First, the di
rect action indicated by juxtaposition. For A E q* with com
ponents (f.l, ,f.l2, ... ,f.lm lv, ,v2,···,vn), an element W = UX 7 

E W = Sm XSn acts on A to give wA by permuting the com
ponents of A so thatf.l; ~f.la(i) and Vb ~VT(b)' The signature 
E( w) of w is the product of the signatures of u and 7, and 
takes the values ± 1. Second, the "dot" action whereby 

w'A=w(A+p) -p, where P=Po -PI' (2.27) 

with 

I I 
Po =- L a, and p, =-2 L (J. 

2 aE!>.o+ /JE!>.t 

(2.28) 

For simple Lie algebras, all simple root systems are W 
equivalent [i.e., if IT, and IT2 are two simple root systems, 
then there exists aWE W such that Il2 = w( Il, )]. Note that 
for Lie superalgebras in general, and for sl(mln) in particu
lar, this is not the case. A different choice of simple roots is in 
general not Wequivalent to the distinguished choice made 
here. As a consequence, another Borel subalgebra is in gen
eral not Wequivalent to (2.17). For the distinguished 
choice'2 corresponding to (2.12) and (2.13) we have 

I mIn 
Po = - L (m - 2i + I )E; + - L (n - 2a + 1)0b 

2;=, 2 b =, 

and 

(2.29) 

It is to be noted that at is invariant under the action of W 
for the distinguished choice of Borel subalgebra, so that for 
all WE W 

WPI =p" 
and consequently 

w'A=w(A+p) -p=w(A+po) -Po' 

III. REPRESENTATIONS AND CHARACTERS 

(2.30) 

(2.31) 

Let V = Vo ffi Vi be a :l2 -graded linear vector space over 
C, and denote by gl (V) the space of endomorphisms of V. 
Then gl( V) is naturally graded: gl( V) = gl( V)O ffi gl( V),. 
A representation ifJ is a linear mapping from G to gl ( V) such 
that: 

ifJ: x~ifJ(x), with ifJ(x) Egl(V)a for xEGa, 

ifJ([x,y)) = ifJ(x)ifJ(y) - ( - l)a/JifJ(Y)ifJ(x), (3.1) 

Vx E Gaand Vy E G/J' 
In this case V is a G module with the action of G defined by 
gv = ifJ(g) v for g E G and v E V. If Vis a G module, then Vis 
naturally a U (G) module, where U (G) denotes the univer
sal enveloping algebra of G. 

A module V is called a highest-weight module if it con
tains a vector v A such that 

2282 

n+vA =0, hVA =A(h)vA VhEq, V=U(G)vA. 
(3.2) 
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Then v A is called a highest weight vector and A is the highest 
weight. Such modules have a weight space decomposition: 

V= ffi V,.., 
I' < A 

where 

V,.. = {v E V:hv = f.l(h)v, Vh E q} 

is called the weight space of weight f.l. 

(3.3 ) 

(3.4 ) 

Restricting ourselves to G = sl(mln) with Go 
= sl(m) ffi C ffi sl(n) it is convenient to distinguish between 

various types of weight A E q*. 
Definition 3.5: The weight A = [a, a2 " 'am _,; 

am;am +, .. 'am + n-' ] with a; = A(H;) E C is said to be ad
missible if a; E:l for i=/=m and am E C; dominant if a; EN for 
i =/= m and am E C; integral if a; E 1: for all i; and integral domi
nant if a; E N for i=/=m and am E 1:. 

Let A be dominant. From the theory of reductive Lie 
algebras it follows that there exists a unique finite-dimen
sional irreducible Go module VO(A) with highest weight A. 
Putting G +, VO(A) = 0, this becomes a Go ffi G +, module. 
The Kac module V(A) is defined as the induced module:'2 

V(A) = Indgoa>G+ I VO(A) ~ U(G _,) ® VO(A). (3.6) 

But [x,y] = 0 for x,y E G _ " so U ( G _ , ) ~ A ( G _ , ), the 
exterior algebra over G _ , . Since dim ( G _ , ) = mn, the di
mension ofU( G _ , ) is 2mn, and thus V(A) is a finite-dimen
sional G module of dimension 2mn Xdim(Vo(A». Unfortu
nately, V(A) is not always an irreducible module. In 
general, V(A) contains proper submodules. If M is the 
unique maximal submodule ofV(A) such that M =/=V(A), 
then the quotient module 

V(A) = V(A)IM (3.7) 

is a finite-dimensional irreducible G module. Kac proved 
further the following result: '2 

Theorem 3.8: Every finite-dimensional irreducible G 
module is isomorphic to a module of the type 
V(A) = V(A)IM, where A is dominant, V(A) is the corre
sponding Kac module and M =/= V( A) is the maximal sub
module of V( A). Moreover, every finite-dimensional irredu
cible G module is uniquely characterized by its dominant 
highest weight A. 

In what follows it is crucial to subdivide the class of 
dominant weights by means of 

Definition 3.9: If A is a dominant weight of G then A is 
said to be typical if (A + p I(J ) =/= 0 for all (J Eat; atypical if 
there exists (J E a ,+ such that (A + pl(J) = 0; atypical oJ 
type(Jif (A + pl(J) = o with (J Eat ;andatypicaloJdegree 
d if #{(JE a,+ :(A + pl(J) = O} = d with d> O. 

This definition is involved in Kac's theorem '2 regarding 
the conditions for V( A) to be irreducible. 

Theorem 3.10: Let A be a dominant weight of G. The 
Kac module V( A) is an irreducible G module if and only if 
its highest weight A is typical, that is, 

(A +pl(J) =/=0, V(JEa,+. (3.10) 

In this case, we call V( A) = V( A) a typical module, other
wise V( A) =/= V( A) is called an atypical module. 

The character ch V of a G module V with weight space 
decomposition (3.3) is defined as 

Van der Jeugt et al. 2282 



                                                                                                                                    

ch V = L dime VJt )e", (3.11 ) 

where the summation is over all J.l E lj* for which VJt =1= 0 and 
e" is the formal exponential. 

The action ofthe Weyl group on such formal exponen
tials is defined by w(e") = ewJt. Let 

and 

L o = II (ea /2 - e - aI2), 

aeAo+ 

LI = II (eP I2 + e-/3I2
). 

fJE.1t 
(3.12) 

From (3.5) it follows that the Kac module has character 

ch V(A) = II (1 + e-fJ)ch VO(A), 
fJ E.1t 

(3.13 ) 

wherech VO(A) is given by Weyl's character formula (1.1): 

ch VO(A) =L o-
1 L €(w)eW(A+po). (3.14 ) 

WE W 

From the definitions (2.28) and (3.12) and the Weyl invar
iance of PI in our distinguished basis, we have 

II (1+e-fJ)=Lle-P'=Lle-wp" VWEW, 
fJ E.1t 

(3.15 ) 

from which we obtain Kac's character formula: 

ch V(A) =!2. L €(w)ew(A+p). 
Lo WE W 

(3.16) 

Thanks to Kac's Theorem 3.10 this formula gives the char
acter of each typical irreducible module V( A) = V( A). 

Again, in our distinguished basis, w( Il t ) = Il t for all 
WE W, so that w(L I ) = LI ,and hence (3.16) can berewrit
ten as41 

ch V(A) = L 0-
1 L €(w)w{e

A 
+Po II (1 + e -fJ)} . 

WE W fJE.1t 
(3.17) 

This formula indicates that since A is dominant, all weights 
of V(A) are admissible in the sense of Definition 3.5. By 
virtue of Kac's Theorem 3.8 the same is true of all weights of 
any finite-dimensional irreducible module. For any admissi
ble A E f)* we define the formal expression 

XK(A)=L o-
1 L €(w)w{e

A
+ Po II (1+e- fJ )}, 

WE W fJE.1,+ 

(3.18 ) 

which we refer to as the Kac-character formula. 
Kac having evaluated the characters of typical mod

ules,12,14 one of the most interesting problems remaining in 
Lie superalgebra theory is the determination of characters of 
atypical modules, Although the characters of atypical mod
ules ofsl(mln) have been the subject of several studies, the 
problem of determining such characters has not yet been 
completely solved. The general ansatz used in various at
tempts to do so has been a formula of the Kac-Weyl type 
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Xx(A)=L o-
1 L €(w)w{e

A
+ Po II o+e- fJ)}, 

WE W fJE .1x(A) 

(3.19) 

where Ilx (A) kilt and the subscript X is used to distin
guish between a number of character formulas of this type. 
They are distinct by virtue of the fact that the prescription 
necessary to determine Ilx (A) for a given weight A varies 
from one formula to another. Clearly every such prescrip
tion should yield Ilx (A) = Il I+ when applied to a typical 
highest weight A. We would justify calling (3.19) a formula 
of the Kac-Weyl type by noting that if we set ilK (A) = Il I+ 

then XK(A) is the Kac character (3.18), whilst if we set 
Ilw(A) = 0 then 

Xw(A) = L 0- I L €(w)eW(A +Po) (3.20) 
WE w 

is the formal expression, for any admissible A E f)*, which 
coincides with the Weyl character (3.14) if A is dominant. 

Bernstein and Leites published30 another formula, 
XL (A), of the Kac-Weyl type (3.19), with 

ilL (A) = {B E Ilt :(A + pl/3) 7'=0}, (3.21) 

so that 

xd A ) = L O-
I L €(w) 

WE W 

xw{eA
+

PO II (l+e- fJ )}. 
fJE.1t" ,(A +plfJ)#O 

(3.22) 

This is one natural generalization of the character formula 
appropriate to typical modules. Unfortunately, it does not 
always yield the character of V(A) when A is atypical. In the 
next section we shall discuss the range of validity of X L (A) 

and other character formulas of the Kac-Weyl type (3.19). 
One great merit of (3.19) is that the expression of this 

character ofsl(mln) as a linear combination ofWeyl char
acters (3.14) of irreducible Go modules is a simple two-stage 
operation since the expansion of (3.19) immediately gives 

(3.23) 
Jt 

where p x is the partition function defined in such a way that 
p x (A - J.l) is the number of ways of writing A - J.l in the 
form 

A - J.l = L k fJ/3, with kfJ E {O,!}, (3.24) 
fJE .1x (A) 

and, by virtue of (2.31), the relationship between formal 
Weyl characters (3.20) and characters (3.14) of irreducible 
Go modules is such that 

if W·J.l is dominant 

for some WE W, 
if W' J.l = J.l for some 

WE Wwith €(w) = - 1. 

(3.25) 
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IV. CHARACTER FORMULAS OF THE KAC-WEYL TYPE 

In this section we shall introduce a number of character 
formulas of the Kac-Weyl type (3.19) that each serve to 
give correctly the characters of certain finite-dimensional 
irreducible modules V( A) of sl (min) for particular highest 
weights A. In doing so we shall give some indication of their 
range of validity. Unfortunately, we shall also show quite 
explicitly that no single formula of this type can correctly 
give the character of all finite-dimensional irreducible mod
ules. 

The key combinatorial tool in the study of character 
formulas of the Kac-Weyl type is the atypicality matrix: 

Definition 4.1: Let A be an element of g* Csl(mln). 
Then the atypicality matrix A A is the m X n matrix 
AA = (A(A)ij) with 

A(A)ij = (A + p!fJij)' 1 <J<m and 1<J<n, (4.la) 

so that in terms of the Kac-Dynkin labels: 
m-I j-I 

A(A)ij= L ar+am - Lam+s+m-i-j+l, 
r=i s= 1 

( 4.lb) 

or equivalently in terms of the d) components of A: 

A(A)ij = J-li + Vj + m - i - j + I, I<i<m and 1 <J<n. 
(4.lc) 

The following properties are an immediate consequence 
of this definition: from (4.1 a), 

A(w'A)ij = A (A)a(i)1"(j), (4.2a) 

where w'A=w(A+p)-p and WEW=SmXSn with 
w- I = uxr, from (4.lb), 

A(A)ij -A(A)i+IJ =ai + I, I<i<m 

A(A)ml = am' 

A(A)ij -A(A)iJ+I =am+j + I, 1<J<n; 

from (4.lc), 

A(A)ij + A(A)kl = A(A)i/ + A(A)jk' 

(4.2b) 

(4.2c) 

with (io Jo) = (iJ). The upper sequence proceeds upwards a 
row at a time with column jumps to the right determined by 
the Kac-Dynkin labelsa i _ I' ai _ 2"'" a j _ p' To be explicit, it 
is defined by 

Uij = (iJ) --+ (i - IJ + a j _ I) --+ (i - 2J + a j _ 1 + a j _ 2)--+ 

"'--+(i-tJ + ± a j _ r)--+ 
r= 1 

" • --+ (i - pJ + ± a j _ r) . 
r= 1 

( 4.4b) 

Similarly, the lower sequence proceeds to the right a column 
at a time with upward row jumps determined by the Kac
Dynkin labels am + j' am + j + 1 '''., am + j + q _ 1 • It is defined by 
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It should be noted that (4.2b) impliesA A =A~ ifand 
only if A = ~. Moreover, by virtue of our previous defini
tions (3.5) and (3.9): 

A is dominant qA(A)ij - A(A)i+ IJ - 1 EN, 

I<i<m, l<J<n, 

A(A)ml E C, 

A(A)ij - A(A)iJ+ 1 - 1 EN, 

I<i<m, l<J<n, (4.3b) 

A is integral dominant qA is integral and dominant, 
(4.3c) 

A is typical qA is dominant and A(A)ij #0 for 

I<i<m and l<J<n, 

A is atypical of type fJ = fJ ij = Ei - OJ 

(4.3d) 

qA is dominant andA(A)ij = 0, 

(4.3e) 

A is atypical of degree d qA is dominant and d> 0, 

where d = #{A(A)ij:A(A)ij = 0, l<i<m and 1 <J<n}. 

( 4.3f) 

In what follows we are concerned with the study only of 
finite-dimensional irreducible modules for which the highest 
weight A is integral dominant, so that all atypicality matri
ces have integer elements. By virtue of the above conditions 
this includes all atypical modules. From the atypicality ma
trices we first construct certain sequences of elements. 

Definition 4.4: If A (A) ij = ° for given integral domi
nant A, we define the upper and lower sequences through 
(iJ) as sequences, Uij andLij' of matrix positions given sche
matically by 

( 4.4a) 

Lij = (iJ) --+ (i - am + jJ + 1) 

--+ (i - am + j - am + H 1 J + 2) 
t 

--+'''--+(i- L am+Hr_1J+t)--+ 
r= 1 

q 

"'--+(i- L am+Hr-1J+q)· (4.4c) 
r= 1 

The sequences are constrained by the following conditions: 

1 <it <m and 1 <Jt <n, for - q<t<p, (4.5a) 
s t 

L am + j + r _ 1 <t with s= L a i _ r , 

r=1 r=1 

for t = 1,2,,,.,q (4.5b) 
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and 
s t 

L ai_r<twith s= L am + j + r - 1 , 
r=1 r=1 

for t = 1, ... ,p. (4.5c) 

The values of p and q are the maximum values consistent 
with these constraints (4.5). 

The set of all matrix positions on the upper and lower 
sequences through (io jo ) is denoted by S" (io jo ). For given 
A the number of upper and lower sequences is equal to the 
degree of atypicality of A. It is convenient to denote the set of 
positions of the zeros of the atypicality matrix by Z" and the 
set of positions through which either an upper or a lower 
sequence passes by S". Thus 

and 

Z" = {(ij):A(A)ij = a}, (4.6a) 

S" = {(ij):(ij) ES,,(iojo), 

with (iojo) E Z,,}. (4.6b) 

The first of the above conditions, (4. 5a), ensures that 
the sequences remain wholly within the m X n atypicality 
matrix and the last two, (4.5b) and (4.5c) ensure that the 
upper and lower sequences do not "cross or meet" in a 
graphical presentation, except of course at the position of 
atypicality (iojo) from which they emanate. Such a graphi
cal presentation of the sequences is given, for example, in the 
case A = [11;0;010] ofsl(3/4) by 

3 

-1 

-1 -3 
o o 

(4.7) 

The Dynkin labels a i alongside the matrix A", as in the 
above example, determine the column and row jumps of the 
upper and lower sequences. Those at the left describe the 
rightward jumps of the upper sequences, and those at the 
bottom describe the upward jumps ofthe lower sequences. 

The significance of these sequences is that they allow us 
to specify in a unified way a number of rival character formu
las ofthe Kac-Weyl type (3.19). This is most usefully done 
in terms of appropriate generating matrices. 

Definition 4.8: The generating matrix G x (A) associated 
with the Kac-Weyl character formula (3.19) is the mXn 
matrix with entries 0 or 1 defined by 

{
I, 

Gx(A)ij = 0, 
{3ij E ax(A), 

(4.8) 

With this definition it follows that the formal character 
( 3.19) can be re-expressed in the form 

Xx(A) =L O-
1 I €(w) 

2285 

WE W 

X w{ e" + Po iDl jDl (1 + Gx (A) ije - (:Iij) } • 

(4.9) 
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Formulas of this type have already appeared in the litera
ture. We have already cited the extreme cases: the Kac for
mula12 (3.18), XK(A), and the Weyl formula l3 (3.20), 
Xw(A). In addition there are three intermediate formulas: 
the Leites formula30 (3.22), XL (A), the Hughes-King for
mula,41 XH(A), and the Serganova-Serge'ev formula,42 
X s (A). This latter formula was also discovered indepen
dently by the present authors as part of this investigation, 
together with one new formula X J (A) that we propose here 
for the first time. These formulas are given in Table I by 
specifying for each formula the set of positions (ij) in the 
matrix Gx(A) such that Gx(A)ij = O. 

As in (4.6), Z" is the set of positions of the zeros of the 
atypicality matrix and S" is the set of positions through 
which there passes either an upper or a lower sequence. The 
distinction between the various formulas lies merely in the 
extent to which zeros of the generating matrix are associated 
with positions on the upper and lower sequences emanating 
from the positions in the set Z" . 

The characters have been arranged in such a way that 
the successive subsets of a t denoted by at \ a x ( A) are 
included in one another reading from top to bottom. It 
should be further pointed out that just as the set Z" is the set 
of positions of the zeros of the atypicality matrix A", so the 
set S" is precisely the set of positions of zeros of G s (A). It 
follows that the character X s (A) is generated by precisely 
those odd roots{3ij such that (ij) does not lie on any upper or 
lower sequence. 

In the case A = [11;0;010] of sl(3/4) for which the a
typicality matrix and the associated sequences have been giv
en in (4.7), we have the following generating matrices: 

GK(A) ~(: :)- GL(A) ~G 1 D-
GH(A) ~G 

0 
D- G,(A) ~G ~ D-

~). Gw(A) ~G ~ ~ ~) G,(A) ~G 
0 

0 0 

0 

(4.10) 

Of course in many other cases there are some coinci
dences between these six generating matrices. Moreover, 
even if the generating matrices differ, it is by no means the 

TABLE I. Intermediate formulas. 

'" {(ioJo) EZA } 

{(i,J,) E SA : (i,J, ) = (io, - tJo) O<:J<'p 
or (ioJo + t), O<.t<.q} 
{(i,J,) E SA: (i,J,) = t, - q<.t<.p} 
{(i,J,) ESA : -q<t<p} 
{{;J): l<i<m,l.;J<n} 
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case that the corresponding formal characters' are them
selves different. 

Let A be an integral dominant weight of sl (m/ n) and let 
V(A) be the irreducible finite-dimensional module of 
sl (m/ n) of highest weight A. Then we can state one theorem 
and two conjectures as follows: 

If A is typical then no zeros appear in the atypicality 
matrix and GK(A) = G.C:<A) = GH(A) = GJ(A) 
= G s (A). Hence by virtue of Kac's result, Theorem 3.10, 

we have the following theorem. 
Theorem 4.11: If A is typical then 

XK(A) =XL(A) =XH(A) =XJ(A) 

= Xs(A) = ch V(A). (4.11 ) 

Let A be atypical with A (A) ij = 0 for some particular 
(iJ). If the upper and lower sequences through (iJ) defined 
by ( 4.4 ) consist simply of the single matrix position 
(io Jo) = (iJ), and the same is true of all such upper and 
lower sequences, then we say that A is generic. It follows 
from the conditions (4.5) that A is generic provided that for 
each (iJ) E ZA we have both a i _ I > Oifi> 1 and am +j > Oif 
j < n. In such a case SA = ZA and consequently 
GdA) = GH(A) = GJ(A) = Gs(A). Our analysis of 
many specific cases of this type leads us to the following 
conjecture. 

Conjecture 4.12: If A is atypical but generic then 

XL (A) = XH(A) = XJ(A) = Xs(A) = ch V(A). 
( 4.12) 

Similarly if GJ (A) = Gs (A) we say that A is normal. 
Once again the analysis of many specific cases of this type 
leads us to a new conjecture. 

Conjecture 4.13: If A is atypical but normal then 

XJ(A) = Xs(A) = ch V(A). (4.13 ) 

Unfortunately, if A is atypical and abnormal in that 
GJ(A) =/=Gs(A) then our hoped-for third conjecture: 
X J (A) = ch V( A) for all A, turns out to be false in general, 
although true for very many particular cases. Moreover, our 
counterexample to this formula suffices to rule out the gen
eral validity of any formula of the Kac-Weyl type as we shall 
now explain. 

If A is atypical then, in the absence of any general proofs 
regarding the range of validity of the various formulas, it is 
necessary to carry out a case by case study of particular irre
ducible modules V( A) of sl (m/ n). This exercise is itself in
hibited by the absence of many cases for which the character 
is actually known. 

However a systematic study has revealed integral domi
nant weights A for which Xx (A) for some X does not give 
correctly the required character of the irreducible module 
V( A). First of all there are cases for which X x (A) is mani
festly not the character of any module by virtue of the fact 
that its expansion in terms of irreducible characters of the 
even subalgebra sl (m) EIlIC Ell sl (n) gives rise to negative mul
tiplicities. For XL (A) one such example is provided by the 
sI(3/5) highest weight A = [01;0;0002], while for XH(A) 
the same is true in the case of the sl( 4/5) highest weight 
A = [200;0;0001]. No such example has been found for ei
ther XJ(A) or Xs(A). 
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TABLE II. Examples of a breakdown of validity of our formulas. 

Xx(A) A for whichXx(A)#ch VeAl forsl(mln) 

h(A) 
XdA) 

XH(A) 

XJ(A) 

Xs(A) 

Xw(A) 

A = [0;0;00] forsl(2I3) 
A = [0;0;00] for sl( 213 ) 
A = [10;0;0 I] for sl( 3/3 ) 

A = [1l;0;01O] for sl(3/4) 

A = [10;0;001] forsl(3/4) 
A = [1;0;00] for sl(2I3) 

Second, there are other examples, as shown in Table II, 
where there is a clear breakdown of the validity of each of 
our formulas Xx (A) for some integral dominant A. 

Of these results, only that appropriate to X J (A) requires 
any comment since all the others depend on the very well
known characters of the identity representation, the defining 
representation or the adjoint representation with highest 
weights A = [0·· ·0;0;0·· ·0], [10·· ·0;0;0·· ·0], or 
[10· . ·0;0;0· . ·01], respectively. 

Throughout the remainder of this section we set 
G = sI(3/4) and A = [11;0;010]. The corresponding atypi
cality matrix is displayed in (4.7), from which it can be seen 
that A is doubly atypical of type ,8 31 and,8 14. The various 
generating matrices discussed so far are shown in (4.10). 
The first of these generates the Kac character X K ( A ). By 
virtue of (3.17) this is in turn equal to the character of the 
Kac module V(A) of the superalgebra G = sI(3/4). This 
character may be readily expanded in terms of characters of 
the even subalgebra Go = sl (3) EIlIC Ell sl ( 4 ) by making use of 
(3.22). Rather than give the complete expansion we content 
ourselves with noting that the level structure takes the form 

1 6 18 34 56 70 79 70 56 34 18 6 1. (4.14 ) 

These numbers indicate at each level the number, together 
with their multiplicity, of Go highest weights l:, each asso
ciated with an irreducible module Vo( l:) of Go that appears 
in the decomposition of the Kac module V( A) on restriction 
from G to Go. The level of l: relative to that of A is deter
mined by the number of positive odd roots which it is neces
sary to subtract from A to obtain l:. 

At the highest level there exists just one Go highest 
weight, namely A itself, which may be written in the form 
A=[11]EIl[0]EIl[01O] appropriate to Go =sl(3) 
EIlIC Ell sl ( 4). At the next highest level there are precisely six 
Go highest weights: 

l:1l = A -,811 = [01] Ell [1] Ell [110], 

l:13 =A-,813 = [01] Ell [0] Ell [001], 

l:21 = A -,821 = [20] Ell [1] Ell [110], 

l:23 = A - ,823 = [20] Ell [0] Ell [001], 

l:31 =A-,831 = [12] Ell [0] Ell [110], 

l:33 = A -,833 = [12] Ell [- 1] Ell [001]. (4.15 ) 

Of these only l:31 involves an atypical odd root, namely,8 31. 
There exists a second-order Casimir operator C in the 

center Z(G) of the enveloping algebra U(G) ofGsuch that 
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for any vector v E V(A) we have23 

Cv= C(A)v, 

where 

C(A) = (A + piA + p) - (pip). ( 4.16) 

Moreover, if V~ is an eigenvector of the Borel subalgebra b 
such that n + V~ = 0 and hv~ = :l (h) V~, then V~ is of weight 
:l and 

CV~ = «:l + p l:l + p) - (p Ip) ) V~ . ( 4.17) 

It follows that, if any vector V~ E V( A) of weight :l is to be a 
highest weight vector not only of Go but also of G then, we 
must necessarily have 

(:l+pl:l+p) = (A+pIA+p). (4.18 ) 

For:l = A - fJ with (fJ IfJ) = 0 this implies the atypicality 
condition (A + plfJ) = O. 

All this means that, of the 6 weights :lij listed in (4.15), 
only:l31 may correspond to a G highest weight vector of a 
submodule of V( A). It follows that corresponding to each of 
the other five weights we have Go highest weight vectors that 
necessarily belong to the irreducible G module V( A). Turn
ing to the case :l = :l31 and fJ = fJ31 = fJml' the vector 
V~ = e( - fJ)vA is a Go highest weight vector. This may be 
seen by noting that for each a E ao+ 

e(a)vl: = e(a)e( - fJ)vA 

= [e(a),e( -fJ)]vA +e( -fJ)e(a)vA =0, 
( 4.19) 

since [e(a),e( - fJml )] = 0 and e(a)vA = O. Moreover 

e(fJ)vl: = e(fJ)e( - fJ)vA 

= [e(fJ),e( -fJ)]vA +e( -fJ)e(fJ)vA 

= hf3vA = A(hf3 )vA = (AlfJ)vA 

= (A+plfJ)vA =0, (4.20) 

since [e(fJ),e( - fJ) ]vA = hf3vA and e(fJ)vA = O. Together, 
(4.19) and (4.20) imply 

e(aj)v~ =0, forajEII, (4.21) 

where II is the set of simple roots defined, in the distin
guished basis, by (2.12). Since n + is generated by {e ( a ) : 
a E II} it follows that n + V~ = O. Hence V~ is a G highest 
weight vector. 

Correspondingly there exists a submodule of the Kac 
module V(A) with highest weight vector Vl: that is to be 
factored out of V( A), along perhaps with other submodules, 
in forming the irreducible module V(A). 

Putting this information together we see that any for
mula of the Kac-Weyl type (3.19) must, when expressed in 
the form (4.9), be associated with a generating matrix 
Gx (A) of the form: 

Gx(A) ~ G ~} (4.22) 

where each letter indicates a matrix element that could be 0 
or 1. The six matrix elements that are fixed are those deter
mined by the above arguments regarding the weight vectors 
corresponding to (4.17). Notice that we have already eli-
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minated not only XK (A) andXw(A) but also Xs(A) by this 
argument since the corresponding generating matrices are 
not of the form (4.22). 

Now comes the $64,000 question: Do any of the 64 pos
sible generating matrices, with each letter in (4.22) equal to 
o or 1, give rise to a character Xx (A) that could possibly be 
the required irreducible character ch( V( A»? 

The answer is no! But first we have to discuss tests in
volving more than just the top two levels. Exactly 32 cases 
could be ruled out by the fact that the expansion of Xx (A) in 
terms of sl (3) E!) C E!) sl ( 4) characters gives rise to negative 
multiplicities, but we can do better than this. Our previous 
analysis has already demonstrated that the Kac module 
V( A) with level structure 1 6 18 ... contains a composition 
factor with highest weight vector Vl:' Applying exactly the 
same analysis to the Kac module V(:l), which has level 
structure 1 932 ... , indicates the existence of a composition 
factor in V(:l) with highest weight vector Vn where 
n = :l - fJ = A - 2fJ. Moreover, the remaining 8 Gohigh
est weights at this level are of the form :l - fJ I with fJ I not 
atypical. The Casimir argument then implies that the corre
sponding 8 Go highest weight vectors belong to the irreduci
ble module V(:l). This must therefore have level structure 1 
8 .... Subtracting this from the level structure (4.14) of 
V( A) leads to a level structure 

1 5 10 .... (4.23) 

Once again, recourse to the Casimir argument implies that 
just as the 5 Go highest weights at level 1 do not satisfy the 
condition (4.18), nor do any of the 10 at level 2. We con
clude that (4.23) gives the first portion of the level structure 
of the irreducible module V(A). 

The 64 possible generating matrices given by (4.22) 
lead to a level structure consistent with ( 4.23) in precisely 12 
cases: any combination of (xyz) = (111), (110), (100), 
(010), with (uvw) = (111), (101), (011). However of 
these, 6 cases lead to negative multiplicities. The remaining 6 
cases lead to one or other of the following level structures 

5 10 10 5 2 3 1, 

5 10 10 7 3 3 1, 

5 10 12 16 14 9 4 1, 

5 10 11 8 5 4 3 2 1. 

( 4.24a) 

(4.24b) 

(4.24c) 

( 4.24d) 

Now for the final nail in the coffin of any formula of the 
Kac-Weyl type! Consider the completely new module of 
highest weight A formed from the tensor product of two 
irreducible sl(3/4) modules V(A I ) and V(A2 ) with 

Al = [11;0;000] and A2 = [00;0;010]. (4.25) 

If v A, and v A2 are the highest weight vectors of V( A I ) and 
V(A2 ), respectively, then VA, ® VA2 is necessarily the highest 
weight vector of the tensor product module 
V(A I ) ® V(A z ). Moreover, Al and Az have been chosen so 
that this weight vector v A, ® V A2 is of weight A = A I + A2 . 
It follows that V( A) is a quotient module of V( A I ) ® V( A2 ) 
so thatthe character ch(V(AI ) ® V(A 2 »of the tensor prod
uct module must contain the character of the irreducible 
module V(A) as a summand. The weights Al and A2 have 
also been chosen so that A I is the highest weight of a covar-
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iant tensor irreducible module and A2 is the highest weight 
of a contravariant tensor irreducible module. Although the 
proof of this will only be described in the next section, these 
two weights are normal and their characters are well known, 
being determined by means of the character formula of Ber
ele and Regev l6 or, equivalently, by Xs(AI ) and Xs(A 2 ). 

Correspondingly the s1(3/4) -+s1(3) Ell CEIl sl( 4) 
decompositions are given by 

[11;0;000] -+ [11] X [0] X [000] + [20] X [1] X [100] 

+ [01] X [1] X [100] + [lO] X [1] X [OlO] 

+ [lO] X [2] X [200] + [00] X [2] X [ llO ] , 
(4.26) 

[OO;O;OlO] -+ [00] X [0] X [OlO] + [01] X [ - 1] X [001] 

+ [02] X [ - 2] X [000]. 

Decomposing the tensor product of the corresponding Go 
characters in terms of Go characters then gives an expression 
that must contain ch V(A) as a proper summand. This sim
ple criterion immediately eliminates 60 of our possible 64 
generating matrices, including those corresponding to 
XL (A), XH (A), and XJ (A). This serves to justify the entry 

for X J (A) in our earlier tabulation. 
The remaining 4 of our 64 cases give rise to one or other 

of the level structures 

1 5 8 7 2, 

1 5 6 5 1, 

(4.27a) 

(4.27b) 

in direct contradiction with (4.24). Indeed from (4.25) it 
can be seen that the total number of levels of V(AI ) and 
V( A2 ) below A I and A2 are 3 and 2, respectively, so that the 
irreducible quotient module V(A) of V(AI ) ® V(A2 ) has a 
maximum of 5 levels below A = Al + A2. This immediately 
rules out all possibilities (4.24). 

We are therefore led to the following conclusion. 
Proposition 4.28: For G = sl(3/4) and A = [l1;O;OlO], 

there exists no generating matrix G x (A) such that 

Xx(A) = ch V(A). (4.28) 

Therefore we have the following corollary. 
Corollary 4.29: No formula of the Kac-Weyl type 

( 3.19) can give correctly the characters of all the finite-di
mensional irreducible modules V( A) of sl (m/ n) for all m 
and n. 

V. CHARACTERS OF IRREDUCIBLE COVARIANT 
TENSOR MODULES 

Quite apart from the distinction between typical and 
atypical irreducible finite-dimensional modules ofsl(m/n), 
it is possible to distinguish between such modules on the 
basis of their relationship to tensor modules of various kinds. 
Each irreducible module V(A) for which the highest weight 
A is not only dominant but also integral in the sense of De fin
ition 3.5, is equivalent either to some tensor module or to 
some quotient of a tensor module. The requirement that A be 
integral dominant excludes some modules V( A) for which A 
is admissible but not integral, but these modules are all typi
cal. 

The tensor modules we have in mind are submodules or 
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quotientmodulesofthetensoralgebraofVand V*, where V 
is the (m + n)-dimensional vector space carrying the natu
ral matrix representation (2.2) of gl(m/n), and V* is the 
conjugate of V carrying the matrix representation contragre
dient to (2.2). Such tensor modules have been considered by 
a number of authors, 15-25 with some successes and some fail
ures in the effort to obtain character formulas for those that 
were irreducible. 

Berele and Regev,16 and later Serge'ev,17 showed that 
the tensor product V ® N of N copies of the natural (m + n)
dimensional representation Vof gl(m/n) is completely re
ducible, and that the irreducible components, VA.' can be 
labeled by. means of a partition A of N of length leA) and 
weight IA I, where A = (A I,A2'oo.,Ap), with leA) =p, IA I 
=AI +A2 +"'+Ap =N, and Ai»Ai+I>O for 
i = 1,2,oo.,p - 1, satisfying the condition Am + I <n. These 
representations VA. are known as irreducible covariant tensor 
representations. Furthermore, by exploiting the properties of 
the symmetric group S N' Berele and Regev 16 and Serge'evl7 

established an explicit character formula appropriate to all 
irreducible covariant tensor representations of gl (m/ n). 

Similar results are valid for tensor products ( V*) ® N of 
the contragredient V* of V. Each irreducible component, 
V;i, may be labelled by means of a partition A of N with 
Am + I <n. These representations V;i are known as irreduci
ble contravariant tensor representations and their character 
formula is obtained trivially from that appropriate to the 
covariant case. Unfortunately, tensor products involving 
both Vand V * are, in general, not completely reducible and 
to date there exists no character formula for all the irreduci
ble mixed tensor representations. However, they may conve
niently be denoted by Vr,a since they occur as the leading 
components in the reduction of tensor products of the form 

V" ® Va' 
Returning to the covariant tensor case, the irreducible 

submodule VA. of V" N specified by the partition A, with 
Am + I <n, is necessarily finite dimensional. Hence, by virtue 
of Theorem 3.8, there must exist a dominant weight AA. such 
that VA. is isomorphic to V(AA.)' The relation between 
AA. = (J.lIJ.l2·· ·J.lm IVI V 2" ·vn ) and A = (A IA2"') is such 
that: 17.25 

J.li = Ai (l<i<m), ( 5.la) 

va = (A ~ - m) = max{O,A ~ - m} (l<a<n), 
(5.lb) 

where A ' is the partition conjugate to A. In terms of the 
Young diagram FA. specified by A, the parts A; of A and A ~ of 
A' are the row and column lengths, respectively, while the 
components J.li and Va of AA. can be identified as shown be
low: 

~~~,,~._.~_ .... _~._ ..... = .. _ .. ~.~":_"1 ___ 7 . 
v i 

jV 2 i 
'~E l:....-___ ln I' 

(5.2) 
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The Dynkin labels corresponding to the representation VA 
then follow from (2.21). It is not difficult to see from (4.1) 
that such a representation is typical or atypical according as 
Am >n or Am < n, respectively. 

In precisely the same way the irreducible contravariant 
module Vx specified by A = (AIA2"') is isomorphic to 
V(Ax) with Ax = (Pil'/'2 .. 'Pm Iv, V2 .. 'vn), 
where 

Pi = - (Am_ i + I - n) (1 <;i<;m) 

Va=-A~_a+1 (1<;a<;n). 

(5.3a) 

(5.3b) 

As before, this module is typical or atypical according as 
Am >n or Am < n, respectively. 

Conversely if A = (PIP2 .. 'Pm Iv, V 2 .. ·vn ) is integral 
dominant with Pi >0 for 1 <;i<;m, Va >0 for 1 <;a<;n and Pm 
>#{a:va > 0,1 <;a<;n}, then there exists A such that V(A) is 
isomorphic to the irreducible covariant tensor module VA' 
Similarly if A = (PIP2" 'Pm Iv, V 2 " ·Vn ) is integral domi
nant with Pi<;O for l<;i<;m, Va <;0 for l<;a<;n and - VI 

> # {i:Pi <0, 1 <;i<;m} then there exists A such that V(A) is 
isomorphic to the irreducible contravariant module Vx. For 
sl (m/ n) these conditions can be expressed in terms of the 
Kac-Dynkin labels: let A = [a l a2" 'am _ I; 
am ;am + I" 'am + n _ I ] be integral dominant. Then V(A) is 
isomorphic to an irreducible covariant tensor module pro
vided that am >0 and either am + b = 0 for b = 1,2, ... ,n - 1 
or 

c 

am>c+ L am+ b , where c=max(b) 
b=1 

such that am +b > 0, (5.4a) 

and to an irreducible contravariant tensor module if am <;0 
and either ai = 0 for i = 1,2, ... ,m - 1 or 

k 

-am>k+ L am_ j , where k=maxU) 
j=1 

such that am _ j > O. (5.4b) 

Of course, not all irreducible modules V(A) are either 
covariant or contravariant. For example the adjoint module 
has highest weight A = [10'" 0;0;0' .. 0 1 ], thereby violat
ing both (5.4a) and (5.4b). 

The importance of the irreducible covariant tensor 
modules of gl ( m/ n) lies in the fact that their characters are 
known. 16

,17 Just as the characters of irreducible covariant 
tensor modules of gl(m) may be expressed in terms of S 
functions,39 so those of gl (m/ n) may be expressed in terms 
of supersymmetric S functions. 

We adopt the notation and terminology of Macdonald40 

whereby the S function of (x) = (XI X2 ... Xm ) specified by 
the partition uis denoted by Su (x). Such S functions satisfy 
the product and quotient rules: 

Su (X)ST (x) = L ~UTSA (x) 
A 

u 

(5.5) 

(5.6) 

where the coefficients c!T are the famous Littlewood
Richardson coefficients, and the summations are over parti-
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tions A and u, as indicated, with IA I = lui + 11'1. With the 

identification Xi = eEi for 1 <;i<;m theS functionsA (x), with 
leA) <;m is just the Weyl character (1.1), ch VO(A), of the 
irreducible module of gl (m) with highest weight A. By gen
eralizing the notion of an S function, Berele and Regev l6 

proved the following. 
Theorem 5.7: Let V(AA) be the irreducible gl(m/n) 

module isomorphic to the covariant tensor module VA speci
fied by the partition A, with AA related to A by (5.1), and let 

and 

Ya = e'\ for 1 <;a<;n. 

Then the character of V(AA) is given by 

ch V(AA) = SA (x/y), (5.7a) 

where SA (x/y) is the supersymmetric S function of 
x = (XI , ... ,xm) and y = (YI , ... ,Yn) defined by 

SA (x/y) = L SVT (x)Sr' (y) 
T 

(5.7b) 
U,T 

with l(u)<;m and 1(1")<;n. 
In the notation of (3.20), this immediately gives the 

following. 
Corollary 5.8: 

U,T 

with 

AA = (A , .A2, ... ,Aml(A; -m),(A; -m), 

... ,(A~ -m», 

(5.8a) 

(5.8b) 

(5.8c) 

Similarly, we have in the case of irreducible contravar
iant tensor representations: 

( 5.9a) 
U,T 

(5.9b) 
U,T 

with 

Ax = «AI - n),(A2 - n), ... ,(Am - n) I - Ii~, 

...,-A;,-A;), (5.9c) 

~UT' = (- U m , .. ·, - u2 , - u,I-1'~, .. ·, -1';, -1';). 
(5.9d) 

Unfortunately, a possible extension of (5.8) and (5.9) 
to mixed tensor representations, namely, 25 

-" I~I -Sr,u(x/y) - £.. (- 1) su/~(X/Y)ST/~' ( x/y), (5.lOa) 
~ 

where, for all z, 

SVp (z) = L ~vsv (z), (5. lOb) 
v 
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does not, in general, yield characters of irreducible modules, 
although it does coincide with certain mixed tensor deter
minantal characters defined elsewhere. 19.24 

In the case of irreducible covariant tensor representa
tions it is possible to make contact with the work of Sec. IV. 
We have the following lemma. 

Lemma 5.11: If A is the highest weight of a covariant 
tensor representation specified by a partition A, then A is 
normal, in the sense that GJ(A) = Gs(A), and 

G A 
_ {I, if (i,b) E FA., 

s( lib - 0, if (i,b) EFA., l~;i~m and I~b~n, 
(5.11) 

where (j,b) E FA. if and only if there is a box in the ith row 
and b th column of the Young diagram FA. 

Proof Since the hook length, hib , of the box in the ith 
row and b th column of FA is always positive and given by 

hib = Ai + A;' - i - b + 1, 

it follows from the atypicality condition (4.Ic) 

A(A)ib =J.li + Vb + m - i - b + 1 = 0, 

I~i~m and I~b~n, 

(5.12) 

and the relation (5.1) that any zero of the atypicality matrix 
lies at a position (i,b) t FA. To be more precise, the zeros of 
the atypicality matrix are given by 

A(A)ib =O<=>b=A i +m-i+ 1, 

(5.13) 

Schematically, the relation between the atypicality matrix 
A A and the Young diagram FA is as follows for 
A = (11,6432221), m = 6 and n = 9: 

cae c ceo 0 0 1 
D CDC DC· • • 

C DOD • • • 0 • AA= D DO •• 0 • •• m 

c c • 0 • • • •• 1 
D 00· • • • • • 
+---n~ 

o 0 0 a 0 coo 0 0 c 
c c c c c c 

for FA: c c c c 
c c c 
c c 
c c 
a c 
c 

(5.14 ) 

In A", D or * stand for a nonzero integer, and 0 stands for 
zero. Since the Dynkin labels am + j vanish for I~Am + 1 
each lower sequence is horizontal. On the other hand, since 
the horizontal steps in each upper sequence are determined 
by the same Dynkin labels ai = Ai -Ai + I (I~i~m - 1), it 
follows that upper sequences are parallel to one another. 
Hence the pairs of upper and lower sequences are nested as 
shown below on the left: 

(5.15 ) 

Moreover, another consequence of the fact that the Dynkin 
labels am + j withj~A m + 1 are all zero, is that the elements 
of the atypicality matrix to the right of the D's in each row 
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are consecutive integers. This is illustrated on the right in the 
above example. Starting from the known positions of the 
zeros and the nested nature of the pairs of upper and lower 
sequences, it can immediately be seen that the normality 
condition, (j"b,) = t for - q<,.t~p, is satisfied for each se
quence. Therefore the highest weight A corresponding to A is 
normal. Moreover the union of the sequences is the set of 
points (i,b) E FA with 1 ~i~m and 1 ~b~n. The result 
(5.11) then follows from the definition ofGs(A) given in 
Sec. IV. 

Example: Let A = (5,2,1,1,1) for sI(3/4). Then 
A = (5,2,112,0,0,0) = [3,1;3;2,0,0] in terms of EO compo
nents and Kac-Dynkin labels, respectively. The Young dia
gram FA, A" and G s are now given by 

• • • • 0 

F A = • • 
• 
0 

0 

A. ~G 
6 5 

~). 2 
0 -1 -2 

G,~G 
1 1 

D 0 (5.16) 

0 0 

In FA we have shaded the boxes that fall within the m X n 
rectangle and which determine the positions of the entries 1 
in Gs . 

An immediate consequence of Lemma 5.11 is the fol
lowing corollary. 

Corollary 5.17: If A is the highest weight of the irreduci
ble covariant tensor representation specified by the partition 
A with Am + I ~n, then 

Xs(A) = Lo I I E(W)w{e" +Po II (1 + e -Pib)} , 
WEW U.b)EF" 

( 5.17) 

where FK is indicated in the following diagram: 

T 
m 

FA : 1 

(5.18 ) 

In other words, FK is that part of FA inside the m X n rectan
gle, and Fa and FT are the parts of FA outside this rectangle. 

We are now in a position to formulate the main result of 
this section. 

Theorem 5.19: If A is the highest weight of the irreduci
ble module VeAl isomorphic to the irreducible covariant 
tensor module specified by the partition A, then 

ch VeAl = Xs(A), ( 5.19) 
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withXs(A) given by (S.17). 
In order to prove this theorem it is only necessary to 

establish that X s (A) = SA (x/y), with x and y defined as in 
Theorem S. 7. To illustrate how this is done we first establish 
some further properties of SA (x/y). 

Lemma 5.20; The generating function for the functions 
SA (x/y) is given by 

G(x,y,z) = II (1 + Ya z/) III (1 - xizs ) 

= L SA (X/Y)SA (z), (S.20) 
A 

where x = (XI , ... ,Xm ), Y = (YI , ... ,Yn), z = (ZI , ••. ,Zp), 
l..;;i..;;m, l..;;a..;;n, l..;;s, t..;;p, and the summation is over all 
partitions A of length ";;p. 

Proof Making use of the S function expansions of the 
numerator and denominator products appearing in (S.20)40 
one obtains 

II (1 + Ya z/) 
-----= LS"'(Y)sv(z) LSp(x)sp(z) 

II (1-x izs ) v I' (S.21a) 

= L sp (x)sv' (Y)~VSA (z), (S.21b) 
p.V.A 

where the summation is over all partitions p, v, and A, and 
where ~v are the Littlewood-Richardson coefficients. 39.40 
Comparison with our definition, (S.7), of SA (x/y) proves 
the validity of (S.20). 

Now let fjJ (x) denote the ring consisting of all symmet
ric polynomials in X\JX2 'OO"Xm with coefficients in l, and 
define the ring of doubly-symmetric polynomials as 
fjJ (x,y) = fjJ (x) ® z fjJ (y). An elementp E fjJ (x,y) is said 
to have the cancellation property if p is such that when the 
substitution XI = t, YI = - t is made in p, the resulting 
polynomial is independent of t. The elements of fjJ (x,y) sat
isfying the cancellation property are known as supersymme
tric polynomials. They form a subring of fjJ (x,y) which we 
denote by fjJ (x/y). One can see from Lemma S.20 that ev
ery Su (x/y) satisfies the cancellation property, and we have 
the following theorem due to Stembridge.46 

Theorem 5.22: Every element of fjJ (x/y) is a l-linear 
combination of the S u (x/y ); the set of S u (x/y) form a l basis 
of fjJ (x/y). 

There exist at least two proofs of this theorem in the 
literature.45

•
46 

Let us now return to the formula (S.17) forXs(A) from 
which it follows, by making use of the parameters Xi = eEl 

and Ya = e6a in the known expression for Lo and the fact 
that W = Sm XSn , that 

Xs(A) = S,\W) (x/y), 

where 
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(S.23 ) 

x L E(W)W{X~I+m-I".x~n 
weSmxsn 

xy~l+n-I ... y:" II . (Xi +Ya)}. 
(i,a)eF" 

(S.24 ) 

Now the final link needed to prove Theorem S.19 is provided 
by the following theorem. 

Theorem 5.25: 

(S.2S) 

This identity appears to have been discovered independently 
by ourselves and by Serge'ev. The latter communicated it to 
Pragacz who provided a proof of its validity. 45 The first step 
in his very elegant proof is to show that s~W) (x/y) satisfies 
the cancellation property. Then Theorem S.22 enables him 
to write s~W)(x/y) as a l-linear combination of SA (x/y) 
functions. Finally, he uses a specialization argument to show 
that there is only one term in the linear combination. We 
shall not reproduce Pragacz's proof here, but simply refer 
the interested reader to his paper. 45 

Despite the negative conclusion reached in the last sec
tion, we would contend that character formulas of the Kac
Weyl type are still of some significance. The main result in 
this section, namely Theorem S.19 whose proof is now com
pleted, supports this contention. Furthermore, Theorem 
S.19 also affords support for the Conjecture 4.13 of the last 
section, in that all the atypical highest weights A involved in 
Theorem 5.19 are normaJ, as proved in Lemma 5.11. In addi
tion, it is easy to see that the theorem may be extended so that 
it covers not only all irreducible covariant tensor modules 
but also all irreducible contravariant tensor modules. 

Of course our counterexample, Proposition 4.28, to the 
general validity of Kac-Weyl character formulas corre
sponds to an irreducible mixed tensor module whose highest 
weight is not only atypical but also abnormal. However, ex
tensive computer calculations involving the characters of 
more than 100000 irreducible representations ofsl(m/n), 
with l..;;m..;;n..;; 6, all having normal atypical highest weights, 
have revealed no counterexample to Conjecture 4.13. 

Returning for the moment to our atypical, abnormal 
example of the last section, we should point out that the 
argument leading to Proposition 4.13 leaned heavily on the 
claimed decompositions (4.26) of the irreducible modules 
V(A I ) and V(A 2 ) on restriction from sl(3/4) to 
sl(3) ffiCffiSl(4). From (4.23) it is easy to see that V(A I ) is 
isomorphic to the irreducible covariant tensor module VA 
with A = (2,1), while V( A2 ) is ismorphic to the irreducible 
contravariant tensor module V;: with A = (2). These obser
vations, together with (5.7) and (5.8), do indeed serve to 
confirm the validity of (4.26). 

Although we have not been able to prove the fact, we 
believe that the character ch V( A) of the irreducible module 
V(A) ofsl(3/4) of Proposition 4.3, with A = [11;0;010], is 
actually defined by the sl(3/4)-+s1(3) ffiCffiSl(4) decom
position: 
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[11;0;010] -+ [11] x [0] x [010] + [01] X [1] X [110] + [01] X [0] X [001] 

+ [20] X [1] X [110] + [20] X [0] X [001] + [12] X [- 1] X [001] 

+ [1O]X[2]X[21O] + [1O]X[I]X[020] +2[1O]X[I]X[101] 

+ [1O]X[O]X[ooo] + [02]X[0]X[1OI] + [21]X[0]X[1OI] 

+ [21]X[ -1]X[ooo] + [02]X[ -1]X[ooo] + [13]X[ -2]X[000] 

+ [oo]X[I]X[011] + [00]X[2]X[120] + [00]X[2]X[201] 

+ [oo]X[I]X[loo] + [11]X[I]X[201] + [l1]X[O]X[011] 

+2[11]X[0]X[IOO] + [03]X[ -1]X[IOO] + [22]X[ -1]X[IOO] 

+ [01]X[I]X[111] + [OI]X[O]X[01O] + [01]X[I]X[2oo] 

+ [12] X [0] X [200] + [12] X [ - 1] X [010] + [02] X [0] X [110]. (5.26) 

The level structure is 

1 5 10 10 5 1, (5.27) 

and the lowest sl(m) EB C EB sl(n)-highest weight is 
l:L = [02;0;110]. 

It is, we believe, no accident that although this decom
position does not coincide with that specified by X s (A), 
which has level structure 

1 3 5 5 3 1, (5.28) 
nonetheless the lowest sl (m) EB C EB sl (n) -highest weight 
specified by X s (A) does coincide with l: L' Indeed, on the 
basis of our computer calculations, we are led to the follow
ing. 

Conjecture 5.29: Let V(A) be a finite-dimensional irre
ducible module of sl(mln) whose highest weight A is inte
gral dominant. Then the lowest sl (m) EB C EB sl( n ) -highest 
weight, l:L> appearing in the decomposition of V(A) on re
striction from sl (min) to sl (m) EB C EB sl (n) is given by the 
lowest sl(m) EB C EB sl(n)-highest weight of the Weyl char
acters appearing in the expansion of X s (A) . 

The importance of this observation is that, if true, it 
would enable the highest weight of the module contragre
dient to V(A) to be found fromXs(A). This is ~cause the 
highest weight of the contragredient module V(A) is given 
by A = - WOl:L' where Wo is the Coxeter element of the 
Weyl group W = Sm XSn. In our example the lowe~t 
sl(m) EB C EB sl(n)-highest weight of V(A) IS 

l:L = [02;0;110] and the hi.£hest weight o! the contragre
dient irreducible module, V( A), is given by A = [20;0;011]. 

We have also observed that in all the cases we have ex
amined it is possible to write 

ch V(A) = L q"Xs(..1.), (5.30) 

" where the summation is over integral dominant weights A, 
and q" EN for all such A, with q" >0 and qA = 1. In our 
example we believe that 

ch V( [11;0;010]) 

= Xs( [11;0;010]) + Xs([OI;O;ool]) 

+ Xs ([20;0;001]) + Xs ([ 10;0;000]), (5.31) 

which agrees with (5.26). 
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VI. SINGLY ATYPICAL REPRESENTATIONS 

In the rest of this paper we shall be dealing with a differ
ent kind of character formula. The new character formula 
will not be of the Kac-Weyl type (3.19), i.e., it can usually 
not be generated by a generating set a x (A). On the other 
hand, one can think ofthe new character formula as being an 
expansion of ch V( A) in terms of the Kac characters X K (A) 
of (3.18). We shall introduce the new formula step by step: 
singly atypical representations in this section, doubly atypi
cal in Sec. VII, and atypical of arbitrary degree in Sec. VIII, 
where the formula is shown to cover all irreducible covariant 
tensor representations. In this section we state a crucial 
proposition (Proposition 6.8), which we have proved else
where,44 upon which we now base a proof of the validity of 
the Leites character formula for all singly atypical irreduci
ble modules of sl( min). This proof involves an expansion in 
terms ofKac characters, showing the way to a generalization 
made in the next section. 

For two integral weights A and/L ofsl(mln) we say that 
w 

A is W equivalent to /L and write A;;:: /L if there exists an 

elementwE Wsuchthatw'..1. =/L;thatisw(..1. +p) =/L +p 
or, equivalently, by virtue of (2.31), w(..1. + Po) = /L + Po. 
In such a case XK(..1.) = E(W)XK(/L) and 
Xw(..1.) = E(W)Xw(/L), as can be seen from the definitions 
(3.18) and (3.20) ofthe formal Kac and Weyl characters, 
respectively. Moreover, A is Wequivalent to /L if and only if 
the atypicality matrix AI' may be obtained from A" by suit
able permutations of rows and columns. This follows from 
the definition (4.1) of A" and properties (4.2a) and (4.2d), 
which imply that /L = w'..1. if and only if 
AI' =A w'" =w-1(A,,). . 

If there exists WE W such that W'..1. = A With 
E(W) = - I, then bothXK(..1.) = Oandxw(..1.) = 0, and we 
say that A is vanishing. Otherwise, A is said to be nonvanish
ing, and both X K (A) and X w (A) are nonzero, as can be seen 

from the relation XK(..1.) = I"L1Xw(..1.), the fact that 
L1 #0, and the well-known properties of the Weyl char
acters. Furthermore, these properties also ensure that A is 
non vanishing if and only if there exists W E W such that W' A 
is dominant. It then follows from (4.1) and (4.2) that A is 
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vanishing if and only if A;. has two identical rows or two 
identical columns. To see this it should be noted first that, if 
A;. has either a pair of identical rows or a pair of identical 
columns, then there exists WE W with E(W) = - 1 such 
thatAl. = Aw.l.' Hence A = W'A and A is vanishing. Conver
sely, if A;. has no such pair of identical rows or identical 
columns then there exist W E W such that the elements of 
A w .l. are strictly decreasing from left to right across rows and 
from top to bottom down columns. It then follows from the 
definition (4.3c) that w'A is dominant and therefore A is 
nonvanishing. 

It should further be recalled that the odd roots /3 E a 1+ 
may be partially ordered according to (2.26): 

/3ia <./3jb¢:?i>j and a<.b, 

/3ia </3jb¢:?/3ia <./3jb and /3ia -=I=/3jb' 

In particular, /3ml </3 for every /3 E {at \/3ml}' 

( 6.la) 

(6.1b) 

In this section, from now on, we let A be an integral 
dominant weight that is singly atypical of type /3: 

(A + pl/3) = 0 and (A + plr) -=1=0 for r-=l=/3(r,/3E at)· 
(6.2) 

Then we can prove the following lemmas. 
Lemma 6.3: Let A be the atypicality matrix of A, where 

A is singly atypical of type /3 = /3ia' Then 

{A ib I 1 <.b<.a}n{ - Aja liq<.m} = {O}. (6.3) 

Proof From (4.2c) and the fact that Aia = 0, one de
duces that A ib + A ja = A jb' But A is singly atypical of type 
/3ia' so that Ajb = 0 if and only ifj = i and b = a. The result 
(6.3) then follows. D 

By way of example, consider the weight 
A = [1023;1;13020] of sl(5/6). The corresponding atypi
cality matrix is 

11 9 5 4 0 

9 7 3 2 -I -2 

AA = 8 6 2 1 -2 -3 (6.4 ) 

5 3 -1 -2 -5 -6 

1 -I -5 -6 -9 

and A is singly atypicaloftype/3 = /316' Lemma 6.3 is equiv
alent to the statement that the set of numbers in the same row 
but to the left of the single zero in the atypicality matrix has 
no element in common with the set formed by taking the 
negative of the entries in the same column but below the 
zero. In our example we have {11,9,5,4,1,0} 
n{0,2,3,6,1O} = {O}, in conformity with Lemma 6.3. 

Let A be given as in Lemma 6.3. Let k be the length of 
the longest sequence of consecutive integers (0,1 ,2, ... ,k - I) 
all contained in the union {A ib 11<.b<.a}U{ - Aja liq<.m}. 
In the above example the union is {0,1,2,3,4,5,6,9,1O,11}, 
hence the value of k is 7. 
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Lemma 6.5: There exists a unique sequence of distinct 
elements/31 = /3, /32,/33 , ... ,/3k from at such that the chain 
Vo =A, VI =A-/3I' V2 =VI -/32' ""Vk 
= Vk _ I - /3k =<1> satisfies (Vj + pl/3j ) = 0 for i = 1,2, ... ,k, 
with Vj vanishing for lq<.k and Vk = <I> dominant. More-

w 

over, Vj ~ A - j/3 and E(W) = ( - 1)j-1 for Iq<.k. 

Proof First a special case: if /31 = /3 = /3ml then A - /3 I 
is always dominant, hence k = 1 with <I> = A - /3ml . More 
generally, suppose now that A is singly atypical of type 
/31 = /3ia > /3ml' Since (/3ia l/3jb) = oij - Oab' the definition 
( 4.1 ) implies that A A _ 13," is obtained from A A by decreasing 
the elements of row U) by one and increasing the elements of 
the column (a) by one, leaving the entry 0 at their intersec
tion. If VI = A - /31 = A - /3ia is dominant, then it is still 
singly atypical of type /3ia' and k = I with <I> = A - /3ia' 
Otherwise, if A is dominant but VI = A - /3ia is nondomin
ant, A A _ 13,u must have two equal rows or columns: either 
rowU + 1) = rowU) or else column (a - I) = column(a). 
Both cannot occur since this would imply that 
A(A-/3ia)i+l,a-1 =A(A)i+l,a_1 =0, which is not pos
sible because A is singly atypical of type /3ia' Hence 
VI = A - /3ia is vanishing and doubly atypical of type /31 
and /32' with /31 =/3ia and either /32 =/3i+l,a or /32 
= /3i,a _ I . Moreover, because ofthe identical pair of rows or 

columns in AA-13,u' AA-13,u- 132 may be obtained from 
AA _ 213,u by one transposition either of rowU) and 
rowU + 1), or of column(a) and column(a - 1). Thus 

w 

V2 = VI - /32 = A - /31 - /32 satisfies V2 ~ A - 2/31 with 

E(W) = - 1. 
It is clear that the same reasoning now applies to 

A - /31 - /32' etc. Indeed, the atypicality matrix Ay is ob-
J 

tained from Ay by subtracting 1 in the row of/3. and add-
J-l J 

ing 1 in the column of /3j; this produces a new zero in the 
position of /3j + I' This continues as long as the differences 
between the relevant rows or columns is I, i.e., this continues 
for k steps. The atypicality matrixAy is obtained by reorder-
• J 

109 the rows and columns of A A _ j13,u' and one can check that 
there are j - 1 transpositions involved in going from A A - j13,u 

w 

to A
vj

• Hence, Vj ~ A - j/3ia and E(W) = ( - 1)j-1 for 

1 q<.k. Because of the definition of k and the method of 
construction, every A A _ j{:J,u has either two equal columns or 
two equal rows for 1 q < k. The same must then be true of 
AVj' and Vj is therefore vanishing for 1 q < k. Moreover, the 
construction and definition of k implies that A - kf3ia is the 
first non vanishing element in the sequence A - j/3ia with 
j = 1,2, .... It then follows that V k , which is Wequivalent to 
A - k/3ia, is also non vanishing. This guarantees that no two 
rows or two columns of AA _ ktJ,u are identical. However, the 
construction procedure ensures that the matrix elements of 
AV

j 
are nonincreasing across rows from left to right and 

down columns from top to bottom for 1 q<.k. Hence the 
matrix elements of AVk must be strictly decreasing across 
rows from left to right and down columns from top to bot
tom, so that Vk = <I> is dominant. D 

By way of illustration, in the case A = [1023; 1; 13020] 
= (877521 - 1 - 2 - 5 - 5 - 7 - 7) ofsl(5/6) we have: 
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11 9 5 4 1 

9 7 3 2 -1 

AA = 8 6 2 -2 

5 3 -1 -2 -5 
1 -1 -5 -6 -9 
9 7 3 2 0 

9 7 3 2 0 

A = 
"2 

8 6 2 -1 

5 3 -1 -2 -4 

1 -1 -5 -6 -8 

9 7 3 2 2 

8 6 2 1 1 

A = ". 7 5 1 0 0 

5 3 -1 -2 -2 

-1 -5 -6 -6 

9 7 4 3 2 

8 6 3 2 

A = ". 5 3 0 -1 -2 

5 3 0 -1 -2 

1 -1 -4 -5 -6 

-1 

-2 

-5 , 
-5 

-9 

9 

8 

A"J = 8 
5 

1 

9 

8 

A", = 6 
5 

9 
8 

A = 
"7 

5 

4 

8 

7 

6 

3 

-1 

7 

6 

6 

3 

-1 

7 

6 

4 

3 

-1 

7 

6 

3 

2 

-1 

4 3 0 

3 2 -1 

2 -2 

-1 -2 -5 

-5 -6 -9 
3 2 

2 0 

2 0 

-1 -2 -3 

-5 -6 -7 

3 3 2 

2 2 

0 0 -1 

-1 -1 -2 

-5 -5 -6 

5 3 2 

4 2 1 

1 -1 -2 

0 -2 -3 

-3 -5 -6 

Note that every A"J is obtained from AA -jP'b by transpositions of rows and columns. Also note that the sequence of {3's 
described in Lemma 6.5 can be found fromA A by considering the integers on the row through 0, and the negatives of the 
integers on the column through 0, and then following a path in A A of horizontal and vertical steps starting at 0 and following 
the directions dictated by consecutive integers. In the example (6.4) this sequence is (0,1,2,3,4,5,6), and we can augment the 
atypicality matrix, as shown below, in order to identify the corresponding sequence of {3 's, signified on the right by x's: 

5 4 

11 9 5 4 

9 
2 

AA = 
7 3 2 -1 

8 6 
3 

2 -2 

5 3 -1 -2 
6 

-5 

-1 -5 -6 -9 

In this example the length of the sequence is given by k = 7, 
and we have A"7 = A<j>, with 

<I> = A - (21310100 - 2 - 1 - 3 - 1) 

= (664421 - 1 - 2 - 3 - 4 - 4 - 6) 

= [0202;1;11102]. 

It should be pointed out that this procedure for obtain
ing <I> from A may be described, as proposed by Hurni,34 in 
terms of Young diagrams. To each A = [a l a2 " 'am _ I; 
am ;am + 1 .. 'am + n _ 1 ] we can associate a composite Young 
diagram by writing A in the E8 basis as A 
= (u1 U 2 " 'Urn 1- 1'~ ... - 1'2 -1';) withu1 ;>u2 > .. '>um 

and 1'; >1'2> ... >1'~. Without loss of generality we may 
choose both U m and 1'~ to be positive, with am = U m - 1'~ in 
accordance with (2.21). This allows us to associate with A 
the composite Young diagram25 Fr,u formed from FU and 
FT, where U 1 'U2 , ... ,u m are the row lengths of FU, and 
1'; ,1'2 , ... ,1'~ are the column lengths of FT. In the case of our 
s1(5/6) example, we have A = [1023;1;13020] = (877521 
- 1 - 2 - 5 -'- 5 - 7 - 7), so thatthe assooiated com-

posite Young diagram takes the form: 
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0 

0 

c c 
c c 

COD D 

o 0 0 0 

c c c c 
c c c c c 

0 

0 

0 

0 

0 

0 

0 

0 

0 0 

0 0 

x x 

x 0 

0 0 

000 COO 

119541000000000 

9 7 3 2-1-2 0 0 0 0 0 0 0 

8 6 2 1-2-3 0 0 0 0 0 0 0 

5 3-1-2-5-6 C C C C C 
1-1-5-6-9-10 0 0 

x x 
x 0 

x 0 

0 0 

0 0 

where the atypicality matrix has also been displayed. 

(6.5) 

(6.6a) 

The heuristic method of Hurnj34 may then be interpret
ed more precisely in the singly atypical case of type {3 = {3ia 
as follows. It con&ists of identifying the ith row and 
(n - a + 1 )th column of F U ·and FT, respectively, which 
contain the single zero of the atypicality matrix, and then 
deleting from F U and FT two continuous boundary strips, 
starting at the ends of the.ith row and (n - a + l)th col
umn, and continuing until the resulting composite Young 
diagram is once again regular. In such a case the row and 
column lengths of the undeleted boxes define a new weight <I> 
in the E8basis, which may then be rewritten in terms of Kac
Dynkin labels. That this weight <I> coincides with the weight 
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<I> of Lemma 6.5 can be seen by noting that the deleted con
tinuous boundary strips are necessarily of the same shape as 
each other and as the path in the atypicality matrix corre
sponding to the chain defined in Lemma 6.5. 

This is illustrated as follows in our example (6.6a) by 

• • . [] . . . [] 
• Dec 
ceo C 

[] [] [] [] [] 

[] [] [] [] c [] 
o 000 x x [] [] [] C D [] • • 

o 0 0 0 x 0 CDC 0 [] [] • 

o 0 x x x ODD [] [] • • • 
o a x 0 0 0 [] [] [] [] • 

o 0 0 0 0 0 [] [] (6.6b) 

where. signifies a deleted box and, as in (6.6a), x specifies 
an element of the sequence of {3's defined in Lemma 6.5. The 
undeleted boxes signified by 0 imply that 
<I> = (664421 - 1 - 2 - 3 - 4 - 4 - 6) as before. 

We have seen that the Kac module V(A) is irreducible 
when A is typical. In the present case of a singly atypical 
dominant weight A, V( A) is reducible and contains a unique 
maximalpropersubmoduleM, and V(A) = V(A)IMisir
reducible. Let us recall the following definition. 

Definition 6. 7: A vector v,t, of weight A., of a G module V 
is called a primitive vector if V,t is annihilated by 
n+ :n+v,t = o. 

When A is typical, then V(A) = V(A) contains no 
primitive vectors other than scalar multiples of v A • 

The following proposition44 gives an explicit descrip
tion ofthe primitive vectors ofthe Kac module V(A) if A is 
singly atypical of type {3. 

Proposition 6.8: Let A be an integral dominant weight of 
sIC mIn) which is singly atypical of type {3, and let <I> be the 
weight defined in Lemma 6.5. Then 

(i) V(A) contains a primitive weight vector V<l> (¥=cvA ) 

for which V (G) V<l> is irreducible and isomorphic to V( <1»; 
(ii) V ( G) V<l> is the maximal submodule M of V( A) and 

hence V( A) IV ( G) V<I> is irreducible. 
Part (i) may be proved by the explicit construction of a 

pnmltlve vector V<I> E U( G) Vl;, where 
Vl; = " pE ,1,+ e( -{3)VA is the lowest Go highest weight of 

V( A). The irreducibility of V ( G) Vl; has recently been 
proved by Gould. 36 It is the identification of <I> as the highest 
weight of this module which is new. The proof of part (ii) 
then follows from a rather different argument involving the 
fact that v A is an eigenvector of the operator 
" pE ,1,+ e( +{3)IIpE ,1,+ e( -{3), whose eigenvalue Q(A)12 

possesses a zero of multiplicity one, when viewed as a poly
nomial in the odd Kac-Dynkin label am' if A is singly atypi
cal. The details of this argument are presented elsewhere.44 

An immediate consequence of the proposition is the fol
lowing corollary. 

Corollary 6.9: With the same notation as in Proposition 
6.8 

ch V(A) = ch V(A) + ch V(<I». (6.9) 

This gives a precise statement of the irreducible content 
of the Kac module in the singly atypical case: the second 
summand is the character of the maximal submodule of the 
Kac module and the first that of the corresponding quotient 
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module. Both these modules are irreducible in this singly 
atypical case, and the result serves to justify Hurni's proce
dure34 in such cases. 

We now consider the implications of Proposition 6.8 
and its Corollary 6.9, firstly for the case of singly atypical 
representations of type 13m I , where 13m I is the unique simple 
odd root. Let A = (Ill ,1l2, ... ,llm IVI ,v2, ... ,vn ) be integral 
dominant (i.e., Ili - Ili + lEN for l,;;;i < m, Va - Va + lEN 
for l,;;;a < nand Ilm + VI E.l). Then A - {3ml 
= (1l!>1l2,.··,llm - IlvI + l,v2 ,···,vn ) is also integral domi-

nant, with (A - 13m I + pl{3ml ) = (A + pl{3ml ) = o. Hence 
<I> = A - 13m I , from Lemma 6.5, and (6.9) then implies that 

ch V(A) =XK(A) -ch V(A-{3ml). (6.10) 

But A - {3ml is again integral dominant and singly atypical 
of type 13m!> hence we can use (6.10) as a recursion relation 
to find: 

ch V(A) 

= XK(A) - ttK(A -{3ml) - ch V(A - 2{3md) 

= XK(A) - XK(A - 13m I ) + ttK(A - 213ml) 

- ch V(A - 3{3ml» = ... = XK(A) 

- XK(A - {3ml) + XK(A - 2{3ml) 

-XK(A-3{3md+···, 

(6.11 ) 

which becomes a formal infinite series since (6.10) can be 
applied for every V(A - t{3ml) with tE N. Therefore, from 
(3.15) and (3.18): 

ch V(A) 

LI L €(w)w(eA +p _ eA -Pm' +p + eA - 2Pm' +p 
Lo WE W 

_ eA - 3Pm , + p • •• ) 

=L O-
I L €(w)w(eA+PLICl+e-Pm')-I) 

WE W 

=XdA), 

where XL (A) has been defined by (3.22). Hence, we are led 
to the following corollary. 

Corollary 6.12: If A is integral dominant and singly 
atypical of type 13m I then 

ch V(A) = xdA). (6.12) 

Let us now go back to establishing from Proposition 6.8 
a character formula for V(A) when A is singly atypical of 
any type {3. Remembering that 
AL (A) = {J3 E At I (A + pl{3) ¥=O} as in (3.21), it is con
venient to use the notationxp (A.) for XL (A.). This serves to 
emphasize the fact that the factor (1 + e - p) is missing in 
the character formula for XL (A.) as compared with X K (A.). 

From the definition ofXK(A) one finds: 

ch V(A) = XK (A) = Xp(A) + Xp(A - {3), (6.13) 

but from the expansion of the term (1 + e - p) - lone finds 

Xp(A-{3) 

= X K (A - {3) - X K (A - 2{3) + ... + ( - 1) k - I 

XXK (A - k{3) + ... . (6.14) 
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Due to the vanishing terms for A - f3, ... ,A - (k - I )f3im
plied by Lemma 6.5, this reduces to 

Xp(A - 13) 

= ( - l)k-1 [XK(A - k{3) - XK(A - (k + 1){3) 

+ XK(A - (k + 2){3)"'] 

(6.15 ) 

W 

But A - kf3 ~ <I> where <I> is singly atypical of type w(f3) 
with €(w) = ( - I )k-I. Thus 

xd<l» =XW({J) (<I» = (-I)k-IXp (A- kf3), (6.16) 

and therefore 

ch V(A) = XL (A) + XL (<1». ( 6.17) 

Now we shall describe a construction that finally links 
A, which is singly atypical of some arbitrary type 13, with 
some dominant weight singly atypical of type 13m I . For the 
given dominant weight A we apply Lemma 6.5 to obtain the 
dominant weight <1>; let <1>0 = A and <1>1 = <1>, and let 
130 = 13 and 131 = w(f3) be the odd roots with respect to 
which <1>0 and <1>1 are atypical. From the construction proce
dure 13 I <130' with equality only if <1>0 - 130 is dominant. 

Then we apply Lemma 6.5 to <1>1' leading to <1>2 andf32 
etc. So we build a sequence of dominant weights 
<1>0,<1>1,<1>2"" and associated roots 130 ,131,132"" such that <1>; 
is singly atypical of type 13; and <1>; + I is the weight of the 
primitive vector of V( <1>;) that generates the maximal sub
module. 

Then, according to (6.17): 

chV(<I>;) =xd<l>;) +XL(<I>;+I)' (6.18) 

Also 130 ;;.131 ;;.132;;"" But if 13; i=f3ml then the set <1>; - tf3; 
for which <1>; - tf3; is dominant is finite (this follows easily 
by considering the components of the weights in the Eli ba
sis). Therefore, the subsequences of equal elements in the 
sequence 130 ;;.13 I ;;.132 ;;. ... are finite. As a consequence, after 
a number of steps we necessarily end up with the lowest 
element of at, namely f3ml' At this point we stop our se
quence: we now have the dominant weights <1>0,<1>1 ,<1>2, ... ,<I>s 
and associated roots 130 ;;.131 ;;.132;;" .. > f3s = 13m I (and 
f3s _ I i=f3ml ), and (6.18) is valid at every step. Also (6.9) is 
true at every step. Hence, 

ch V(<I>;) =ch V(<I>;) + ch V(<I>;+ I)' 

ch V(<I>;) = XL (<1>;) + XL (<1>;+ I) 

(i=O,I, ... ,s-I). ( 6.19) 

But for <1>., which is atypical of type f3s = 13m I , we can apply 
Corollary 6.12, giving ch V( <I> s) = XL (<I> s ). Then the set of 
Eqs. (6.19) imply ch V(<I>s_ I) = XL (<1>5- I ), and one can 
systematically proceed backwards in the sequence. Hence, 

ch V(<I>;) = xd<l>;), for i = s - 1, s - 2, ... ,1,0. 
(6.20) 

This establishes our final corollary of Proposition 6.8. 
Corollary 6.21: If A is singly atypical then 

ch V(A) = XL (A). (6.21) 

This asserts that the Bernstein-Leites character formula,30 
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(3.22), is valid for all singly atypical representations of 
sl(mln). 

Finally, we shall show how the formula (6.21) can be 
rewritten in terms of characters of induced modules. Let A 
be singly atypical of type 13, as in (6.3), and let wp be an 
element of W such that 13 = wp (13m I ). Then we find 

(wp- I 'A\f3ml) = (wil(A+p) -p\f3ml) 

= (wp- I (A+p)\f3ml) 

= (A+P\Wp(f3ml» = (A+p\f3) =0. 
(6.22) 

Now we define the parabolic subalgebra 

P=BffJCe( -f3ml)' (6.23) 

where B is the Borel subalgebra defined in (2.17). Note that 
P is a solvable subalgebra of G, since [e( - 13m I ),B ] c;;;.B. 
Let A = Wi I. A, with (A \f3ml ) = 0 as shown in (6.22), and 
define a one-dimensional B module, CV,t, by 

n+v,t =0, hv,t =A(h)v). VhEl). (6.24) 

Since [e( + 13m I ),e( - 13m I )] = hpm" we obtain, using 
(2.18) and (6.24): 

e( + f3ml )e( - f3ml )v). = hPm' V,t = A(hpm, )V,t 

= (A \f3ml )v,t = o. (6.25) 

Therefore, Cv,t can be naturally extended to become a one
dimensional P module by putting e( - f3ml )v,t = O. Conse
quently we can define the induced module 

X= Ind~Cv,t, 

whose character is given by 

II (1 + e- Y) 
YE d)t- /3 ch X = e,t _-:.... ____ (1 + e - ml) - I 

= ~ e,t + p (1 + e - 'OPml ) - I • 

Lo 

(6.26) 

(6.27) 

Since w(L I ) = L I , w(Lo) = €(w)Lo and W(A + p) 
= wWi I(A + p), we then find 

LI ~I ,I> L w(chX) =- L €(w)ewwp (A+p)/(1 +e-w"'ml). 
WE w Lo WE W 

(6.28) 

Setting w' = wWp- I, we have wf3ml = w'wpf3ml = w'f3, and 
(6.28) becomes 

L w(chX) 
WE W 

=~ L €(w'wp )eW'(A+P)/(1 +e-W'p) 
Lo W'E W 

(6.29) 

Thus we have shown that XL (A) can be formally written as a 
Weyl average of the character ch X of an induced module. 

Unfortunately, this approach has not enabled us to give 
a proof of (6.21). Note that trying to extend B with e( - 13) 
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(P i=Pml) in (6.23) would not give rise to a subalgebra. In (A + piP I) = (A + p1P2) = 0 
particular, when trying to extend this approach to multiply and 
atypical A, the most obvious parabolic subalgebra to consid-
er might not exist. (A+pIP)i=O, if Pi=P P P2' (7.1) 

VII. DOUBLY ATYPICAL REPRESENTATIONS 

In considering singly atypical representations in the last 
section we eventually arrived at a familiar enough Kac
Weyl type character formula; in fact the Leites character 
formula. That we did so via an infinite expansion (6.11) in 
terms of Kac characters was apparently incidental. Rather 
than proceeding directly to the general case we prefer first to 
confine our attention to doubly atypical representations in 
this section. This will serve to illustrate the structure of our 
new formula and the crucial notion of truncation in a rela
tively simple context. 

Throughout this section, therefore, it is to be assumed 
that the integral dominant weight A of sl(m/n) is doubly 
atypical of type (P I ,P 2 ) that is, 

o 

From the proof of Lemma 6.3 we deduce that 

o 

A i _ l •b 

-x = A i •b 

{Ajc la + l..;c..;b}n{ - Akb Ij..;k..;i - n = {o}, (7.5a) 

and also 

{Ajc la + l..;c..;b}U{ - Akb Ij..;k..;i - n 
~{0,1,2, ... ,x - n. 

The cardinalities ofthe sets in (7.5) then lead to 

(b-a) + (i-j) -1..;x. 

(7.5b) 

o 
In the light of this lemma we make the following defini

tion. 
Definition 7. 6: A is critical if x = i - j + b - a-I, oth

erwise it is noncritical. 
It is to be noted that the critical value for x is equal to the 

hook length of the path connecting the two zeros in the atypi
cality matrix (where the zeros themselves are to be disre
garded in the path): 

a b 

(7.7) j ... x--O ... 

I 
... 0 -x ... 

Also note that it follows from the proof of Lemma 7.3 that in 
the case of a critical A, the elements of the atypicality matrix 
satisfy: 
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Without loss of generality we let PI = Pjb and P2 = Pia with 
1<j<i..;m and l";a<b";n, so that PI >P2' By virtue of 
( 4.2c) and (4. 3c) it follows that the atypicality matrix takes 
the form: 

j.(... : ~ ... ), (7.2) 

I ... 0 -x'" 

where x is a strictly positive integer subject to the following 
constraint. 

Lemma 7.3: With the notation of (7.2), 

x>i - j + b - a-I. (7.3) 

Proof Consider the part (A kt ) of the atypicality matrix 
A,\ withj..;k..;i and a..;t..;b, andA kt = (A,\ )kt: 

{Ajc la..;c..;b}U{ - Akb Ij..;k..;i} 

= {0,1,2, ... ,x}, 

with 

{Ajcla..;c..;;b}n{ -Akblj..;k..;i} = {O,x}. 

(7.4 ) 

(7.8a) 

(7.8b) 

Given PI = Pjb andP2 = Pia with PI >P2' they determine a 
unique element W 12 of the Weyl group Wwith the following 
action on any A. E 1),* where A. = (PI ,P2, ... ,Pm IVI ,v2, .. ·,vn ): 

W 12 ("·'Pj,· .. ,Po .. ·I .. ·,va, ... ,vb,· .. ) 

= ( .. ·,p;, .. ·,J-lj, .. ·I .. ·,vb, ... ,va,· .. ), (7.9) 

i.e"pi andpj, and Va and Vb are transposed and all the other 
components of A. are left invariant. Note that €( W 12 ) = + 1, 
but nevertheless if w12 ·A. = A. then A. is vanishing (this is 
because W 12 is the product of two commuting Weyl elements 
a and r in Sm and Sn, respectively, with €(a) 
= €(r) = - 1, such that a·A. =A. and 7"A. =A.). We de-

note the hyperplane in 1)* which is invariant under the dot 
action of W l2 by h 12 : 

hl2 = {a E 1)*lw12 'a = a}. (7.10) 

Let A be doubly atypical of type (PI ,P2 ) = (Pjb ,{3;a ), as 
in (7.1) and (7.2). Then (4.1c) implies that 

Pi + Va + m - i-a + 1 = Pj + Vb + m - j - b + 1 = 0, 
(7.l1a) 

and 
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/-lj + Va + m - j - a + 1 

- (/-li + Vb + m - i - b + 1) = x. (7.llb) 

Hence 

x = /-lj -/-li - j + i = Va - Vb - a + b, (7.llc) 

so that 

= ( ... ,/-li + j - i, .. ·,/-lo .. ·I""va'''',Va + b - a, ... ). 
U) (i) (a) (b) 

(7.12) 

It then follows from (2.29)-(2.31) that 
W 12 ' (A - X{3I) = w12 (A - X{31 + p) - p = A - X{3I' In 
other words, the string A - t{31 (t EN) intersects the hyper
plane h12 in A - X{31 . Similarly, one can show that the string 
A + t{32 (t EN) intersects the hyperplane h 12 in A + X{32 . 

It follows that if A is doubly atypical of type ({3 I ,(32 ) 
then the weights A - X{31 and A + X{32 are both vanishing. 
In the critical case one can further deduce the following 
lemma. 

Lemma 7.13: Let A be doubly atypical and critical. 
Then every A + t{32 - S{31 with either S E {1,2, ... ,x - l} and 
t E Z, or t E {l,2, ... ,x - t} and S E Z is vanishing. 

Proof We first consider elements of the form A - S{31 
with S E {1,2, ... ,x - I}. Remember that the atypicality ma
trix A A _ sP, is obtained from A A by subtracting S from the 
numbers in thejth row and adding S to the numbers in the b th 
column. But from (7.8) it follows that A A _ sp, has either two 
equal rows or else two equal columns provided 
S E {1,2, ... ,x - t} (for S = x, one would have two equal rows 
and two equal columns). And, as shown in Sec. VI, A. is 
vanishing if and only if A.< has two equal rows or columns. 
This proves the statement for S E {1,2, ... ,x - t} and t = O. 
But if A A _ sP, has two equal rows, say row (j) = row (k) with 
j < k < i then A A _ sp, + tP

2 
also has these two rows equal, since 

A A _ sf3, + tP
2 

is obtained from A A _ sp, by adding t in row i and 
subtracting t in column a. A similar result applies if A A _ sp, 

has two equal columns. This proves the S E {1,2, ... ,x - t} 
and t E Z case, and the t E {1,2, ... ,x - l} ands E Z case has a 
similar proof. D 

Further consideration of (7.4)-(7.8) along the same 
lines leads to an alternative prescription for criticality. 

Lemma 7.14: Let A be doubly atypical of type ({3 I ,(32 ) 
then A is critical if and only if A - S{31 is vanishing for all 
S E {1,2, ... ,x - l} or, equivalently, if and only if A + t{32 is 
vanishing for all tE {1,2, ... ,x -l}, where x is such that 
A - x{31 and A + X{32 lie on the hyperplane h12 defined by 
(7.10). 

If we consider the plane containing the lattice of weights 
A = A - kl{31 - k 2{32' with kl ,k2 E Z, the previous lemmas 
may be illustrated by identifying lines of vanishing weights. 
This is done in the case ofsl(3/4 ) for A = [03;0;002], which 
is noncritical, and A = [11;0;010], which is critical, in Figs. 
1 and 2, respectively. The second example corresponds to the 
case discussed at length in Sec. IV, where it was used to rule 
out all formulae of the Kac-Weyl type. 
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• • 
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FIG. 1. The lattice of weights A E 'tf!" contributing to the character 
XT(A)=l:AEf,,(_l)I"-AIXK(A) in the noncritical, doubly atypical 

case A = [03;0;002] ofsI(3/4), for which 

A" = [! ~ ~ -~l ' 
o -1 -2 -5 

so that /3, = /3'4' /32 = /331 and x = h + I = 5. The nonvanishing, contrib
uting weights are indicated bye, the nonvanishing but noncontributing 
weights by " and the vanishing weights by O. The boundary of the cone 9ff " 
is indicated by =, the hyperplane h 12 by -0---0-, and the lines of van
ishing weight by --0-- ---0--. 

We denote by.? A the following set oflattice points: 

.? A = {A + k l {31 + k 2{321k l ,k2 E Z}, (7.15) 

and denote by Crff A the cone in .? A with vertex at A: 

Crff A = {A - k l {31 - k2{32Ik)Jk2 EN}. (7.16) 

From (3.18) and (3.22) it follows, in this doubly atypical 
case, that the Leites formula can be written as follows: 

xd A ) 
00 00 

L L (-I/ ,
+

k2
XK(A-k l{31 -k2(32) 

k, ~O k2 ~O 

= L (-I)IA-'<lxK (A), (7.17 ) 
A E '(/ A 

where ( - 1) IA -.< I is defined for points A. of the lattice .? A 

by ( - 1) I A - .< I = ( - 1) k, + k2 for A. = A - k I (31 - k
2

{32 . 
This can be interpreted as a formal, infinite, expansion of the 
Leites formula in terms of Kac characters, X K' 

The cone Crff A defined in (7.16) has an intersection with 
the hyperplane h 12 , and we further define the truncated cone 

Van der Jeugt et al. 2298 



                                                                                                                                    

/ 
/ 

/ ,/ 
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" fl+x f3 2 ;/ / / 
"- / / / 

" " ,/ /' ;/ , 
" / / / 

" ;/ ;/ 

'x / "- / / 

" X ? 

" / , / " / 

X X 
/ "- / "- / 

/ X X 
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"~( ;/ 
/ // i "- , "-
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• • " " "- , 
• " "" "-

~ 

FIG. 2. The lattice of weights A E 'C': contributing to the character 
Xr(A) =l:AE r., (_l)IA-AIXK(A) in the critical, doubly atypical case 

A = [11;0;010) of sl(3/4), for which 

AA = [~ 3 - ~ - ~l ' 
o -1 -3 -4 

so that /3, = /3'4' /32 = /33' and x = h = 4. The nonvanishing, contributing 
weights are indicated by., the non vanishing but noncontributing weights 
by ., and the vanishing weights by O. The boundary of the truncated cone 
'C .: is indicated by =, the hyperplane h '2 by --0-----0--, and the lines of 
vanishing weight by -0---0-. 

CtJ : to be the subset of the set of weights of CtJ A that are on 
the same side of the hyperplane h12 as A (the weights of the 
intersection itself are to be excluded). Ifwe denote by f} 11 the 
half-space off}· that is on the same side of the hyperplane h12 

as A, then 

(7.18 ) 

These notions are also illustrated in Figs. I and 2. 
Finally, we introduce our new character formula. 
Definition 7.19: If A is doubly atypical of type (/3 I ,/3 2 ), 

then in the notation of (3.18), (3.22), (7.16), and (7.18): 

XT(A) = 

L (-I)IA-AIXK(A.) =XL(A), 
AE '6 A 

if A is noncritical, 

L (-I)IA-AIXK(A.), 
AE'(;'t 

if A is critical. 

(7.19) 

In other words, the expansion of X T (A) in terms of X K (A.) 

2299 J. Math. Phys., Vol. 31, No.9, September 1990 

runs over the complete cone. CtJ A if A is noncritical, and over 
the truncated cone CtJ : if A is critical. 

For our two examples the nonvanishing weights con
tributing to the summations in (7.19) have been signified by 
full circles in Figs. I and 2. In the case of the second example 
the restriction of contributions to the truncated cone leads to 
the result (5.26) quoted in Sec. V as the sl( 3) ED C ED sl( 4) 
decomposition of the irreducible module V( A) of sl (3/4 ) 
with A = [11;0;010]. 

It should be stressed that our new character formula 
XT(A) is nothing other than the Leites formula XL (A) if A 
is doubly atypical and noncritical, as in the case of our first 
example. 

We shall now establish some equivalent expressions for 
XT(A) when A is doubly atypical and critical. In the nota
tionof (3.21),!J.L (A) = lit '\ {PI ,/32} and correspondingly 
XL (A) is defined by (3.19) with X = L. It is convenient to 
generalize the notation slightly so that 

XL(A) (A.) = L 0-
1 L E(W)w{e

A
+ PO II (1 + e-{3)} , 

WE W {3E llL(A) 

(7.20) 

where the use of A. and A is to be noted, as well as the special 
case XL(A) (A) = XL (A). 

Lemma 7.21: Let A be doubly atypical and critical, then 

(i) XT(A) = XL(A) (A) + kL(A) (A - /31) (7.21a) 
and 

(7.2Ib) 

Proof Because of the lines with vanishing weights (see 
Lemma 7.13) it follows that 

00 

XL(A) (A) = L (- l)kXK (A - k/32) 
k=O 

+(-l)X f f (_l)k,+k2 

k, = 0 k2 =0 

XXK (A - X/32 - k l /31 - k2/32)' (7.22) 

The second summand in (7.22) can be rewritten as 

(-l)X L (_I)IA-X{3,-AIXK (A.) 

A E 'C" -x/3t 

=2(-l)X L (_I)IA-X{3,-AIXK (A.), (7.23) 
Ae ·(;'t-X{3t 

since h12 splits the cone Cfj A _ x{3, into two parts CtJ : _ x{3, and 

Cfj ;: _ x{3, such that CtJ ;: _ x{3, = W12 . CtJ : _ x{3,' and X K vanish
es when evaluated at points of h 12 n CtJ A _ x{3, • But again be
cause of the lines of vanishing weights given by Lemma 7.13, 
we have, 

00 

XT(A) = L (- l)kXK (A - k/32) 
k=O 

+ L (_l)IA-AIXK (A.), (7.24) 
..t e (C:: ~ x{J. 

X L(A; (A. - /31 ) 

= (_l)x-1 L (_1)IA-X{3,-AIXK (A.).(7.25) 
Ae'C A _ x {J2 
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Combining (7.22)-(7.25) leads to (7.21a). 
To prove (7.21 b ), note that there is the same symmetry 

for A + X/32 as for A - X/31 , i.e., 

XL(A)(A+x/32) =2 I (_I)I.t+xP2 -.t I
XK (A). 

A.E(6't+X{31 

(7.26) 

But, due to the vanishing weights described by Lemma 7.13, 
it is not difficult to see that 

(_1)X I (_I)IA+X.B2 -.t I
XK (A) =XT(A), 

.A.e'C/+ X (J2 

(7.27) 

which implies (7.21b). 0 
The character Xx (A) was defined in (4.9) for a matrix 

G x (A) with entries 0 or 1. This restriction on the entries 
may be relaxed, and G x (A) replaced by an arbitrary matrix. 
In particular, for the doubly atypical and critical case under 
consideration, we may replace Gx(A) by the matrix 
M = (Mkc ) (1..;;k";;m; l..;;c..;;n), where 

if (k,c) = (i,a) 

if (k,c) = U,b) 

otherwise. 

(7.28 ) 

Denoting the corresponding characters by X M (A) we have 
the following lemma. 

Lemma 7.29: Let A be doubly atypical and critical. 
Then 

(7.29) 

Proof Using the explicit expression (7.20) for 
XL(A) (A), (7.21b) gives 

XT(A)=L o-
1 I E(W)w{e

A
+ Po II (1+e-.B)} 

WE W .BEt.L(A) 

xw{eA-.B1+P<.) II (1 +e-.B)}. 
.BE t.L(A) 

(7.30) 

But the right-hand side of (7.30) is equal to 

L o-
I I E(w)w{e

A
+ Po(1 +!e- P1 ) II (1 +e-.B)}, 

WE W 2 PEt.L(A) 

and this is exactly XM(A) with GM(A) given by (7.28). 0 
Note that, although the new character X T ( A) is defined 

as a formal infinite expansion of Kac characters, X K (A), 
both Lemma 7.21 and Lemma 7.29 show that XT(A) is a 
finite sum of Weyl characters Xw(A) if A is critical. The 
same is true if A is noncritical by virtue of the definition 
(7.19). 

In the next section we shall define X T (A) more general
ly for multiply atypical representations, and conjecture that 
ch V(A) = XT(A) for all irreducible modules of sl(m/n). 
Suffice to say at this stage that for all the doubly atypical 
cases we have examined, including that of the key counterex
ample of Sec. IV, the character of the irreducible module 
appears to be given correctly by 
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Conjecture 7.31: The character of the irreducible mod
ule V(A) ofsl(m/n), with A doubly atypical, is given by 

ch V(A) = XT(A), (7.31) 

withXT(A) defined in (7.19). 

VIII. MULTIPLY ATYPICAL REPRESENTATIONS 

Let A be an integral dominant weight ofsl(m/n) that is 
multiply atypical of type (/3I,/32, ... ,/3N)' with /31 
>/32>'" >/3N' i.e., 

(A + pl/3;) = 0, for i E {1,2, ... ,N}, 

{PI ,/32,· .. ,/3N}Cat, 

(A + pl/3) =1=0, for /3 Eat \. {PI ,/32 , ... ,/3N}' (8.1) 

We shall also assume that N~2, since N = 0 corresponds to 
typical representations and the case N = 1 is covered by Cor
ollary 6.21. The atypicality matrix AA has the following 
form: 

o 

o 

o 

o 
(8.2) 

where the N zeros corresponding to /3 I' /32 , ... ,/3 N are ordered 
from the top right-hand corner of A A to the bottom left-hand 
corner. We shall refer to these zeros as the first, second, ... , 
Nth zero, and call x ij (i <j) the integer in the corner of the 
hook connecting the ith andjth zero. Obviously, every xij is a 
positive integer, and from (4.2c) 

Xij=X;k+Xkj' i<k<j. (8.3) 

To every pair (/30/3) with i<j there corresponds a 
unique w ij E W, defined as before in (7.10), and a corre
sponding hyperplane hij defined by 

hij = {a E f)*:wij·a = a}. (8.4) 

With the given A, hij divides f)* into two half-spaces and the 
one containing A is called f);j. Just as in (7.15) and (7.16) 
we define the lattice .c£' A and the cone CtJ A : 

N 

.c£' A = {A + I k;/3; Ik; E z}, (8.5) 
i= I 

N 

CtJ A ={A- I k;/3;lk;EN}. (8.6) 
;=1 

For A E .c£' A we define 
N N 

IA-AI=Ik;, ifA=A-Ik;/3;. (8.7) 
;=1 ;=1 

Note that the Leites character XL (A) has the following ex
pansion: 

XL(A) = I (_1)IA-.t IXK (A). 
AE (C A 

(8.8) 

Just as in Sec. VII, we shall now show how to truncate 
the cone CtJ A in order to define the new character formula. 
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For any two neighboring zeros, i and i + 1, in the atypicality 
matrix, we can apply Lemma 7.3 as we did in the doubly 
atypical case, and establish that the element x;.; + I is always 
greater than or equal to the hook length connecting zero i 
and zero i + 1. In the multiply atypical case, ifj> i + 1, xij 
can actually be less than the hook length of the path connect
ing zero i with zero j. 

Definition 8.9: We say that the element xij is critical if 
(i) x ij' hook length of the path connecting zero i and j; 

and 
(ii) either i = j - 1, or i <j - 1 and x; + IJ is also criti-

cal. 
Note that this definition is recursive in i for each value of 

j: the criticality of xj - IJ is well defined by (i), and then we 
have to use (i) and (ii) in order to determine successively 
the criticality of xj _ 2J' x j _ 3J"'" xij' 

Weare now in a position to define the truncated cone 
C(;f t . 

Definition 8.10: If A is multiply atypical as in (8.1 ), then 
with the notation of (8.2) and Definition 8.9, CC t 
= CC An (n;}Jd ), with (iJ) such that xij is critical. 

Notice that this definition replaces that appropriate to 
the doubly atypical case, (7.18), thereby enabling us to in
troduce our new character formula by means of the follow
ing definition. 

Definition 8.11: In the notation of Definition 8.10 and 
(3.18 ) 

XT(A) = L (-I)IA-'<IXK (..1). ( 8.11) 
AE'6't 

As a consequence, if none of the elements x ij are critical, the 
summation in (8.11) is over the complete cone C(;f A and 
XT(A) is simply equal to the Leites character XL (A). 

To turn to the critical case: in the extreme situation for 
which every xij in (8.2) is critical there exists an analog of 
(7.21 b ). Remember that the proof of (7.21 b) made essential 
use of the facts that there were lines of vanishing weights, 
and that there was a complete symmetry when cutting the 
cone, with vertex at A + X/32' into two pieces. In the more 
general case this complete symmetry is still present provided 
that every x;,i+ I in (8.2) is critical. Indeed, one can verify 
that in such a case the N-dimensional cone, with vertex at 

A, = A + X12 /32 + X13 /33 + ... + XIN/3N, (8.12) 

splits into N! pieces, all of which give rise to the same contri
bution when the sum over ( - 1) IA -.< IX K (A) is taken, and 
one of which is precisely C(;f t . The argument again involves 
an analysis of the vanishing weights, and a "geometrical" 
argument describing the position of the truncated cone as 
one of the N! pieces of a larger cone with vertex at A" Hence, 
if A is atypical of degree N and totally critical, in the sense 
that every x;,; + I for 1 ,i < N is critical, and hence also, every 
xij in (8.2) is critical, the analog of (7.21b) takes the form: 

XT(A) = (l/N!)( - 1)IA,-AIXL(A) (A,), (8.13) 

An examination of both critical and noncritical cases 
has led us to the following generalization of Conjecture 7.31. 

Conjecture 8.14: The character of the irreducible mod
ule, V(A), ofsl(m/n) having highest weight A is given by 
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ch V(A) =Xr(A) = L (-I)IA-'<IXK (..1), 
AErct 

(8.14) 

where the summation over A is carried out over the truncat
ed cone C(;f t defined in (8.10), and X K (A) is the Kac charac
ter (3.18). 

So far we have not been able to prove (8.14) in general, 
but we now present some evidence in favor of its validity. 

One surprisingly interesting case is that of the trivial 
one-dimensional representation with highest weight A = O. 
For sl(m/n), with m,n, the corresponding atypicality ma
trix is given by 

m-l m-2 m-3 

2 
1 
o 

1 
o 

-1 

o 
-1 

-2 

3-n 

2-n 

I-n 
( 8.15) 

and /31 =/3lm' /32 =/32,m-I' /33 =/33,m-3"'" /3m =/3ml' 
Also, every xij (l 'i<j<.m) is critical. Hence, 

m 

C(;f 0 = {- L k;/3;:k; EN} 
;= I 

= {( - k l , - k2, .. ·, - km Ikm,km_ l , 

... ,kl ,0, ... ,0):k; EN}. 

But then the truncation (8.10) implies 

( 8.16) 

C(;f 0+ = {( - k l , - k2, .. ·, - km Ikm ,km _ I , ... ,kl ,0, ... ,0): 

(8.17) 

Therefore, with the notation k = (km,km _ I , ... ,kl ,0, ... ,0), 
k' = ( - k l , - k2, ... , - km) and Ikl = Ikl + k2 + ... 
+ k m I, we obtain 

k2 

L (_1) lk IXk (k'lk) 
k, =0 

= L (- 1)lkIXK (k'lk), (8.18 ) 
k 

where the summation is over all partitions k with i(k)<.m. 
Making use of the explicit form for X K (A) in (3.12), this 
becomes 

Xr(O) =LI L (-I)lkIL o-
1 L E(w)ew«k'lkl+p) 

k we W 

= II (l + e-.B) L (- 1)lkIXw (k'lk). 
.Be ~,+ k 

( 8.19) 

where Xw(k'lk) is the Weylcharacter (3.20) oftheirreduci
ble Go module VO(k'lk). But this can be expressed in terms 
of S functions if we make the usual substitutions x; = eEl for 

1 <;i<.m and Ya = e8u for 1 <.a<.n: 

Xw(k'lk) = ch VO(k'lk) = Sk' (X)Sk (Y) 

(8.20) 
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Then, denoting the partition k = (km, ... ,kl ,0, ... ,0) by r, where, from (8.28), 

(8.18) can be rewritten as (O')m - k = ("',O'm _ I - k m _ l'O'm - k m), (8.31a) 
m n 

XT(O) = III JJI (1 +X;-Iya ) + (_1)lrISr(x-I)Sr(Y), 1/= (VI"",vum,km,0, ... ,0,km_pO"·0,km_2'''')' (8.31b) 

(8.21) 

where in principle the summation is restricted to those parti
tions r with I(r)<m, but may be extended to include all 
partitions sincesr(x) = ° if I(r) >m. Moreover, 

m n II II (l+x; IYa)-I=L(-l)lrISr(x-I)Sr(Y), 
j= 1 a= 1 T 

(8.22) 

by virtue of Cauchy's classical identity, 40 

m n 

II II (1- u;va) -I = LSr(u)sr(v), (8.23 ) 
i= 1 a= I l' 

Hence 

XT(O) = 1 = ch V(O), (8.24 ) 

as required. 
Turning to the more general case, described in Sec. V, of 

an arbitrary irreducible covariant tensor module V( Au) la
beled by the partition 0', the zeros of the atypicality matrix 
are at positions (i,b) specified by (5.13) and illustrated in 
(5.15). It follows that in the notation of (8.1) we have 

(/31./32, .. ·,/3N) = ( ... ,13m l.u
m

_,+2,/3m,u
m

+I)' (8.25) 

Moreover, for k = 1,2, ... ,N - 1 we have 

x N _ k,N _ k + 1 A ( A) m k,um _ k + , + k 

(8,26) 

which is the hook length between neighboring zeros of 
A(A). Hence X;,; + 1 is critical for all i. This implies thatxij is 
critical for all i andj, so that A is totally critical. 

From the definitions (8.11), (3.18), and (3.20) of 
XT(A), XK (A) and Xw(A), respectively, it follows that 

XT(A) II (1+e- p )-I= L (-l)IA-AIXw(.A.). 
Petl.,+ Ae'f-'t 

N 

Here It A - L k;/3i> or more explicitly, 
;=1 

It = ("',O'm_1 -km_I,O'm -kmlvp""vum,km, 

(8.27) 

(8.28) 

where there are 0'; _ I - 0'; zeros between k; and k; _ 1 in the 
second set of components of It, for i = m, m 1, ... , 
m - N + 1. The restriction of It to the truncated cone C(i t 
in (8.27) may be expressed in terms of the parameters k; 
appearing in (8.28) by making use of (7.18) and its general
izations. The fact that A is totally critical leads to a summa
tion defined by 

Since Go = sl(m) ~ C ~ sl(n), we can write 

Xw(It)=s(U)m k(X)S1/(Y)' 
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(8.29) 

(8.30) 

With this notation we have the following lemma. 
Lemma 8.32: Let 

XT(A) II (1 + e-p)-I 
peA,+ 

= L (_1)IA-AIS(U)m_ k(X)S1/(Y)' 
k 

(8.32) 

In principle the summation over k in (8.32) is a nested N
fold summation, where N is the degree of atypicality, as in 
(8.1). However, without loss of generality, the summation 
may be extended to an m-fold nested summation over 
k = (km,km _I , ... ,k l ), since any additional terms included 
in this extension lead to S functions s1/ (y) that vanish identi
cally by virtue of the fact that the corresponding sequence 1/ 
contains positive elements beyond the nth position. It should 
perhapsbestressedatthispointthatin (8.30) and (8.32) we 
have again made use of the parametrizations: 

Xj = eEl (l<i<m) and Ya lu (1<a<n). (8.33) 

We shall now consider the function s,,(xly), given by 
(5.7b). Multiplication by the same factor as in (8.27) gives 

Sq(x/y) II (l+e-p)-I 
PEA,+ 

= II (1 + x;- IYa) - 1 L Sqlle (x)s", (y) 
i,a K 

T K 

by virtue of (8.22). Then the product rule (5.6a) for S func
tions gives: 

ST (y)s", (y) 

v 

whilst the quotient rule (5.6b) implies that 

LC~",ST(X-I) =SyiK(X- I
). 

Using these identities in (8.34) gives 

su(x/y) II (1+e p)-I 
PEtl.,+ 

"',V 

and finally by means of the definition25 

Sv;u(x) = L (_l)IKISyN (x I)su/K(x), 

we obtain the following lemma. 
Lemma 8.39: 

(8.35) 

(8.36) 

(8.37) 

(8.38) 

su(x/y) II (1+e P)-I=L(-l)IVlsv;u(x)Sy(y), 
PEA,+ v 

(8.39) 
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where the summation is over all partitions v. 
Our task is now to compare (8.32) and (8.39). In the 

former, the summation over k is restricted by (8.29) injust 
such a way that the parts of (0') m - k are weakly decreasing 
from left to right. It follows that 

(O')m -k= (0'1 -kl '0'2 -k2'''''O'm -km) 

(8.40) 

where;and rare both partitions. Clearly 1(;) + I( r) <.m, so 
that s(a)m _ k (x) = sr.{; (x) #0 is a standard sl(m) character 
defined as in (8.38). However, in general, '/], as defined in 
(8.31b), is not a partition and it is necessary to apply the 
usual modification rules39 for S functions to identify those '/] 
for which s'1/ (y) = ± Sv (y) #0 for some partition v. In fact 
s'1/ (x) = 0 unless the m tuple k is such that 

k; = (0'; - i) - (O"i - ti)' 1 <.i<.m, (8.41) 

for some m tuple t such thati<.ti < t j + I' Moreover, if (8.41) 
is satisfied, then the set 

{ - V'j + jp q < oo} 

= { - O'j - m + ill <.i< oo} 

X{ - O"i - m + t;p<'i<.m}-I (8.42) 

defines the partition v' conjugate to v such that s'1/ (y) 

= ± Sv (y) # O. That this is true follows from certain deter
minantal expansions of S functions and a combinatorial re
sult given by Macdonald40 linking a partition and its conju
gate. 

Conversely in (8.39), even if v is a standard partition, its 
length may be such that (v;O') will not define, in general, a 
standard S function Sv,a (x) of sl (m). Once again recourse 
must be made to modification rules25 to identify those terms 
for which Sv,a (x) = ± sr,{; (x) #0, with sr,{; (x) standard in 
the sense that both ; and r are partitions and 
1(;) + I( r) <.m. These modification rules, again based on 
determinantal expansions, imply that if v is a partition with 
Sv (y) # 0 then Sv,a (x) is non vanishing if and only if 

{O'j - j + 111 q < oo} ',J v'; - i - m + 111 <.i< oo} 

={0';-k j -i+111<.i<.m}, (8.43) 

for some m tuple k. This forces k to be such that there exists t 
for which once again (8.41) is valid. Indeed, each nonvan
ishing term Sv,a(x) gives rise to a term sr,{;(x) where the 
connection is made through the deletion of the sequence 
(v' I - m, v' 2 - m - 1) from the sequence (0'1,0'2 - 1, ... ) 
giving a new ordered list 

(;1 ';2 - 1, ... , - r2 - m + 2, - r l - m + 1) 

= (0'" - tl + 1,0"2 - t2 + 1, ... ,0', .. - tm + 1) 

= (0'1 - kl ,0'2 - k2 - 1'''''O'm - k m - m + 1), 
(8.44 ) 

in agreement with (8.40) and (8.41). 
Hence we have established 

L ( - 1) IA - A IS(a) .. _ k (X)S'1/ (y) = L ( ± )Sr,{; (X)Sv (y), 
k t 

(8.45a) 

and 
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L (- 1)lvISv,a(x)sv(Y) = L (± )Sr,{;(x)Sv(Y). (8.45b) 
v t 

where t runs over all m tuples in Nm with tl < t2 < ... < tm. 
All that remains in order to identify these two expressions is 
to verify that the sign factors are in agreement. This can be 
done. Hence, on comparing Lemmas (8.32) and (8.39), and 
using Theorem (5.7) we have the following theorem. 

Theorem 8.46: If Aa is the highest weight of an irreduci
ble covariant tensor representation ofsl(mln) specified by 
the partition 0', then in the notation of (8.11), this represen
tation has character given by 

ch V(Aa) =XT(Aa ). (8.46) 

While this result (8.46) is only a special case of our 
Conjecture 8.14, the conjecture has thereby been proved in 
the case of all irreducible covariant tensor representations of 
sl( min), regardless of their degree of atypicality. In addi
tion the Conjecture 8.14 is certainly correct in the case of all 
typical and all singly atypical irreducible representations, 
when it reduces to the Kac character formula and the Bern
stein-Leites character formula, respectively. Moreover, it 
has stood up to the test of extensive computer calculations 
which, as explained in Sec. IV, led to the downfall of all 

formulas ofthe Kac-Weyl type. In the light of all these tests 
we remain optimistic concerning the validity of Conjecture 
8.14, whose form we feel may well be amenable to rigorous 
derivation. 

IX. CONCLUSION 

In our analysis of character formulas for irreducible 
modules of sl(mln) we have essentially introduced three 
new character formulas: denoted by Xs(A), XJ(A), and 
X T (A). The first two can be expressed in terms of a generat
ing matrix, and hence they are of what we call the Kac-Weyl 
type (3.19). We have shown that X s (A) is equivalent to the 
Serganova-Serge'ev formula, and pointed out that, although 
Xs(A) coincides with the Schur function formula of Berele 
and Regev for all irreducible covariant tensor modules, and 
is thus correct in these cases, it does not give the correct 
irreducible character in all cases. The formula X J (A) seems 
to cover many more cases than Xs(A), but for XJ(A) we 
have also found counterexamples to its validity. Moreover, 
we have demonstrated that there exist irreducible modules 
for which the character cannot be written in terms of any 
formula ofthe type (3.19). 

We then introduced a different type of character formu
la, XT(A), which is a formal infinite expansion in terms of 
Kac characters XK(A) (i.e., characters of Kac modules). 
This new character formula coincides with the Bernstein
Leites formula, XL (A), in the singly atypical case, and can 
be regarded as a truncation of the Bernstein-Leites formula 
for multiply atypical cases. Having proved that XL (A), and 
hence also X T (A), is correct in the case of all singly atypical 
cases, we have also proved that the character XT(A) gives 
the correct irreducible character when A is the highest 
weight of any irreducible covariant tensor representation. 

Further extensive computer calculations lead us to con
jecture that all irreducible characters of sl( min) are given 
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correctly by the extended Kac-Weyl formula l'T(A) as in 
(8.14). 
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Classical scattering of a charged particle on an extended 
magnetic monopole 
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The classical equations of motion for a charged particle scattering on an extended magnetic 
monopole are found in a model that includes the possibility of charge exchange between the 
particle and the pole. The special case of a spherical shell of monopole density is examined in 
detail. Deviations from point monopole scattering are analyzed. 

I. INTRODUCTION 

A necessary requirement for the consistency of quan
tum electrodynamics in the presence of magnetic monopoles 
is the well-known Dirac quantization condition, I 

qg/Iie = n/2. (I) 

This formula together with the small size of the (experimen
tally measured) fine-structure constant implies that in order 
for the energy stored in the magnetic field surrounding a 
monopole to be less than or equal to the mass of the mono
pole (also clearly a necessary condition), some further 
modification to the laws of electrodynamics is required: The 
energy density must reach a "plateau" at a radius much larg
er than the Compton wavelength of the monopole, instead of 
continuing to grow as the radius decreases towards the 
Compton wavelength. This means that the monopole must 
have an internal structure described by a length scale so 
great that in a first approximation the pole may be consid
ered as a classical object. 2,3 There are various ways this 
could happen. 

One possibility is a generalization of the equation 

Fp.v = ap.A" - a"Ap.' (2) 

which governs the relationship between the vector potential 
A and the electromagnetic field F= (E,H). The field F in 
tum determines the energy density (-E2 + H2). The most 
elegant known modification to Eq. (2) is by generalization 
to non-Abelian gauge fields, permitting the type of stable 
classical monopole configurations first found by 't Hooft and 
by Polyakov in spontaneously broken SO (3).4,5 

A second possibility is a modification to the metric that 
is used to integrate the energy density, giving decreasing 
weight to the region nearer the center of the monopole. This 
occurs automatically for a monopole that is also a black hole. 
A third, closely related case occurs if a new scalar field is 
present, which modifies the energy density as a multiplica
tive factor. The vanishing of this factor at the center of the 
monopole (this occurs for a monopole in Kaluza-Klein gra
vitoelectrodynamics) again permits a consistent semiclassi
cal description of monopole structure, and again requires a 
generalization of standard electrodynamics. 

What are the implications of monopole internal struc
ture for scattering of charged particles? For an 't Hooft
Polyakov monopole the magnetic field strength is finite ever
ywhere, so there exists a class of orbits with sufficiently high 
energy and small impact parameter to pass straight through 

the monopole and emerge on the other side. When this hap
pens, some internal degree of freedom of the monopole (ei
ther its charge or internal angular momentum or both) must 
change in order to reconcile the conservation of total angular 
momentum with the behavior of the angular momentum 
carried by the crossed electric and magnetic fields (that 
would reverse sign if both charges stayed constant). 

In this work we implement conservation of total angular 
momentum by considering a spherically symmetric classical 
Hamiltonian for charged particle motion in a monopole field 
like that of't Hooft and Polyakov. This Hamiltonian repro
duces point charge/point monopole dynamics at large dis
tances from the monopole center, and reduces to free particle 
dynamics at very small distances. With this formalism we 
find that the possibility of charge exchange between the 
monopole and the charged particle emerges quite naturally, 
and that this exchange only occurs when the charged parti
cle actually penetrates the monopole. In order to keep the 
problem tractable we work in the small coupling limit 
( e2

/ lie -+ 0) , so that we may ignore the additional interaction 
due to the electric charge that may be deposited on the mag
netic monopole during the collision. 

Our formalism is established and the general features of 
the solutions are explored in the second section. The third 
section is devoted to the special case of a spherical shell of 
monopole density. The conclusion contains a summary of 
the results of the previous two sections and mentions some 
further questions that have been raised in the course of this 
work. Several interesting mathematical problems are solved 
in the two appendices. 

Our model of the interior of a magnetic monopole is not 
unique, since a variety of possibilities exist, including those 
mentioned above. In the absence of experimental observa
tions, the only criteria for selecting among models consistent 
with known physics are elegance and simplicity. Our choice 
is unrealistically simple, but nonetheless has the merits that 
it respects gauge invariance (necessary for the existence of a 
correspondence between classical and quantum mechanics 
including monopoles) and is sufficiently tractable to analy
sis so that it becomes possible to study a rich and intricate 
dynamics in considerable detail. While we take that as suffi
cient justification, we should still note the simplifications 
imposed. First and most obvious is the fact that we are using 
classical mechanics, which implies that our charged particle 
is heavy enough so that its Compton wavelength is small 
compared to the radius of the monopole. By the same token, 
we are neglecting any effects on the particle trajectory of 
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recoil by the monopole, which must be assumed to be much 
heavier still. Also, we are using the simplest non-Abelian 
gauge theory with monopoles, spontaneously broken Yang
Mills theory. While it is not known if there is in nature a 
grand unified gauge field dynamics accounting for all ob
served phenomena, it is known that any such theory would 
have to involve a much bigger gauge group than the SO (3 ) 
of Yang and Mills. Finally, purely for calculational ease, we 
shall assume that the radius of our monopole marks a sharp 
transition between an exterior which influences particles ex
actly as would a point Dirac monopole, and an interior in 
which the particle moves with no acceleration at all. Of 
course the classical, static 't Hooft-Polyakov field configu
ration is completely smooth, so that the transition between 
exterior and interior occurs gradually, only becoming com
plete at the exact center of the monopole. 

II. EQUATIONS OF MOTION 

To find the classical motion of a particle of charge q in 
the field of an extended monopole with total magnetic 
charge g we start with the Hamiltonian6 

H = (1I2m)(P + (1- /(r»[ (Sxr)/r2])2, (3) 

where S has dimensions of angular momentum and is as
sumed to have Poisson bracket relations 

{Sj,Sj} = EijkSk' 

with 

(S''') = - qg/c. 

(4) 

(5) 

The function/( r) may be loosely interpreted as a measure of 
the deviation from point monopole dynamics as a function of 
radial distance. For/=O we have point monopole dynamics, 
while for /= 1 we have free-particle dynamics. Thus / is 
usually chosen as a monotonically decreasing function of r 
obeying the conditions limr_oo/(r) = 0 and/(O) = 1. 

Using standard procedures we find the following equa
tions of motion: 

S = (1 - /)SX [(i-Xr)/r 2
], (6) 

mr= ~/X[(1-/)Sr+(rr,)Sl]' (7) 

where 

Sr=(S'")''' 
Sl=S - Sr' 

(8) 

(9) 

If we define L=m(rxi-) to be the "orbital" angular mo
mentum, then 

J= (rXP) +S 

=L+Sr +/Sl 

(10) 

(11) 

is a constant ofthemotion. So are lSI and Ii-I. Finally we note 

(12) 

This implies that far away from the monopole, where/::::::O, 
we find S·" is approximately constant, and the equations of 
motion for the charged particle become (in the limit / -+ 0) 

mr = - (S''') [(i-xr)/r2], (13) 
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which is the equation of motion for a particle with charge 
defined by Eq. (5) in the field of a point monopole. 

For motion nearer the pole with/approaching unity we 
choose to identify the change in qg/ c as due to a change in q, 
the charge of the particle. We see that (S·,.) is analogous to 
the third component of isospin,7 but since in this model 
(S''') can change continuously, we must consider the 
charged particle as a member of an infinitely large isospin 
multiplet. Since (S'7) can change while the particle is inside 
the monopole, the charge of the particle can be changed in 
the process of monopole scattering. So although J is con
served in this model, the charge of the particle by itself is no 
longer necessarily conserved. 

In order to understand the scattering orbits, note that 
far away from the monopole we have 

(14) 

and 

L 1 Sr' 
implying 

(15) 

J2=L 2+S;. (16) 
We see that a change in (S''') is accompanied by a change in 
ILl; . 

IlL 2 = - ~;. (17) 

If we start out with SII" then L 2 can only increase. This 
information suffices to give us a rough description of the 
orbits when the particle is far away from the pole. Well be
fore the scattering event the particle's path is restricted to lie 
on a cone of half-angle OJ = sin -1(L;lJ) centered about J 
with its apex on the center of the monopole.6 Well after the 
event the path is restricted to a new cone also centered about 
J with its apex on the center ofthe monopole but with half
angle {}f = sin -1(Lf/J), where 

Lf = (L ~ + a(s·,.)2)1I2. (18) 

If (S . ,.) is positive, the new cone opens in the same direction 
along J as the original. If it is negative then the new cone 
opens in the opposite direction. To complete the description 
of the scattering event, the angle (() that the particle has re
volved about the J axis must be specified. The polar scatter
ing angle, {} is given by 

cos({}) = - (LjLf/J2)COS«(() - Sgn(S''') 

X [(1- (L;lJ)2)(1- (Lf/J)f] 112. (19) 

So for a given /( r) and S the differential scattering cross 
section can be determined by finding a (S . ,.) and (() as func
tions of band r. Unfortunately, we know of no general way to 
determine these functions except by direct numerical inte
gration. 

III. SPECIAL CASE OF A SPHERICAL SHELL 

Many of the features mentioned above may be seen in 
the special case ofa particle with (S·,.) initially equal to lSI 
scattering on an infinitely thin spherical shell of monopole 
density. Define / such that 
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{

I, r<ro, 

/= l-(r-ro )/c5, ro<r<ro+c5, (20) 

0, r> ro + 15. 
We then take the limit 15 -+ o. Inside the shell, the particle 

moves along straight line trajectories and S remains con
stant. Outside the shell, (S·,.) is conserved and the particle 
behaves as if it were in the field of a point monopole. The 
behavior of the particle in the region of nonzero monopole 
density, where ro < r < ro + 15, is quite interesting and can be 
deduced directly from the conservation of 

(21) 

Since S cannot change discontinuously as the particle tra
verses the shell, L must change by Sl as/goes from one to 
zero. If the magnitude of the resulting L is greater than 
Lc =mro Ii-I (Lc is the maximum possible magnitude ofL for 
a given Ii-I at the radial distance ro ), then the particle cannot 
pass through the shell and it must undergo specular reflec
tion, i.e., it must bounce. Of course if S 1 is initially zero then 
L will not change in traversing the shell and the particle will 
be allowed to enter. The only aspect we are not assured of by 
this reasoning is whether the particle always passes through 
the shell when it is allowed to by the conservation law. We 
have calculated the orbits in the region ro < r < ro + 15 in the 
limit 15-+0 and in addition to verifying the aforementioned 
deduction, we have found that the particle always passes 
through the shell when allowed. 

A particle impinging on the shell from the outside will 
bounce off if (L - S1)2 >L~, and ifitdoes pass through, the 
change in L will be equal to - S 1. These same relations 
apply for a particle impinging on the shell from the inside 
except there is a relative sign change between Land Sl. 

In order to describe the classical orbits we define two 
dimensionless parameters 

{3=b Iro, (22) 

a=Lc/ISI. (23) 

If {3 > 1 then the particle never enters the shell and scatters as 
if from a point monopole. For {3 < 1 the particle rotates 
about the J axis an angle 

(tJ1 = (JIL)sin- I ({3) (24) 

before entering the shell. If S 1 is initially zero (as we shall 
assume here), it always passes through the shell into the 
interior. Once inside, the motion lies in a plane perpendicu
lar to L at the point of impact. This plane always contains the 
origin. Thus the motion inside the shell is restricted to a disk 
of radius ro. After entering, the particle subtends an angle 
.,p = 2 cos -I ({3) around the center of the disk before striking 
the shell again. It then either bounces or passes through. In 
general it will bounce (m - 1) times (with m still to be de
termined) and then exit at an angle tP = m.,p relative to the 
point of impact. In order for the particle to pass through the 
shell on its way out we must have 

(25) 

or 

(26) 
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Thus the particle can escape only if m.,p is within tP c of zero or 
11" where 

(27) 

We define m(.,p) as the smallest integer greater than zero 
such that 

(28) 

or 

(29) 

Regions where m ( .,p) = n are plotted in Fig. 1 as a func
tion of a (vertical) and .,p (horizontal). The outlines of these 
regions were obtained by setting both sides of the previous 
equation equal and solving for a in terms of.,p. Where two 
different regions would overlap the region oflower n always 
prevails (since the particle will always escape at the first 
opportunity) and we say that the region of higher n has been 
occluded. 

Since a scales with r 0' the "size" of the monopole, and .,p 
is explicitly a function of {3 only, we are particularly interest
ed in the behavior of the function m (.,p) for various fixed a's. 
In general this behavior is simple for large a and becomes 
more complicated as a-+O. 

For a > 2, the particle always passes straight through 
without bouncing, so m (.,p) = 1 and the outgoing charge is 
q cos ( .,p). For a < 2 the function m ( .,p) takes on an infinite 
number of values and lim",_o m (.,p) = 00. For 1 < a < 2, the 
angle .,p (the size of the angular steps the particle takes about 
the disk) is always less than twice the critical angle (tP c ), so 
the particle either passes straight through or bounces until it 
reaches the allowed region near 11" where it passes through. 
Thus m (.,p) is a decreasing function, always changing in unit 
steps except for possibly the last step [to the region where 
m (.,p) = 1] that may be greater than one. When a is less than 
one, it is possible for the particle to miss the allowed region 
near 11" on its first pass so m (.,p) is no longer monotonic and 

FIG. 1. Regions where m(I/I) = n are plotted for given I/Iltr (horizontal) 
and a (vertical). The regions with n<5 have been labeled with their corre
sponding n-values. Extrapolation to higher values of n is straightforward. 
Note that since biro =008(1/112), I/Iltr= I corresponds to b=O while 
t/lltr = 0 corresponds to b = ro' 
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develops a very complicated structure. A derivation of P( n), 
the probability that m ( "') = n given that the particle has 
struck the shell in the limit a --+ 0, is contained in the appen-

1, 

dices. The result is 

pen) = [4a¢(n)/311']g(n), 

where 

(30) 

- 1 + 2( n; ) + 2( ~ r -2( ~ r ( 1 + 2 In( ~ )) 
g(n) = 

+ (2( ~ ) - 1 r (( n;") + 1 )tn( 2( n;) 1) , no < n < 2no, 
(31) 

(n; r (41n 2 + 2), 

Here¢(n) is Euler's totientjunction and is equal to the num
ber of integers less than n that share no, common divisors 
with n; we define no = 11'/2a. 

IV. PHYSICAL OBSERVABLES 

The results above suggest that one might be able to dis
tinguish between pointlike and extended monopoles' by 
studying the scattering of charged particles from the mono
poles. Even when this is done, all physicalobservables will be 
identical in the two cases unless b, the irrlpact parameter, is 
less than ro, the size of the monopole. Below we shall discu,ss 
the difference in the charge distribution and theditterential 
cross section, du / d{} assuming die charged particle has actu
ally struck the monopole. In order to compare these predic
tions with experiment the contribution to the cross sections 
from orbits with b> ro must be added to the distributions 
discussed below. Such orbits are identical for the extended 
shell and the point monopole. In the limit ro -0 the contri
bution from orbits in which the particle strikes the shell goes 
to zero, so that in our classical (nonquantum) model there is 
no observable difference between an infinitesimally small 
monopole shell and a point monopole. 

For a point monopole there are an infinite number of 
cusps in the differential cross section, du/d{}, even when we 
exclude the contribution due to orbits with b> ro. The same 
is true for a monopole shell with a less than two. However, 
the infinite number of cusps in the point monopole distribu
tiol1"'are due to orbits with b arbitrarily close to 0, while for 
the shell, they are due to orbits with b arbitrarily close to roo 
As a -+ 0 the number of cusps for any finite range of the 
impact parameter (a < b < c:a,c < ro) tends to infinity. For a 
fixed a),. ° it is possible to calculate the contribution to 
du/ d{} for b < bl < ro. In this case there will only be contri-

butionsfromn<nmax wherenmax = (11'/a)~I- (b l /ro)2. 
The resulting spectrum appears to be random, presumably 
because effects of motion before entering the shell, while in
side the shell, and after leaving the shell combine in a hap
hazard manner. 

There is a striking difference between the tvVo differen-
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tial cross sections. The cusps in the point monopole differen
tial cross section are concentrated near iJ ~ 11', while the 
cusps in the. spherical shell cross section are more randomly 
distributed. For a < 2, the function {)( b) has an infinite 
number of discontinuities. Finally, we note that. in the case 
of a sheil, b < ro implies 

Isin({})I<2a. (32) 

So in the limit a-O, we find that {} is always within 2a of 
either 11' or 0, and there are an infinite number 'of cusps in 
both of these regions. 

The charge distribution, (1/ Uo )du/ dq, for a monopole 
shell of course is different from that of a point monopole. 
The point monopole has (1/uo)(du/dq)=~(q-qo), 
where qo is the initial charge, while an extended shell always 
has a distribution of finite width. For a> 2 the distribution is 
continuous and" varies from + qo to - qo. For d< 2 there 
are an infinite number of discontinuities, with 

(33) 

As a goes to zero the charge distribution peaksin two very 
small regions around % and - qo. 

When the particle is on an orbit which corresponds to a 
region of even n (i.e., it bounces an odd number of times) 
then it must exit through the allowed region near '" = 11' 

which results inS' r < 0. Orbits which correspond to Ii region 
of odd n exit through both allowed regions with equal proba
bility in the small a limit. Also, the average value of ¢(rt)/n 
differs for odd and even n by a factor of 2; 

lim.!. i ¢(2k - 1) = 2 lim.!. i ¢(2k) . (34) 
n-oo n k=1 2k-l n-oo, n k=l 2k 

The net result of these two effects is that the magnitude ofthe 
charge distribution near q-z - qo is approximately twice 
that of the distribution near q-zqo while the shapes of the 
distribution in these two regions are similar. Although the 
number of discontinuities in (qo/uo)(du/dq) increases 
without bound as a-+O, the distribution also approaches a 
continuous function in this limit. We found an approxima
tion for the limit function using techniques similar to those 
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used in Appendix A: 

lim~(du + du )::::;~(1 + (1_1)1/2 
a-O U o dq d( - q) rra2t 

-tIn -1 (
1 + (1 - t) 112) ) 

1112 ' 

(3S) 

where 

t= (1_~)I/2/a. (36) 

This approximation, when integrated over q, overpredicts 
the total cross section by about IS%. The discrepancy is 
attributable to use of the approximate solution to 

1 - F ( (1 - E'\) 
Y=l+F I-In l+FJ ' (37) 

namely 

F::::; (1 _ y)1/2, (38) 

which was used to sum the contributions due to partially 
occluded regions of n. A numerical solution is straightfor
ward but unilluminating. 

v. CONCLUSIONS 

Just as Rutherford was able to probe the structure of the 
nucleus by scattering charged particles on nuclei, the inter
nal structure of a monopole could be probed with similar 
scattering experiments. In this work we have used a very 
simple model to explore the question, what happens to a 
charged particle in the interior of a magnetic monopole? 

We have solved the special case of scattering on an in
finitesimally thin monopole shell. For this case the devia
tions from point monopole scattering of the charge and an
gular distributions have been studied, with particular 
attention paid to the limit in which the size of the spherical 
shell approaches zero. Because of the almost random vari
ation in the number of bounces made while the charge is 
inside the monopole, the detailed structure of these distribu
tions becomes extremely complicated. Nevertheless we were 
able to determine many of the characteristics of the distribu
tions. In addition, our explicit form of P( n) makes feasible 
the calculation of average values of many physical properties 
(such as time spent inside the monopole). 

Even though none have yet been found in nature, there 
are still many benefits to be gleaned from the theoretical 
study of magnetic monopoles. The concept provides a 
ground for exploring the structure, beauty, and consistency 
of theories, as well as seeking specific predictions of phenom
ena involving monopoles that differ from one theory to an
other. Thus, we learn from studying such questions today, 
and would only be rewarded further if monopoles were 
found in the future. 
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APPENDIX A 

Here we find P( n ) , the probability that a particle 
bounces exactly (n - 1) times given that it has struck a 
monopole shell in the limita( =mror/IS I) -+0 and for large 
n. These limits will be assumed implicitly throughout this 
appendix. 

Define x=sin(t/I/2) and P(n,x)dx as the probability 
that the particle bounces exactly (n - 1) times for x within 
the small range dx of x. Then 

-P(n,x) = tun (x)Pn (x)P(x)dx, (A1) 

-where tun (x) is the average width (as a function of x) of all 
of the regions within dx such that m( t/I) = n'Pn (x)dx is the 
number of regions such that m(t/I) = n within dx, and 
P(x)dx is the probability that sin(t/I/2) is within dx. Now 
we know 

P(x) = _1_ d(T 
(To dx 

=2x 

and also 

(A2) 

(A3) 

(A4) 

In Appendix B we prove that P n ( t/I) = tP ( n ) /1T and we are -left with finding I::.t/ln (x). 

For x and n such that 

xn < 1T/2a, (AS) 

none of the regions of n within dx are occluded by their 
neighbors so 

- I Jan(t/I) I I::.t/ln (x) = 2/ Jt/I a:::O (A6) 

= 2x/n. (A7) 

Here we have used the small angle approximation with 
an (t/I) = sin(nt/l)/sin(t/I/2). 

For x and n such that 

xn>1T/a, (A8) 

then all of the regions of n within dx are totally occluded by 
their neighbors and we have simply 

(A9) 

-In order to express I::.t/ln (x) precisely for the intermediate 

case of 

1T/2a <xn < 1T/a, (AlO) 

we define m n,k as the k th-Iargest integer that shares no com
mon divisors with n, and define 8n,k as dn,k/n where 
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(All) 

dn,kmn,k = 1 (mod n). (A12) 

It is then easy to show that m ( r/l) = d n,k in the region that 
occludes the k th region of n from the left and 
m ( r/l) = n - d n,k in the region that occludes the k th region 
of n from the right. Furthermore, the k th region of n inter
sects the r/l axis at r/l = 11'mn,k/n. 

Now define the functions llr/ln,k (x) as 

llr/ln,dx) 

11' 11' 
- <xn< , 
2a a( 1 + 8n,k) 

11' 11' 
----<xn<-. 
a(1 + 8n,k) a 

(A13) 

Then -llr/ln (x) = (llr/ln,k (x) + llr/ln,(n _ k»' (A14) 

is within dx. In Appendix B we prove that 

(llr/ln,k (x» Isio(7Tmn,w2n)EdX = (llr/ln,k (x» II < mn,k < n' 

(A15) 

The right-hand side is easy to evaluate. Let/" (x) be equal to 
the fraction of 8's such that 

11'/2a <xn < 11'/a(1 + 8n,k)' 

Then 

/,,(x) = (11'/axn -1), 

(A16) 

(A17) 

since the 8's are uniformly distributed between zero and one. 
This also implies that if we definef(8) as the fraction of 8's 
less than 8 thenf(8) = 8. We have 

Un (x) = 2a (Xfn (x) + (...!!....- _ x) t df (8») 
n an J1n(x) 8 

(A18) 

= ~x (;n - 1) ( 1 - In( a:x - 1)). 

(A19) 

where the average is taken over all ksuch that sin( 11'mn,k/n) Thus 

I 

P( ) _ 4a¢(n)x2 

n,x - (A20) 

and 

11'n 

{

I, 

X (11'/axn - 1)(1 -In( 11'/anx - 1 », 
0, 

P(n) = f P(n,x)dx 

= [4a¢(n)/311'] g(n), 

where 

1, 

xn < 11'/2a, 
11'/2a <xn < 11'/a, 
xn >11'/a 

n<no, 

(A21) 

(A22) 

(A23) 

- 1 + 2 ( n; ) + 2( n; r -2( ~ Y ( 1 + 2 In( n; )) 

g(n) = 
+ (2( n; ) _ 1y(( ~ ) + 1}n(2( n; ) -1). no <n< 2no, 

(A24) 

(~ Y(4ln2+2), 

and 

no = 11'/2a. (A25) 

APPENDIXB 

The results in this appendix are extracted from conver
sations between Professor Sah and Professor Gallagher of 
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the Mathematics Departments at SUNY Stony Brook and 
Columbia University, respectively. According to them, 
these are well-known "folklores" in analytic number theory. 

We want to show that for any finite segment (Yt>Y2)' 
O<YI <Y2';;; 1, for all n > no (no = 11'/2a) 

~~( Wn,k (x» Iy, < m n,k<Y2 = (Wn,k (x» 10< mn,k < I' (Bl) 
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the W functions are defined as 

{

I, 

Wn,k (x) == 1 (11' ) 
-----1, 
Dn,k anx 

where 

Dn,k == dn,kIn 

and 

11' 11' 
- <xn< , 
2a a(l + Dn,k) 

11' 11' 
<xn< -, 

a(l + Dn,k) a 

(B2) 

(B3) 

dn,kmn,k = 1 mod n. (B4) 

Note that the functions Wn,k (x) are related to the functions 
l1t/Jn,k (x) of Appendix A by 

(B5) 

Since the shapes of the functions Wn,k (x) depend solely on 
the multiplicative inverses d n,k, it suffices to show that in the 
limit n --+ 00, we can make the following statements. 

(A) mn,k are uniformly distributed. 
(B) The inverses dn,k from the interval (YI>Y2) (i.e., 

{dn,k :YI < mn,k1n <Y2}) are uniformly distributed. 
Definej(n;x,y) as the number of pairs (a,b) such that 

(i) ab = 1 mod n, 

(ii) O.;;;a.;;;nx.;;;n, 

(iii) O.;;;b.;;;ny.;;;n. 

Then statements A and B above are equivalent to the claim 

lim [lI¢(n)V(n;x,y) =xy. (B6) 
n- 00 

The remainder of this appendix is devoted to proving 
this claim. 

Proof We first prove statement A. Definej(n;x) such 
that 

j(n;x)== L 
a<xn 

gcd(a,n) = I 

1. (B7) 

Thus j( n;x) counts the fraction of m n,k 's that are less than 
xn. Statement A is equivalent to the claim that 

lim [f(n;x)/¢(n)] = x. (B8) 
n- 00 

Express n as a product of unique primes 
m 

n = II p~i, (B9) 
;=1 

then 

¢(n) = ni~l ( 1 - ~J (BlO) 

which may be reexpressed as 
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We can express j( n;x) as 

j(n;x) = [xn] - L [E!...] + L [~] 
i Pi i#-j Pi~ 

[ 
xn ] -"'+ . - PP ... p 

12m 

(BI2) 

So 

Ix¢(n) - j(n;x) 1.;;;1 + L 1 + L 1 + ... + 1 (B13) 
i i#-j 

(BI4) 

(BI5) 

We have 

lim Ix - j(n;x)/¢(n) 1.;;;2m l¢(n) (BI6) 
n_ 00 

m 2 
= III (Pi _ l)p}a-l) (BI7) 

..... 0. 

We now proceed to prove statement B. 
We can express the functionj(n;x,y) as 

nx-I ny-I 
j(n;x,y) = L L Da,a L Db,(3' 

a,b a= I (3= I 
ab= I modn 

Now expand the delta functions as 

1 n - I 

Da,a = - L en«a - a)c), 
n c=O 

where en (x) ==exp(211'ixln). We then have 

j(n;x,y) 
n - 1 n - 1 nx - t ny - 1 

(BI8) 

(BI9) 

(B20) 

L L L L L en«(a-a)c) 
a,b c=O d=O a= 1 (3= 1 

ab= I mod n 

where 

o n - 1 nx - 1 ny - 1 

L L L L en«a-a)c) 
c=Od=O a=1 (3=1 

ab= 1 modn 

n - 1 0 nx - 1 ny - 1 

L L L L en«a - a)c) 
c=O d=O a= 1 (3= 1 

ab= 1 modn 
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(B24) 
o 0 nx-I ny-I 
I I I I en«a-a)c) 
c=O d=O a= I fJ= I 

ab= I modn 

(B25) 

I 
hrash ="2 I 

n a,b 

n - I n - 1 nx - I ny - 1 

I I I I en«a-a)c) 
c=1 d=1 a=1 fJ=1 

ab= I modn 

(B26) 

The evaluation of the first three of these functions is trivial, 

I 
fc=d=O ="2 I 

n a,b 

nx- I ny-I 
I I lxl 

a=1 fJ=1 
ab= I modn 

I a,b 
ab= I modn 

= t!J(n)xy. 

Also, 

I 
!d=O ="2 I 

n a,b 

n - 1 nx - 1 ny - 1 

I I I en«a - a)c) 
c=O a=1 /3=1 

ab= 1 modn 

nx-l 

=y I I 8a,a 
a,b a= I 

ab= I modn 

= t!J(n)xy. 

Likewise,fc=o = t!J(n)xy, so 

lim !(n;x,y) = t!J(n)xy + lim hrash' 
n- 00 

We now proceed to show that 

n- 00 

We rearrange hrash to obtain 

I en(ac + bd) 
a,b 

ab= I modn 

nx-I ny-I 
X I en ( -ac) I en ( -{3d). 

a=1 fJ=1 

(B27) 

(B28) 

(B29) 

(B30) 

(B31) 

(B32) 

(B33) 

(B34) 

(B35) 

This new version ofhrash contains the Kloosterman sum de
fined as 

K(c,d;n) = (B36) 

ab= I modn 

Thus, 
In-In-I nx-I 

hrash ="2 I I K(c,d;n) I en ( - ac) 
n c=ld=1 a=1 

ny- I 

X I en ( -{3d), (B37) 
fJ=1 

and 
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Vtrash 1<~2 :t: :t: IK(c,d;n) II :~II en ( - ac) I 

XI:~>n(-{3d)l. (B38) 

The last two factors are geometric sums that are easily evalu
ated. 

nx-I l-en([nx]c) I en ( - ac) = , 
a=1 l-en(c) 

I nI I en ( _ ac) 1< 2 
a=1 II-en(c)1 

2 

2 sin( 1Tcln) 

sin( 1Tcln) 

Our limit on the magnitude ofhrash becomes 
I n-I n-I 

Vtrashl<"2 I I IK(c,d;n) I 
n c=ld=1 

(B39) 

(B40) 

(B41) 

(B42) 

(B43) 

We now use a very nontrivial estimate of Kloosterman sums 

IK(c,d;n) I <n1l2gcd(c,n) 1I4gcd(d,n) 1I4div(n), (B44) 

where gcd (c,n) is the greatest common divisor of c and nand 
div(n) is the number of divisors of n. For a historical ac
count of this powerful estimate see Ref. 8. 

Our bound onhrash becomes 

nl12. n-I gcd(c,n)1I4 
Vtrash I <-2- dlV ( n ) I -=--. -'-'---'---

n c= I sm(1Tcln) 

X nil gcd(d,n)114 

d= I sin(1Td In) , 
(B45) 

= n1l2 div(n)(g(n»2 (B46) 

where 

1 n-I gcd(c n)1I4 
g(n) = - I ' (B47) 

n c= I sin ( 1Tcln) 

Now note that sin(1Tcln) = sin(1T(n - c)ln) and 
gcd(c,n) = gcd(n - c,n) so that 

2 [n/2] gcd(c n)1I4 
g(n)< - I ' (B48) 

n c= I sin(1Tcln) 

Now for c<nl2 we have sin( 1Tcln) >2cln so 

[n/2] gcd(c n) 114 

g(n)< I ' (B49) 
c=1 C 

Let d = gcd(c,n); then d divides c and d divides n. We can 
then write 

g(n)< I d 114 I (llc). (B50) 
d c< n/2 

din dlc 

Sinced Ictheremustbeanintegermsuchthatc = mdsothat 
[n12d] 

I (lIc) = I (lIc) (B51) 
c<nl2 m=l 

dlc 
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:::::: (1/d)ln(nI2d) (B52) 

« l/d)1n(n) - (In(2d)) (B53) 

<In(n)ld. (B54) 

We obtain 

g(n)<'L d - 3/4 ln (n) (B55) 
d 

din 

<22 In(n) (B56) 
d 

din 

= div(n)ln(n). (B57) 

SO, 

lftrash I <n l12(div(n) )3(ln(n) f· (B58) 

Now div(n) is of order In(n), which for arbitrarily large n is 
of order nP for arbitrarily small p. Thus 

lftrash 1/¢(n) <&(nIl2 +PI¢(n» (B59) 

= &( p:
I12

+Pla
i

) (B60) 

I,I P~i-l(Pi-l) 

( 

p(p-1/2lai+ I) 
=& 11----

i Pj -l 
(B61) 

-+0. (B62) 

Note that with one possible exception all the terms in the 
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product are less than one. So if anyone ofthe prime factors is 
greater than P max = (4E) 3 then the entire product is less 
than E since for large Pi 

p:p-ll2lai+ IIPi _ 1<2P i- I13 • (B63) 

Likewise if the sum a lat = 'L iai is greater than 

a max = 3 log2 (21 E) then 

(

P(p-1I2lai+ I) II i <112'p-1I2lai+1 
i Pi -1 i 

= 2( - 1I3latot + I 

So if 

then 

I P. A. M. Dirac, Proc. R. Soc., London Ser. A 133, 60 (1931). 

(B64) 

(B65) 

(B66) 

(B67) 

(B68) 

(B69) 

2c. J. Goebel, in Quanta, edited by C. J. Goebel, P. G. O. Freund, and Y. 
Nambu (University of Chicago, Chicago, 1970), p. 338. 
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"R. A. Smith, J. Number Theory 11, 324 (1979). 
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Simple calculation of LOwdin's alpha function. III. Procedure for calculating 
h n,2n_i(LMI /)/ (2n -i)! successively 

Noboru Suzuki 
Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu-Shi, 
Tokyo 182, Japan 

(Received 30 October 1989; accepted for publication 9 May 1990) 

When rla;::;;O, Lowdin's a function (1/r)a,(jLM la,r) is expressed as (1/r)a, (fLM la,r) 
= 2y(LM I/)aL - 1~: =, [~:n;,:x,+ M [hn.2n _ i (LM 1/)/(2n - i)!]a2n - ~(2n - i) (a) ] (rla)2n - " 

where a is a separation between a new center placed on the origin and the old center located at 
a given point on the z axis that is the origin of the coordinate system defining a function 
feR) Yf(0,<l» to be expanded around the new center [feR) is an arbitrary radial function, 
and Yf(0,<l», a complex spherical harmonics], and ris a distance from the new center. Here, 
imax = min{2n,2(L + I)}, and the functiongU)(a) is expressed as 
gU)(a) = [(d IdR)j(f(R)IR L - I)]R = a' The closed form of the coefficients hn•2n _ i (LM II) is 
given by Eq. (27) in J. Math. Phys. 26, 3193 (1985) (referred to as Part II). Since they are 
expressed in terms of the different coefficients bKk (LM II) independent of the form offeR), 
hn,2n _ i (LM It) constitute a set of universal constants as do bKk (LM II). The explicit 
expression for the factor y(LM II) in front of the summation symbol is given by Eq, (2.9) in J. 
Math. Phys. 25, 1133 (1984). Hereafter the coefficients expressed by 
hn,2n _ i (LM 1/)/(2n - i)! are symbolized by /n,2n _ i (LM II). Although they are expressed in 
a complex form with a triple sum, that expression can be reduced to two considerably simple 
forms by changing the summation indices to others by using the addition theorem for binomial 
coefficients and the condition for the sum in this theorem to vanish. Moreover, in the two 
special cases that i = 1+ M and i = 2(L + I) or 2(L + I) - 1, those two expressions are 
reduced to two single-term forms, respectively. Introducing into the expression for 
/n.2n- i (LM II) in terms of bKk (LM II) the recursion formula for bKk (LM II) in only M 
given by Eq. (24) in Part II, leads to the recursion formula for /n.2n _ i (LM it) with respect to 
M. On the other side, the recursion formulas for /n,2n _ i (LM II) with M = L and las to i are 
obtained through a skillful manipulation. By connecting those recursion formulas for 
/n,2n _ i (LM II) to each other, we can obtain a procedure for calculating /n,2n _ i (LM II) 
successively. As the result of actual performance of the procedure, all the formulas expressing 
/n.2n _ i (LM I I) with restriction 0<M<min{L,/}<max{L,/}<2 are presented as functions of 
the parameter n in a table, 

I. INTRODUCTION complex spherical harmonics], and r is a distance from the 
new center. Here imax = min{2n,2(L + I)}, and the func
tion g(j) (a) is expressed as 

In the preceding papers l
,2 (hereafter Refs. 1 and 2 will 

be referred to as Parts I and II, respectively) it was manifest
ed that, when rla;::;;O, Lowdin's a function 
(1/r)a,( fLM la,r) is computable by using the formula: 

(1/r)a(fLM la,r) 

= 2y(LM I t)aL 
- 1 

xi: [ I hn'2n-i(L~I/) a2n-~(2n-i)(a)] 
n=( i=,+M (2n-l)! 

(1) 

where a is a separation between a new center placed on the 
origin and an old center located at a given point on the z axis 
that is the origin of the coordinate system defining a function 
feR) Yf(0,<l» to be expanded around the new center 
[feR) is an arbitrary radial function and Yf(0,<l» is a 

gU)(a) = [(~)j f(R)] . 
dR R L

-
1 

R=a 
(2) 

The closed form of the coefficients 
hn,2n _ i (LM 1/)/(2n - i}! is given by dividing Eq. (27) in 
Part II with (2n - i)l. These coefficients are also expressed 
in terms of the different coefficients bKk (LM 11') 1.2 that are 
independent of the form off(R). Hence they constitute a set 
of universal constants as do bKk (LM I I). This is very impor
tant and interesting. The explicit expression for the factor 
y(LM 11') in front of the summation symbol is given by Eq. 
(2.9) in Part I. 

The aim of this paper is to think out some easy proce
dure for evaluating hn,2n_i(LMII')/(2n-i}! directly 
without computation of bKk (LM 11'). In this paper, hereaf
ter, the notation: 
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(3) 

will be used. Throughout this paper, the restriction M>O 
will be assumed in calculation of I n,2n _ ; (LM I 1') because 
h n,2n_;(L-Mlt') =hn,2n_;(LMlt'). In addition, only 
the cases of n>L + t'will be treated in all the following sec
tions, because in the other cases the permissible values of the 
parameter i are only limited to less than or equal to 2n. 

In Sec. II it will be demonstrated that two considerably 
simple expressions for I n,2n _ ; (LM I t) can be derived by 
changing the summation indices to different ones and then 
utilizing the condition that the sum in Eq. (B 1) in Appendix 
B of part II expressing the addition theorem for binomial 
coefficients vanishes. Section III will prove that, in the two 
special cases that i takes the minimum value 1'+ m and the 
maximum value 2(L + 1') or the next maximum value 

2(L + 1') - 1, those expressions are reduced to single-term 
forms. Section IV will show that the recursion formula for 
I n,2n _ ; (LM I 1') with respect to M as well as i can be derived 
by introducing the recursion formula for bKk (LM It') in M 
alone given by Eq. (24) in Part II, into the expression for 
In,2n _; (LM It') in terms of bKk (LM 11'). There, it will be
come necessary to derive some recursion formulas for 
I n,2n _; (LM It') with the specific values of M as to i, in order 
to evaluate I n,2n _; (LM It) successively. To this end, Sec. V 
will manifest that two recursion formulas for 
I n,2n- ;(LM It') withM = Land t'concerning ias well asL 
can be derived by the use of some manipulation. Finally, Sec. 
VI will present a procedure for computing I n,2n _; (LM It') 
successively, and as the result of the actual use of this proce
dure, will exhibit all the formulas expressing 
I n,2n_;(LMlt') with O<M<min{L,t}<max{L,t}<2 as 
functions of the parameter n in a table. 

II. DERIVATION OF TWO SIMPLE EXPRESSIONS FOR 'n,2n_,(LM/t') 
We start by writing down the explicit expression 2 for I n,2n _ ; (LM It') again [see Eq. (27) in Part II] : 

(L-M)!(L+M)!U-M)(I'+M)! Pl21 L+I-< L-M (n-k-p!(K-P!(L-K-!)! 
I n2n _ i (LMII') = L L ') 

. 2(2n - i)!(L - !)!(I'-!)! k ~O K~ l(i+ 1)121- k,~ ma;'ril.L-/} (n - k + P!( [i/2) - k)!( [(i + 1)/2) - k - P! 

(1'- k- !)!( - L + K + k+s- p! 
x----~------------------------~--~~-

(K + k - [(i + 1)/2»!(K + k - [i/2) - P!(L + 1'- K - k)!k! 

1 
X . 

s!(L - M -s)!( - L + 1'+ s)!( - L + s- !)!(L +M - s)! 

(4) 

The above expression can be reduced to considerably compact forms in the following manner: In the beginning, an 
equation obtained from the addition theorem for binomial coefficients [see Eq. (B 1) in Appendix B of Part II]: 

(L -K -!)! 
------= (-t'+k-!)!( -K-!)!L! 
(L + 1'- K - k)! 

min{L,L + f - K - k} 

X L [t!(L-t)!(L+t'-K-k-t)!(-L-t'+k-!+t)!]-1 
1=0 

(5) 

is introduced into expression (4), and then the relation between factorials for half-integers, which is given by Eq. (2) in Part 
II, is used. Following this, extracting the sum over K only, which is hereafter denoted by SI' we may write it as 

L+f-I-k (-L+K+k+s-!)' 
SI = L (_I)K . 

K= [(i+ \)/2J - k (K + k - [(i + 1)/2])!(K + k - [iI2] - !)!(L + 1'- t - K - k)! 
(6) 

Replacing ( - L + K + k + s - .P! by [( - l)L - K - k-'(L - K - k - s - !)I] -I according to the relation expressed by 
Eq. (2) in Part II and thenchangingthesummationindexK toanewindexpdefinedasp=.K + k - [(i + 1 )/2], we arrive at 

L+f-[(;+I)f2 J
-'[ ([i+l] )( [i+l] ) SI = (-I) -L+k+s p~o p! L - -2- -s-! -p ! L + 1'- -2- - t-p ! 

([ 
i + 1 ] [i ] 1 ) ] - 1 X -2- - 2" -2"+p! . (6') 

The result of summation over pin Eq. (6') is obtained directly by setting 

[i+l] 1 [i+l] J.L=L- -2- -s-2"' p=L+ 1'- -2- - t, V_p=[i~I]_[~]_ ~, 
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andK=pinEq. (Bl) of Part II. ThenSI becomes 

1 -L+k+' (2L+t-i-s-t-l)! 
(- ) (L- [(i+ l}12)-s-!)!(L+t- [i12)-t-!)!(L+t- «i+ 1)12)-t)!(L- [i/2)-s-I)!' 

for L - [i12) - s - 1;;.0 

S, = 0, for 2L + t - i - s - t - 1;;.0 and L - [i/2) - s - 1 <0 

(_1)/- 11<+1)/21+'+'-' (-L+ [i/2) +s)! 
(L - «i+ 1)12)-s- P!(L + t- (i12)- t- !)!(L + (- «i+ 1)/2)- t)!( - 2L - t+ i + s+ t)!' 

for 2L + / - i - s - t - 1 < O. 
(6") 

Here it should be noted that the relation L - [iI2] - s - 1 <,2L + t - i - s - t - 1 holds, independent of the value of t, 
because L + t - [(i + 1)/2] - t»O. The middle result in the above summation is derived from the fact that 
2L + t - i - s - t - 1»0 and L - [i/2] - s - 1 < 0 just agrees with the condition for the sums in Eq. (B 1) of Part II to 
vanish. 

Now we take the case of L - [iI2] - s - 1»0 into consideration. Introducing the upper result of Eq. (6") into expres
sion (4) and then drawing out the sum over t only, which is hereafter denoted by T, we may write it as 

T= 'rna, (2L+t-i-s-t-l)! 

,~o tIeL - t)!(L + t- [iI2] - ~ - t)!(L + t- [(i + 1)/2] - t)!( - L - t-1 + k + t)! ' 
(7) 

with tmax = min{L,L + t - [(i + 1)/2]). Here note that the movable range of s is from max{O,L - t} to 
min{L - M,L - [iI2] - n. Therefore, i<,2xmin{L,t} - 1, and thusL + t - [(i + 1 )/2] »max{L,t}. As the result, tmax 

must be L. Inserting an equation derived from Eq. (B 1) of Part II: 

(2L+t-i-l-s-t)! 
(L+t- [iI2] -~-t)!(L+t- [(i+ 1)/2] -t)! 

= ( L - [ i ~ 1 ] _ ~ _ s ){ L - [ ~ ] - 1 - s} 
L-[i/2J-S-I[ ( [i+l] 1 )( [i] )( 1 )]-1 X q~O q! L - -2- - "2 - s - q ! L - "2 - 1 - s - q ! t + "2 + s - t + q ! (8) 

into sum (7) yields 

T = ( L - [ i ~ 1 ] - ~ - s }( L - [ ~ ] - 1 - s} 
L - [i/2J - 1 - S[ ( [ i + 1 ] 1 ) ( [ i ] ) ] - I 

X q~O q! L- -2- -"2- s - q ! L- "2 -1-s-q! 

x,tJt{t+ ~ +s+q-t}(L-t){ -L-t- ~ +k+t}r
l

• (7' ) 

Here, if f-l, p, v - p, and K in Eq. (Bl) of Part II are set equal to t +! + s + q,L, - L - t -! + k and t, respectively, then 
f-l + v = k + s + q»O because k,s,q»O, while f-l + v - p = - L + k + s + q<,k - [iI2] - 1 < 0 because k<, [iI2]. There
fore, the inner sum over t vanishes, and so does T. 

From the above consideration as well as the middle result of Eq. (6" ), it can be understood that, if 
2L + t - i - s - t - 1»0 holds for all sets of permissible values of sand t, 1",2" _ i (LM It) vanishes. This condition is just 
i < t + M since s + t<,2L - M. This was already manifested in a different manner in Part II. 

Next we proceed to the case of2L + t - i - s - t - 1 < O. Introducing the lower result ofEq. (6") into Eq. (4) and then 
extracting the sum over k only, which is hereafter denoted by S2' we may write it down as 

[i/2J (n - k - ~)! 
S2 = I . (9) 

k = 0 k! (n - k + !)! ([ i/2] - k)! ([ (i + 1) 12] - k - ~)! ( - L - t - ~ + k + t)! 
Inserting an equation derived from Eq. (B 1) of Part II: 

(n - k -1)! ([ i ] 1) [i/2J - k ( - 1)P 

(n - k + ~)!( [iI2] - k)! = n - "2 - "2! P ~o -(-[-il-2-] ---k---p-'-) !-( n---'--[-il-2-] -+-~-+-P-) ! (10) 

into sum (9) leads to 

( [ 
i ] 1) [i/2J ( - I)P 

S2= n- "2 -"2!p~o(n-[iI2]+~+P)! 

[i/2J - P [ ([ i + 1 ] 1 ) ([ i ] ) ( 1 ) ] - 1 X k~O k! -2- -"2- k ! "2 -p-k ! -L-t-"2+ t + k ! . (9') 
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The sum over k is obtained easily by replacing ,Lt, p, v - p, and K in Eq. (B 1) of Part II with [(i + 1) /2] -!, [i/2] - p, 
- L - t' - ~ + t and k, respectively. Then, ,Lt + v - p = - L - t' + [(i + 1 )/2] - 1 + t < 0 for any allowable value of t 

because t<L + t - [(i + 1)/2]. Therefore, if,Lt + v = - L - t' + i-I + t - p>O, the sum over k vanishes. Otherwise, i.e., 
in the case of p> - L - t' + i + t, it takes a nonzero value, which is given by 

(_1)[i/2)-p (L+t'- [(i+ 1)/2] -t)! 
([(i+ 1)/2] -D!( -L-t+ [i/2] +t-p-!)!([i/2] -p)!(L+t'-i-t+p)! 

(11 ) 

Here note that p> - L - t' + i + t>L - s>M>O because t>2L + t - i - s, and therefore the minimum value of p must be 
- L - t + i + t. Thus S2 may be rewritten as 

[i/2) (n - [i/2] - D!(L + t' - [(i + 1 )/2] - t)! [i/2J [([ i )] 
S2 = ( - 1) . I L - - p! 

([(1+ 1)/2] -2)! p= -L-f+i+1 2 

X(L+t'-i-t+p){n-[~]+++p}( -L-t+[~]- ~ +t-p}r
l

• (9") 

Replacing [i/2] - P by q in the above sum transforms the sum into 

L+f-[(i+I)/2)-I[ ( [i+l] )( 1)( 1 )]-1 q~O q! L+t- -2- -t-q! n+T- q ! -L-t'-T+ t + q ! . (12) 

Here, if ,Lt, p, v - p, and K are set equal to n +!, L + t - [( i + 1) /2] - t, - L - t - ! + t and q, respectively, then 
,Lt + v = n - [(i + 1 )/2] >0 since imax = min{2n,2(L + t)}. Accordingly, if,Lt + v - p = - L - t' + n + t <0, sum (12) 
vanishes. Otherwise, i.e., when - L - t + n + t>O, the sum amounts to 

(n - [(i + 1)/2])! 

(n + !) ! ( - [(i + 1) /2] -!)! (L + t - [(i + 1) /2] - t)! ( - L - t' + n + t)! 

Thus, in this case S2 is reduced to 

2i + 1(2 ')1 1 S2 = ( _ 1) i n - 1 .n. 
(2n + 1)! ( - L - t + n + t)! 

Here the relation between factorials for half-integers, and the two identities, 

(n - [i/2] - !)!(n - [(i + 1 )/2)]! = (2n - i)!j22n - i and (n + ~)! = (2n + 1 )!/(22n + In!), 

have been used. 

(12') 

(9"') 

If the condition n - L - t + t < 0 is fulfilled for all permissible values of t, S2 vanishes, and so does I n.2n _ i (LM It'). The 
condition is just n - t' < 0 because t<L. This was already proved in a different manner in Part II. 

From the above discussion, the minimum and maximum values of t, tmin and tmax are given, respectively, by max{O, 
2L + t'- i - s,L + t'- n}andmin{L, L + t- [(i + 1)/2]). Therefore, ifi<2t, tmax = Land thus2L + t' - i - s<L, i.e., 
s>L + t'- i. Otherwise, tmax = L + t'- [(i + 1)/2], and hence 2L + t - i - s<L + t' - [(i + 1 )/2], i.e., s>L - [i/2]. 
On the other side, L - [il2] <L - t' because i> 2t'. From this consideration, it can be seen that the minimum value of s, Smin' 

is given by max{O, L - t, L + t- i}. 
Finally, introducing sum (9"') into expression (4), one obtains a simple expression for I n,2n _ i (LM II') that includes only 

one double sum: 

I _(LMIt') = ( _ 1) [i/2) 2i(L - M)!(L + M)!(t- M)!(t'+ M)!L In! 
n,2n I ( L - D ! ( t' - D! (2n + 1)! 

L - M ,""" ( [ .] )1 1[( [ . + 1 ] 1 ) Xs~minlJ;.'in (_1)'+1 -L+ 1- +s I L- T -T- s !s!(L-M-s)! 

X(-L+t'+S){ -L- ~ +S)!(L+M-S)!t!(L-t){L+t-[~]- ~ -t)! 

X( L + t- [ i ~ 1 ] - t}( - L - t+ n + t)!( - 2L - t'+ i + s + t)!]. (13) 

Furthermore, substituting Eq. (6') for the lower result in Eq. (6") on Eq. (13) and then performing the summation over t 
yields a slightly simpler expression than expression (13): 

I .(LMlt) = (_I)L+f_i 2i(L-M)!(L+M)!(t-M)!(t+M)!n! 
n,2n-1 (L - D!( t'- D!(2n + 1)!(n - I')! 

L-M min{L+ f- ((i+ 1)/2).n- [(i+ 1)/2]) 

X L L (-1)s 
S=Smin p=o 
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x(n +L - [i ~ I ] -p)y [s!(L -M -s)!( -L + t+s)! 

X( -L- ~ +S}(L+M-S)~{L-[i~I]- ~ _S_p}([i~I]_[~]_ ~ +p} 

x(n_[i~I]_p}(L+t_[i~I]_p}]. (14) 

It seems impossible to obtain any more compact expression for [n,2n _ i (LM It) than expression (14). 

III. SINGLE-TERM EXPRESSIONS FOR In,2n_,(LMlt) IN TWO SPECIAL CASES OF i=t+M AND 1=2(L+t) OR 
2(L+t)-1 

First, we take into account the special case that i takes the minimum value t + M. In this case the permissible values of s 
and t in expression (13) are, respectively, L - M and L only, and thus expression (13) is reduced to a single-term form: 

[ (LMlt) = (_1)1 2
1
-

M
(L+M)!(t+M)!n! 

n,2n- (1+ M) (L _ D!( t- D!(2n + I )!M!(n - t)! 

(15) 

Here, the following two identities have been utilized: 

(-M+ [(t+M)/2])! = (_l)-M+[(f+M+I)f2J, (16) 
(M- [(t+M+ 1)/2] -D!(t- [(t+M)/2] -D!(t- [(t+M+ 1)/2])! 

and 

(2M)!( -M-D!= (_I)M22MM!. 

Thus, the respective recursion formulas with respect to L, t, and M are obtained readily from Eq. (15): 

[n,2n- (1+ M) (L - 1M It) = [( L - D/(L + M)] '[n,2n- (1+ M) (LM It), 

[n,2n- (I_I +M) (LMlt- I) = - [( t- D/2(t+ M)(n - t+ I)] '[n,2n- (I+M) (LMIt), 

and 

[n,2n- (I+M-I) (LM - lit) = [2M I(L + M)(t+M)] '[n,2n- (I+M) (LM It)· 

(17) 

(18) 

(19) 

(20) 

When M takes some special values, the above three relations are simplified: For example, when M = L - I, Eq. (18) is 
reduced to 

[n,2n_(L+I_I)(L-IL-1It) =!'[n,2n_(L+I_\)(LL-Ilt); 

and for M = L, Eq. (20) is simplified into 

[n,2n- (L+ 1_ I) (L L - lit) = [1I(L + t)] '[n,2n- (L+ f) (LL It). 

Combining Eq. (21) with Eq. (22) yields the relation: 

[n,2n- (L+ 1_ \) (L - IL - lit) = [1I2(L + t)] '[n,2n- (L+ f) (LL It). 

On the other side, when M = t- I, Eq. (19) is reduced to 

[n,2n_(2f_2)(Lt-Ilt-1) 

= - [1I22(n-t+ 1)]·[n,2n_(2f_\)(Lt-Ilt). 

Also, setting M = t in Eq. (20) leads to the same relation as Eq. (22): 

[n,2n_(2f_\)(Lt-Ilt) = [1I(L+t)]·[n,2n_u(Ltlt). 

(21) 

(22) 

(23) 

(24) 

(25) 

Second, assuming that L + t> 0, we deal with the case that i takes the first or second maximum value, i.e., 2(L + t) or 
2(L + t) - 1. Then the allowable value ofp in expression (14) is zero only. Thus, expression (14) is simplified into 

[ .(LMlt) = (_l)L+I-i 2i(L-M)!(L+M)!(t-M)I(t+M)!n! 
n,211-1 (L - D!( t- !)!(2n + l)!(L + t- [iI2] - D!(n - L - t)' 

L-M (-l)s 

XL' 
S=Sm;n s!(L - M - s)!( - L + t+ s)!( - L - ~ + s)!(L + M - s)!( - t-! - s)! (26) 
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where Smin = max{O,L - t'}. The sum over S in Eq. (26) is obtained directly by replacing (- t'-! - s)! with 
( - 1) - f- s/(t'_ ~ + s)! and then setting a, b,a,p, and rinEq. (AI) of Appendix A equal toL - M, L + M, - L + t, - L 
and t, respectively, because in this case, the equation a + b + a = r - 13 holds, and the condition that r - 13 takes a non
negative integer is satisfied. This sum may be written as 

(L + t')!(L - !)!(t'-!)! 
( - 1)f (27) 

(L - M)!(L +M)!(t'- M)!(t'+ M)!( -M - D!(M -!)! 

Thus we reach the single-term expression for I n.2n _ i (LM I t') with i = 2 (L + 1') or 2 (L + 1') - 1: 

1.(LMlt') = (_I)L+M- i 22(L+f) (L+t')!n! 
n.2n - I (2n + I)! (n - L - t')! 

(28) 

Here the relation: ( - M - P! (M - ~)! = ( - 1) - M and thefact thatthe equality 2iJ (L + 1'- [i/2] - !)! = 22(L + f) holds 
for i = 2(L + t') or 2(L + t') - 1 have been used. 

From Eq. (28) the relation between 1n,2n- i(LM It') with i = 2(L + 1') and with i = 2(L + 1') - 1 is derived immedi
ately: 

1n,2n_2(L+f)+I(LMIt') = -1n,2n-2(L+f) (LMlt')· (29) 

On the other hand, the respective recursion formulas for 1n,2n _ i (LM It') with i = 2(L + 1') or 2(L + 1') - 1 as to t'or Land 
M are obtained as 

1n,2n- (i+ 2) (LM 11'+ 1) = 22(L + 1'+ l)(n - L - t')1n.2n _ i(LM It') 

= -1n,2n-(i+2)(L+ IMlt'), 

and 

1n,2n_i(LM + 111') = -1n,2n_i(LMlt') =1n,2n_i(LM - 111')· 

Combining Eq. (29) with Eq. (31) for i = 2(L + 1') leads to the relation: 

1n,2n _ 2(L + f) (L M + 111') = 1n,2n _ 2(L + f) + I (L MIt') 

=1n,2n-2(L+f) (LM -111')· 

(30) 

(31) 

(32) 

One of our purposes in this paper is to express 1n,2n _ i (LM I t') with the specific values of L, M, t, and i as a function of the 
parameter n. Therefore, in both the cases we have not written down the recursion formulas with respect to n only, although 
those formulas can be obtained without difficulty. 

For these two special cases the five recursion formulas, Eqs. (18), (19), (20), (30), and (31) and the seven relations, 
Eqs. (21 )-(25), (29), and (32), are very useful for calculating 1n,2n _ i (LM It'). 

IV. RECURSION FORMULA FOR 'n,2n_/(L MIt') WITH RESPECT TO M 
We begin to write down the expression for 1n,2n _ i (LM It') in terms of bKk (LM It') [see Eq. (5.6) in Part I]: 

1 [i/2) L+f-k (2K)! 
1n2n _ i (LMIt') = L L bKdLMIt')· (33) 

, (2n - i)!k=O K= [(i+ 1)/2) - k (2n - 2k + 1) U - 2k)!(2K + 2k - i)! 

Introducing into expression (33) the recursion formula for b Kk (L M I 1') in M only which is given by Eq. (24) in Part II yields 

1 [2M [i/2) L+f-k (L+t'-2K-2k)(2K)! 
1n2n _ i (LM - lit') = L L 

' (L + M)(t'+ M) (2n - i)! k=O K= [(i+ 1)/2) - k (2n - 2k + l)(i - 2k)!(2K + 2k - i)! 

xbKdL MIt') + (L - M)(t'- M)1n,2n_ i(L M + IIt')]. 

Inserting the identity: 

L+t'-2K-2k= -(2K+2k-i) (2n-2k+1)-(2n-i) +(L+t'-i) 
i+I-2k 

into each term in the sum of Eq. (34) transforms the first term in the brackets of Eq. (34) into 

2M[ _ 1 [I) L+±-k (2K)! b (LMlt') 1 
(2n-i)!k=OK=[i/2)+I-k U+I-2k)!(2K+2k-i-l)! Kk + (2n-i-1)! 

(34) 

(35) 

X . b LMt' L 1"1 LMt' 
[i/2) L+f-k (2K)' ] 

k~OK=[i/~+I-k (2n-2k+ 1)(;+ 1-2k)!(2K+2k-i-l)! Kk( I) + ( + -I) n,2n-i( I)· 
(36) 

Here note that the minimum value of K may increase to [i/2] + 1 - k for an even i, because the term with K = [i/2] + 1 - k 
in the first sum compensates for the corresponding term in the second sum. The use of the notation: 
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I n,2n _; (LM It') 
1 [;/2J L+f-k (2K)' ---- I I . bKk (LM It') 

(2n-i+ I)! k=oK=[(i+I)/2J-di-2k)!(2K+2k-i)! 

leads to the following expression for the first term in the brackets of formula (36): 

{

I L + f - U + 1)/2 

- I n,2n - u+ \) (LM It') + (2n _ i)! K~O bK u+ 1)/2 (LM 11'), if i is odd, 

- I n,2n _ u+ I) (LM 11'), otherwise, 

On the other side, the second term is expressed as 

{

I L+ f- ('+ 1)/2 

I (LMIt') - I bKu +1)/2(LMlt'), if i is odd , n,2n-(I+I) (2n-i)! K=O 

In,2n _ (I + I) (LM 11'), otherwise. 

Hence formula (36) may be rewritten, regardless of whether i is odd or not, as 

2M [ - I n,2n- u+ I) + I n,2n- u+ I) (LM It') + (L + 1'- i)In,2n_ ;(LM 11')]· 

(37) 

(38) 

(39) 

(36') 

As proved in Appendix B, I n,2n _ ; (LM I 1') vanishes as far as M takes any nonzero value. Therefore, the product 
2M [ - I n,2n _ U + I) (LM I 1')] disappears for any value of M. 

Ultimately, Eq. (34) is reduced to 

In,2n- ;(L M - 111') = [(L + M) (1'+ M] - 1{2M [In,2n _ u+ I) (LM 11')] + (L + 1'- i)In,2n _ ;(LM It') 

+ (L -M)(t'-M)In,2n_;(LM + Ilt')}. (40) 

Equation (40) is no other than a recursion formula for I n,2n _; (LM I t') with respect to M as well as i. Especially, when Mis 
equal to Lor t, Eq. (40) is slightly simplified into 

In,2n- ;(L M - 111') = (L + t')-I [In,.2n- u+ \) (LM It') + (L + 1'- i)In,2n_ ;(LM 11')]. (41) 

Here it should be noted that the relation for the special case of i = 2(L + 1') given by Eq. (31) can be derived independently 
by first using Eq. (41) for M = L or t'and then utilizing Eq. (40) successively in descending order of the value of M. On the 
other side, setting i equal to the minimum value 1'+ M - 1 in Eq. (40) reproduces Eq. (20) immediately, because 
I n,2n- (f+ M-I) (L M It') and In,2n- u+ M-I) (L M + 111') both disappear. 

The two recursion formulas Eqs. (40) and (41) are very useful for calculating I n,2n _ ; (LM I 1') with M < Lor t'from the 
values of I n.2n _;(LL It') and In,2n_;(Lt'lt'). Therefore, it becomes necessary to think out recursion formulas for 
I n,2n _ ; (LL I 1') and In,2n _ ; (Lt' I 1') with respect to i. 

v. RECURSION FORMULAS FOR 'n.2n_/(LL I 1') AND 'n.2n_/(Ltjt') WITH RESPECT TO; 
In this section we derive the recursion formulas for I n,2n _ ; (LL It') and In,2n _ ; (Lt' I 1') with respect to i in the following 

manner. At the outset, we take into consideration how the two sums appearing in expression (13) for I n,2n _; (L M - 111') 
with M = L or t'can be expressed in terms of some I n,2n _ i (LM It') with M = L or t'that are different from each other in the 
value ofi only. Then, ifsuch expressions are obtained, the whole of them can beset equal to the right-hand side ofEq. (41) for 
M = L or t'. Thus the recursion formula for I n.2n _ ; (LM It') with M = L or I' as to i can be derived. 

First, we treat the case of M = L. The closed expression for I n.2n _ ; (LL I 1') is derived from expression (13) by putting 
M=L in it: 

I n,2n _; (LL It') 

= ( _ 1 );'22L . (L + t')!L!(i - 2L)!n! 
(1'- !)!(2n + I)! 

(- 1)' 

X ~ t ! (L - t)! (L + 1'- (i/2] - ~ - t)! (L + 1'- [(i + 1) /2] - t)! ( - L - 1'+ n + t)! ( - 2L - 1'+ i + t)!' 

and also from expression (13) is done that for In.2n _ ; (L L - 111'): 

In,2n_;(LL - lit') 

= (1 _ {j. )( _ 1);·22L . ( - L + 1'+ 1) (L + 1'- 1 )!L!(i - 2L)!n! 
',L+ f- 1 (1'- p!(2n + 1)! 
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( _ 1)' 

x ~ t ! (L _ t)! (L + t - [i/2] - ~ - t)! (L + t - [(i + 1) /2] - t)! ( - L - t + n + t)! ( - 2L - t + i + t)! 
_1)i+I'22L - I. (L+t-l)!L!(i-2L+2)!n! 

+ ( (t - ~)!(2n + 1)! 

( _1)' 
X~ . 
~t!(L - t)!(L +t- [i/2] - ~ - t)!(L +t- [(i + 1)/2] - t)!( - L -t+ n + t)!( - 2L -t+; + 1 + t)! 

(43) 

By comparing the first term ofEq. (43) with Eq. (42), it can be seen immediately that the term is expressed as 

[( - L + t + 1) / (L + t) ] . I n.2n _ i (LL It). ( 44) 

Needless to say, I n,2n _ i (LL I t) disappears when; = L + t - 1, because; must be larger than or equal to L + t. If each term 
in the second sum ofEq. (43) is multiplied by the identity: 1 == (L + t - ;/2 - t)/(L + t - ;/2) + t /(L + t - ;/2), this 
sum is divided into two terms. Then, replacing the summation index t by t + 1 in the second resulting term yields an 
alternative expression for the second sum of Eq. (43): 

1 { ( - I)' 

L+ ~- i/2 ~ t!(L- t)!(L+ ~- [(i+ l)/2]-! - t)!(L+ ~- [i/2]-l- t)!( -L - ~+ n + t)!( -2L - 1'+ i+ 1 + t)! 

(-I)' } 

- ~ t!(L - 1 - 1)!(L - 1 + ~ - [i/2] -! - 1)!(L - 1 + 1'- [(i + 1)/2]- 1)!( - L + 1 - 1'+ n + t)!( - 2L + 2 - 1'+ i+ t)! . 

(45) 
It can be seen readily that the first sum in the above formula agrees with the sum in the expression for I n,2n _ (i+ I) (LL It), 
while the second sum agrees with the sum in the expression for I n.2n _ i (L - lL - 11 t). Finally, comparing the factor in front 
of the summation symbol of the second term ofEq. (43) with that in the expression for In,2n _ (i+ I) (LL It) and with that in 
the expression for I n,2n _ i (L - lL - 11 t), we obtain an expression for the whole of the second term of Eq. (43) in terms of 
some In,2n _ i (LL It) with different values of; and L: 

1 [ ; - 2L + 2 It 2 It ] 2(L+t)-i L+t 'In,2n_U+I)(LL )+2·L·In.2n _ i(L-IL-l ) . (46) 

Eventually, Eq. (43) is reduced to 

In2n_i(LL-llt)= 1 [i-2L+2'In2n_(i+I)(LLlt)+22'L'In2n_i(L-IL-llt)] 
, 2(L + t) - ; L + t ' . 

-L+t+l 
+ 'In2n - i(LL It). (47) 

L+t ' 

Equating the right-hand side ofEq, (47) with that ofEq. (41) for M = L yields 

1 
12 .(LLlt)=---------

n. n-, [2(L+t) -i](;-2L+ 1) 

X [2(2L + t-; - 1) 'In,2n- (i+ I) (LL it) - 22'L' (L + 1') 'In,2n- i(L - lL - lit)]. (48) 

Equation (48) is nothing but a recursion formula for I n,2n _ i (LL I t) with respectto; as well as L. Here it should be noted that 
setting; = L + t- 1 in Eq. (48) produces Eq. (23), and then introducing this result into Eq. (47) yields Eq. (22), while 
putting; = 2(L + t) - 1 in Eq. (48) leads to Eq. (29) withM = L, and then inserting this result into Eq. (47) yields Eq. 
(32) with M = L - 1. 

Second, we deal with the case of M = t. The closed expression for I n,2n _ i (Ltl t) is obtained from expression (13) by 
putting M = t in it: 

I n,2n _ i (Ltlt) 

= (_1)L_r+i. 22f '(L+t)!L!(i-2t)!n! 
(L - ~)!(2n + I)! 

( _ I)' 

X ~ t! (L _ t)! (L + t - [;/2] - ~ - t)! (L + t - [(i + 1) /2] - t)! ( - L - t + n + t) I ( - L - 2t + ; + t)! ' 

(49) 

and also from expression (13) is done that for I n,2n _ i (L t - 11 t) : 
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[n,2n _ i (L 1'- 111') 

= ( _ 1)L- 1'+ i. 221'(L - 1'+ I)(L + 1'- 1)!L!U - 21')!n! 
(L - !)!(2n + I)! 

( - I)' 
X ~ t !(L - t)!(L + 1'- [i/2] - ! - t)!(L + 1'- [(i + 1 )/2] - t)!( - L - 1'+ n + t)!( - L - 21'+ i + t)! 
+ ( _ 1)L- 1'+ i+ I. 221'- I(L + 1'- 1)!L!U - 21'+ 2)!n! 

(L - !)!(2n + 1)! 

( -1)' XL . 
, tIeL - t)!(L + 1'- [;/2] -! - t)!(L + 1'- [(i + 1)/2] - t)!( - L - 1'+ n + t)!( - L - 21'+ i + 1 + t)! 

(50) 

From comparison of the first term ofEq. (50) with Eq. (49), it can be seen easily that the term is expressed by 

[(L-I'+ 1)/(L + 1')]'[n,2n_i(L 1'11')· (51) 

In contrast to the first term, it is not so easy to derive an expression for the second term of Eq. (50) in terms of some 
[n,2n _ i (LI'I 1') with different values of i and L. We start with considering the case that i takes an even non-negative integer. In 
this case i may be set equal to 2m, where m is an arbitrary non-negative integer. Then the sum over t in the second term ofEq. 
(50) may be written as 

( - 1)' 

~ tIeL - t)!(L + 1'- m -! - t)!(L + 1'- m - t)!( - L - 1'+ n + t)!( - L - 21'+ 2m + 1 + t)!' 

while the sum over t in the expression for [n,2n _ i (L 1'1 1') with i = 2m + 1, as 
( -1)' 

~ tIeL - t)!(L + 1'- m -! - t)!(L + 1'- m - 1 - t)!( - L - 1'+ n + t)!( - L - 21'+ 2m + 1 + t)! . 

(52) 

(53) 

Multiplying each term in sum (53) with the identity: 1 == (L + 1'- m)/(L + 1'- m - t) - t I(L + 1'- m - t) to separate it 
into two terms and then replacing the summation index t by t + 1 in the second resulting sum, we reach 

(-I)' 
(L+t-m)I~~~~~--~--~~~--~~~~----~~--~~--~~ 

, f!(L - f)!(L + e - m - ~ - f)!(L + e - m - t)!( - L - (+ n + f)!( - L - 2f + 2m + 1 + f)! 
( - I)' 

+ ~ f!(L - 1 - f)!(L - 1 + 1- m - ~ - f)!(L - 1 + 1- m - f)!( - L + 1 -1+ n + t)!( -I + 1 - 21+ 2m + 1 + t)! 
(53') 

The first sum over t in sum (53') is no other than sum (52). Therefore, by equating sum (53) with sum (53'), one obtains an 
expression for sum (52) in terms of two sums: 

( - I)' 

~ tIeL - t)!(L+ t- m -! - t)!(L+ 1- m - t)!( -L -1+ n + t)!( -L- 2f+ 2m + 1 + t)! 
1 { (- I)' 

= L+ t- m ~ t!(L- t)!(L+ l-m-~-t)!(L+ 1- m -I +t)!( -L- e+ n+ t)!( -L-2f+2m + 1 + t)! 
(-I)' } 

- ~ t!(L-I-t)!(L-I + I-m-~- t)!(L-I + (- m- t)!( -L+ 1- (+n+ t)!( -L+ 1-2/+2m+ 1 +t)! . 
(54) 

The second sum on the right-hand side of Eq. (54) agrees with the second sum in the closed expression for 
[n,2n _ i (L - 1 1'- 111') with i = 2m [see Eq. (50)]. Therefore, this sum is expressed in the formula obtained by replacing L 
with L - 1 on the right-hand side ofEq. (54), and hence we substitute this formula for the second sum in Eq. (54). Iteration 
of the above substitution leads finally to 

( -I)' 

~ tIeL - f)!(L + t- m - ~ - f)!(L + 1- m - f)!( - L - 1+ n + t)!( - L - 2f + 2m + 1 + t)! 
L+I-m-\ (L-,l.+t-m-I)! 

= I ( - 1 )A. ______ -:--__ _ 
A~O (L+I-m)! 

(-I)' 

x~ f!(L -,l. - f)!(L-,l.+ t- m - ~ - f)!(L -,l. + 1- m -1- f)!( -L +,l. - (+ n + f)!( -L+,l. -2f+2m + 1 + f)! 
(_ I)L+I-m 

+~--~--~~~--~----~-
(L + e- m)!(m -I)!(n - m)!(m - 1+ 1)1 

(55) 

Next, we take into consideration the case that i is an odd positive integer. In this case i may be set equal to 2m' - 1, where 
m' is an arbitrary positive integer. Then the sum over t in the second term of Eq. (50) may be written as 
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+ t !(L - t)!(L + t - m' + 1 -! - t)!(L + t - m' - t)l( - L - t + n + I)I( - L - 2t + 2m' + t)' 

while the sum over t in the expression for i n,2n _ i (Ltlt> with i = 2m', as 

( -1)' + tIeL - t)!(L + t- m' -! - t)!(L + t- m' - I)!( -L - t+ n + I)!( -L - 2t+ 2m' + I)! 
In this case, if each term in sum (57) is multiplied by the identity: 

1 (L+t-m'+!)/(L+t-m'+!-I) -11(L+t-m'+!-t), 

sum (57) is separated into two sums: 
1)' 

(L + (- m + p ~ t !(L t)!(L + , _ m' + 1 ! _ t)!{L + 1'- 'm - t)l( - L - f + n + f)l( - L - 2f + 2m' + I)! 
( -I)' 

x ~ tIeL _ 1 _ t)!(L - 1 + 1'- m' + 1 - ~ - t)I(L - 1 + r - m' - I)l( - L + 1 r + n + Il!( L + 1 - 2f + 2m' + t)l 

(56) 

(57) 

(58) 

Here carrying out the same iterative substitution for the above second sum as led to Eq, (55) from Eq. (54) in the previous 
paragraph, one obtains 

( 1)' + I!{L ()!(L + f - m' + 1 -! - t)!(L + r - m' - t)!( - L r + n + (l!( - L - 2f + 2m' + t)! 
L+I-m'-I A (L-A+r-m'-p! 

= L ( - 1) .-:-:-----;:'-:-----:--'':-:-
A ~" (L + r - m' + 1 - p! 

( -1)' 

X + tIeL A- I)!(L -A + f - m' - i - t)!(L -A + r - m' - t)!( - L + A r + n + I)I( L + A- 2f + 2m' + 1)1 

( _I)L+I-m' 

+ . 
(L + f - m' + 1 - !)!(m' - f)!(n m')I(m' - f)! 

(59) 

Ultimately, from observation of the two expressions given by Eqs, (55) and (59), we can obtain an expression for the sum in 
the second term ofEq. (50) common to the two cases that Hakes an even and an odd integers. This expression is written as 

L+I-lli+IlI2I-1 (L-A+,-i/2-1)! L ( - I) A. --:-::----::---:-c-::-:'":'-
A~O (L+'-i/2)! 

( -1)' 

x + tIeL -A t)!(L -A + (- [(i + 1)/2] -! - t)!{L A + / - [i/2] - 1 - f)!{ - L + A - r + n + I)!{ - L + A- 2f + i+ I + t}! 
{_ l)L+ 1-111+ 1)/21 

+ {L + 1'- i/2)!([ {i + 1)/2] - I)!{n - [{i + 1)/2] )!([i/2] - r + I)! . 

(60) 

Expressing in formula (60) the sums over t in terms of i n,2n _ i (L -It tit) and the last term by 
i n,2n i( [(i + 1)/2] ttlt) and then adding formula (51) to this expression, one obtains an alternative expression for 
i n,2n_i(L t-Ilt): 

Lf If L (+1'1 flf (i f I) (L+f-I)!LI 
I n.2,,_,{ -1 ) = L+ ( ... 2._I(L ) + 2'- + (L-P!(L+ f-i/2)! 

[

L+I-W+I)/21-1 (L A+/-i/2-1)!{L-A-PI 

X A~O (L -A + I)!(L A)! 1 .. ,2" - (j + Il (L -A flf) 

2([(i+ 1)/2]- [i/2] P!([il2] f+ I-P! ([i+ I] . )] 
---~--,......---:---....,..,.,...---I 2 . -- - fflf . 

([i/2]-f+I)![(i+1)/2]! ..... -. 2 
(61) 

Here the identity 

(i 21'+ I)(W+ 1)/2]- f-~)! 2([j/2]- 1'+ I-!)I 

([i/2] - 1'+ I)([(i+ 1)/2]-I)! ([i/2J- 1'+ I)! 

(62) 
has been used. Hereitshouldbenotedthatwheni = 2(L + t) or2(L + t) - I,Eq. (61) is reduced toEq. (31) withM = t 
or t - 1. Combining Eq. (61) with Eq. (41) for M = tyields the recursion formula for i n,2n _ i (Ltl t) with respect to i as well 
asL: 
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TABLE I. (2n + 1)!·[n.2n_ ,(LMI£) with O.;;M.;;min{L,t}.;;max{L,f}.;;2. 

LMf 0 2 3 4 5 6 7 S 

000 I 
100 2 22/1 _22/1 

001 _22/1 22/1 

101 _2'/1 - 24 /1(n - I) 2'n(/I-I) - 2'n(n - I) 
III _24n - 2'n(n - I) 2'n(n - I) 
200 2'/3 2'n/3 2'n(n - 2)/3 - 2'/I(n - I) 2'/I(n - I) 
002 2'n(n - 1)/3 -2'n(II-I) 2'n(1I - 1) 

201 - 2'n/3 - 2'1I(4n - 3)/3 - 2711(n -I) 2711(n -I) - 273n(n -I) 273n(n - I) 
x(n-3)/3 X (4n - 9)/3 X(II-2) x(n-2) 

211 _ 2'n - 27n(1I - 1) - 2711(11 - I) 273n(n-l) -273n(n-l) 

x(n-3) x(n-2) x(n-2) 

102 2·n(1I-1)/3 2·n(n - I) - 2·n(n -I) 273n(n -I) - 273n(n -I) 

X (2n - 5)/3 x(Sn - 17)/3 X(II-2) x(n-2) 

112 2·n(n - I) 2·n(II-I) - 273n(1I - 1) 273n(n - I) 
X (211 - 5) X(II-2) X(n-2) 

202 2"n(1I - I)/Y 2"n(n - I) 2"n(n - 1) -2"n(n-l) 2"n(1I-1) -2"3n(n-l) 2"3n(n - I) 
X (4n -7) X(2n2-14n+21) X(n-2) x(n-2) x(n-2)' X(II-2) 

/32 /)' X (II - 4)/3 X (4n - 13)/3 x(n-3) X(n - 3) 
2 I 2 27n(n-l) 2"n(1I - I) 29n(n - I) - 2911(n -I) 2"3n(n -I) - 2"3n(n - I) 

x(n-2) X(n-2) X(n-2) x(n-2) X(n - 2) 
X(n - 5) X(5n-17) X(n-3) x(n-3) 

222 ' .. 2"n(n - I) 2"II(n -I) 2"n(n-l) - 2"311(n - I) 2"3n(n-l) 

X(n-2) X(n-2) x(n-2) X(n-2) 

X(n-4) X(n-3) x(n-3) 

I n2n _ j(Ltlt) = 2(L+2t-i-l) I ' (Ltlt') _ (i-2t+2) (L+t')!L! 
. (i-2t+I)(2L+2t-i) n.2n-(,+I) 2(i-2t+I)(L-!)!(L+t-i/2)! 

L+f-[(i+I)/2)-1 (L-A+t-i/2-1)!(L-A-I)! 
X " "2 I ' (L-Atlt) 

;[~I (L-A+t')!(L-A)! n.2n-(,+I) 

_ 2 ([ (i + I) /2] - [i/2] -!)! ([ i/2] - 1'+ I - !)! ([ i + I ] )] 
([i/2] _ 1'+ 1)![ (i + 1)/2]! I n.2n - j -2- - 1'1'11' . 

(63) 

Here note that putting i = 2(L + 1') - I in Eq. (63) reduces it to Eq. (29) with M = t. 
By using the two recursion formulas Eqs. (48) and (63) as well as the expression Eq. (28) for I n.2n _ j (LM It) with the 

maximum value of i, we can calculate I n.2n _ j (LL I t') and I n.2n _ i (L 1'1 t') for all permissible values of iwithout any difficulty. 

VI. PROCEDURE FOR CALCULATING In,2n_,(LMll) 
SUCCESSIVELY 

In this section we present a procedure for calculating 
I n,2n _ j (LM It') successively. First, a series of 
I n,2n_j(LL It) (i= L + I' to 2(L + 1'» with L = 0,1, ... ,1' 
is taken up. We start from the case of L = 1'= O. Then the 
value of tis increased by step I, which is followed by in
creasing the value of L by step 1. In calculation of 
I n.2n _ j(LL It) with different values ofi, Eq. (48) is utilized 
in descending order of the value of i. Second, we deal with 
anotherseiresofln•2n _ j (L I'll') (i= 2tt02(L + t')with 
1'= O,I, ... ,L - 1. In this case, I n.2n _ j (1010) is computed at 
the start. Following this computation, the value of L is in
creased by step I, and then the value of t, by step 1. In com
putation of I n.2n _ j (L I'll') having different values of i, Eq. 
(63) is used in descending order of the value of i. 

2324 J. Math. Phys., Vol. 31, No.9, September 1990 

I n.2n - j (LL It') and I n.2n _ j(L I'll') with the maximum val
ue 2(L + 1') of i are computed by Eq. (28). Finally, 
I n.2n _ j(LMlt) with M<min{L,/}(i=t+M to 
2(L + 1'» are calculated by using Eqs. (41) and (40) in 
descending order of the value of M. Also, Eq. (15) is very 
useful to check whether or not the formulas expressing 
I n.2n - j(LM It) with the minimum value 1'+ M ofi are cor
rect. 

According to the procedure described above, we ob
tained all the formulas expressing I n•2n _ j (LM It) with the 
restriction O.;;;M ';;;min{L,t}';;;max{L,t}.;;;2 as the functions 
of the parameter n. They are exhibited in Table I. 
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APPENDIX A: CALCULATION OF A SUM INCLUDING SIX FACTORIALS 
The sum over s in Eq. (26) is transformed into the form of a sum including six factorials as given below: 

min{a.b} (y -! + s)! 

s~ ma.fro. - a} sICa - s)!(b - s)!(a + s)!(f3 - ! + s)! . 
(A1) 

This sum can be calculated, provided that a specific condition is satisfied. This is proved in the following: In sum (A 1 ) s must 
be a non-negative integer, and a and b both are positive integers, while a, f3, and yare all integers, irrespective of being non
negative or not. Hereafter, sum (AI) is symbolized by T. If in T the condition y - f3-;;.O is satisfied, the equality: 

(y-!+s)! 
--------= (y-{3)!(y-a-!)! 
(a + s) - (f3 -! + s)! 

min{y- (3. a + s} 

X L [t!(y-f3- t )!(a+s-t)!(-a+f3-!+t)!]-1 
t~O 

holds valid. Introducing Eq. (A2) into sum (AI) yields another expression for T: 
min{y-(3. a + a. b + a} 

T = (y - f3)! ( Y - a - !>! L [ t ! ( Y - f3 - t)! (f3 - a - ! + t)!] - 1 

t~O 

min{a. b} 

X )' [sICa - s)!(b - s)!(a - t + s)!] - I. 

s~ maxto:' - a + t} 

(A2) 

(Al') 

The inner sum over s in Eq. (A 1') is obtained immediately from the addition theorem for binomial coefficients, Eq. (B 1) of 
Ref. 2. The result may be written as 

(a+b+a - t)! 

a!b!(a + a - t)!(b + a - t)! 
(A3) 

Thus Eq. (AI') is reduced to 

T- (y-f3)!(y-a-!)!min{y-(3,a+a,b+a} (a+b+a-t)! 

- alb! t~O t!(y-f3-t)!(f3-a-!+t)!(a+a-t)!(b+a-t)! 
(AI") 

Therefore, if a + b + a = y - f3, the sum over tin Eq. (A 1") can be calculated as 

(a + b + a)!(a + b + f3 - !)!(a + b + a + f3 - !)! 
T= . 

alb !(a + a)!(b + a)!(a + f3 - !)!(b + f3 - !)! 
(A4) 

Otherwise, it seems impossible to obtain the sum over t. Also, in the other cases that y - f3 < 0, it seems very difficult to 
evaluate sum (AI). 

APPENDIX B: CALCULATION OF I n,2n_/(LMII') DEFINED BY EQ. (37) 

Performance of the summation in Eq. (37) defining I n,2n _ i (LM If) starts with the useofEq. (6"). From the upper and 
middle results of Eq. (6"), it is apparent that, in the case of 2L + 1'- i - s - t - 1 -;;'0, the sum over either K or t vanishes. 
Therefore, here we take only the other case t-;;.2L + 1'- i - s into consideration. So we introduce the lower result ofEq. (6") 
into Eq. (37), and then extract the sum over k only, which is hereafter denoted by U1• It may be written as 

li/2J [ ([ i ] ) ([ i + 1 ] 1 ) ( 1 ) ] - 1 U1 = k~O k! "2 -k ! -2- -"2- k ! -L-t-"2+ t + k ! . (Bl) 

Replacing JL, p, v - p, and K respectively with [ (i + 1) 12] - !, [iI2], - L - t - ! + t and kin Eq. (B 1) of Ref. 2 yields the 
result of summation over k in Eq. (B1). Then JL+v-p= -L-t+ [(i+ 1)/2] -1 +t<O because 
t<,L + t - [(i + 1) 12]. Therefore, if JL + v = - L - t + i + t - 1 -;;.0, i.e., t-;;.L + t - i + 1, U1 vanishes. Otherwise, i.e., 
when t<,L + 1'- i, U1 amounts to 

(_I)li/2J (L+t- [(i+ 1)/2] -t)! 
(l (i + 1)/2] - D!( - L - t + [i12] -! + t)![iI2]!(L + t - i - t)! 

(B2) 

Next, drawing out the sum over t only, denoted by U2, we may write it as 
tmtl~ 

U2= (_1)L+I-li/2 J L [t!(L-t)!(L+t-i-t)!( -2L-t+i+s+t)!]-I. 
t ~ max{O, 2L + 1- i - s} 

(B3) 

Here the relation: (L + t- [iI2] - t - !)!( - L - 1'+ [i12] + t - !)! = ( - 1)L+ 1- li/2J - t has been used. Note that 
t max = L + t- i because L + t- ;<,L - M<,L and L + t- i = L + t- [(i + 1)/2] - [iI2]<,L + t- [iI2], and there-
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fore U2 does not appear, provided that the condition 2L + E - i - s<.L + E - i is not fulfilled. Thus, the value which scan 
take is limited to L only. Hence M must be zero. In this case, only one term remains in the sum ofEq. (B3). Then U2 is written 
as 

( _1)L+f-[i/2] 

U2 = --=---:........----
(L + E- i)!(j - E)! 

Eventually, in only the special case of M = 0, I n•2n _ i (LM I E) may remain nonzero, which is written as 

J (LOIE)=(-l)1 (L!)2E! 
n.2n-/ (2n - i + 1)!(L + E- i)!(j - E)!(L - !)!(E-!)! 

In all the other cases, I n,2n _ i (LM IE) disappears. 

'N. Suzuki, J. Math. Phys. 25,1133 (1984); 25,3135 (E) (1984). 
2N. Suzuki, J. Math. Phys. 26, 3193 (1985). . 
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The relevant structure of a Bose Fock space using the notion of free commutative algebra with 
unit element and with a scalar product is incorporated. The squeezed states are then the 
exponentials of quadratic forms and can be written in the normal form of a general squeeze 
group. The connection of this group to polarization of the initial Hilbert space is established 
and its infinitesimal generator is computed. In this way, a common denominator for a series of 
papers is provided in the topic of light squeezing and last but not least a mathematical 
formalism is provided that may prove convenient in the general treatment of quantum optics. 

I. INTRODUCTION 

In his article "The mathematical foundations of quan
tum theory," Dirac 1 expresses the view that mathematics 
should be the guide while exploring new physical ideas. This 
also applies partly in our case. 

The concept of Bose Fock space is usually referred to as 
"Fock representation" where one builds a linear space on 
physically motivated premises and provides it with opera
tors that again are expressing some physical concepts. In this 
paper, we substitute the traditional Fock space representa
tion accompanied by suitably defined creation and annihila
tion operators by a commutative algebra freely generated by 
a unit element and a Hilbert space K corresponding, respec
tively, to the vacuum state and to the one particle space. This 
procedure enriches the initial mathematical structure of the 
Hilbert space if only we do not loose the scalar product. 
Hence, we extend the scalar product in such a manner that 
the extension is "free," i.e., no new relations appear. Math
ematically it corresponds to the requirement that the adjoint 
to the operator of multiplication by a generator should be a 
derivation and the word "free" is manifested by a theorem of 
Nelson,2 where he shows how any contraction in the gener
ating Hilbert space can be lifted to a homomorphism of the 
algebra. The obtained object is called a Bose algebra. The 
advantage of considering an algebra instead of just a linear 
space lies in the fact that the operation of multiplication by 
elements of K and their adjoints correspond, respectively, 
to the operators of creation and annihilations by the same 
elements. This way the operations significant for physical 
interpretation are expressed by use of an abstract mathemat
ical structure well known in many other connections. The 
exponentials of elements of Kbelong to the Fock space r K 
and are the well-known coherent vectors. Exponentials of 
forms of degree higher than 2 always diverge in r K. 

Not all exponentials of the quadratic forms converge in 
r K but those that do have been known for a long time as 
pure quasifree states,3,4 and also as ultracoherent vectors.5 

They play an important role in constructing projective rep
resentations of the metaplectic group.6,5 

Our interest is, however, directed toward the interpreta
tion of ultracoherent vectors as the so-called squeezed states 
of light. Here, we get one more example of a concept devel
oped on purely mathematical premises that directly inter
prets in physics contributing to understanding and organiz
ing a physical theory. 

In the first section we present the notation and more 
general concepts to be used throughout the paper. The phys
ical system we have in mind is that of a light field, which is 
usually discussed in other terms, therefore the rather thor
ough presentation. Constructing the field theory by forming 
products of one-particle states may, however, impart strong 
means for interpretation and calculus in quantum optics. 
This is one of our general conclusions we elaborate in Ref. 7 
and intend to discuss further in the future. 

In this paper, mathematical rigor is essential, and phys
ical interpretation will mostly consist of references to publi
cations in physics, where similar results as ours appear. Al
though the paper concentrates upon a specific class of states, 
the mathematical framework and techniques are general and 
should be equally well suited for the discussion of other 
states of an electromagnetic field. 

Squeezed states, introduced in Sec. III, are relevant in 
quantum optics, where they have recently been detected ex
perimentally (for extensive discussions on squeezed light see 
Refs. 8-10). The term "squeezing" refers to the Heisenberg 
uncertainty relation for any pair of conjugate observables, 
which allows for a "transfer" of uncertainty from one ob
servable to the other as long as the uncertainty product is 
maintained. These aspects are well understood and we shall 
not discuss them here. 

Our aim is to analyze the construction of squeezed states 
of infinitely many modes of light. 

Operators, to be called squeeze gauges, on the one-parti
cle space, define the squeezed states and the pertaining uni
tary operators in Fock space. The Bogoliubov transforma
tions associated with squeezing are briefly discussed in the 
end of Sec. III. 

In Sec. IV we return to the unitary squeeze operators to 
derive the Hamiltonian of squeezing and the normal form of 
the squeeze operator. 
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II. PRELIMINARIES 

A. Bose algebras 

We shall use here an axiomatized version of Bose Fock 
space, where the operations of creations and anihilations are 
incorporated in an algebraic structure. In this way our de
scription differs significantly from the one usually adopted 
in quantum optics where quantization of the classical field is 
provided by the introduction of creation and annihilation 
operators. II Our description is more particle oriented. 

Given a one-boson space, JY',(,), we consider the free 
commutative algebra generated by the space JY' and the unit 
element 0 called the vacuum. We denote it by r ~ and call 
it the Bose algebra of JY'. We provide r ~ with a scalar 
product determined by the requirement that the vacuum is a 
unit vector and that the adjoint a(x) to the operator a + (x) 
of multiplication by xsW' is defined on the whole r ~ and 
is a derivation, i.e., fulfils the Leibnitz rule. Hence, we re
quire that for all xsW' and j,gEr ~ the following condi
tions are satisfied: 

(a + (x)J,g) = (j,a(x)g), 

(0,0) = 1, 

a(x) (Jg) = (a(x)f)g + J(a(x)g). 

(2.1) 

The operators a + (x),a(x) shall be called the creation 
and the annihilation by x, respectively. 

We write r JY' for the completion ofr ~,(,) and JY'n 
for the closure in r JY' of the linear span JY'~ of all the n-fold 
products of elements of JY'. The linear span of all JY'n shall 
be denoted by r w JY'. 

SinceforJsW';;'andgsW'~ we have [Ref. 5, Eq. (2Al)] 

(
m + n)112 

IJgl.;;; n lfllgl, (2.2) 

we can extend the multiplication over r w JY'making out of it 
an algebra. 

It is easy to see that the vector 
00 

~ I-I n expx= ~ n. x, 
n=O 

(2.3 ) 

exists in r JY' for every xsW' and that for x,yE£' we have 

(expx,expy) = exp(x,y). (2.4 ) 

The corresponding unit vectors (exp - !lxI2)exp x consti
tute the well known coherent states. I I The operator 

00 

exp a(x) = L n!-I(a(xW (2.5 ) 
n=O 

is well defined on r ~ since every element of r ~ is anni
hilated by almost all elements of the series (2.5). We have 
the well-known Campbell-Hausdorff-Baker relation on 
r~: 

exp(a + (x) + a(y» = exp !(x,y)exp a + (x)exp a(y) 

= exp - !(x,y)exp a(y)exp a + (x). 

(2.6) 

The Weyl displacement operators assign to each xsW' 
the unitary transformation: 
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Dx = exp(a + (x) - a(x» 

= exp - !lxl2exp a + (x)exp - a(x). (2.7) 

GivenJEr JY' such that the operation of multiplication 
by J can be naturally defined on a dense domain in r JY' and 
admits a densely defined adjoint, we shall write a + (J) for 
the closure in r JY', (,) of the operator of multiplication by J 
and a(J) for its adjoint. In particular, a + (j) is well de
fined for Jbelonging to r w JY'. 

Let us denote by r IJY' the subspace of r JY' spanned by 
all elements of the formJexp x, whereJEr ~ and xsW'. 

Since for ZEr IJY', and x,ysW' we have 

l!~ (z,Cto k! -IXk )C~o k! - Iyk)) = (z,exp(x + y», 
(2.8) 

we can define the multiplication in r IJY' setting 

(jexpx)(gexpy) =Jgexp(x+y). (2.9) 

Provided with this multiplication r IJY' shall be called 
the extended Bose algebra. 

From the second identity of (2.6) we easily conclude 
that r IJY' is contained in the domain of a( exp x) ,xsW', and 
that the identity itself holds on rlJY' (Ref. 5). 

To every JEr JY' there is assigned a complex-valued 
functionJ [ .] defined on JY': 

J[x] = (exp x,J). (2.10) 

The so-called Bargmann representation 12-14 was intro
duced to quantum optics by Glauber ll and will be a very 
useful tool in what follows. 

It is easy to check that for j,gEr IJY' and xsW' we have 

(Jg)[x] = (J[x])(g[x]). (2.11) 

Let r~2 denote the Gaussian measure sitting on Hil-
bert-Schmidt enlargements of JY' and acting on each finite 
dimensional %CJY' as the measure 1T- dim .:r exp 

- Ixl 2 dx. GivenJEr IJY'weshall use the samesymbolJ[·] 
for the continuous extension off [ . ] over a suitable Hilbert
Schmidt enlargement of JY'. Then for j,gEr IJY' we have 

(f,g) = f r~2(dx) j[x]g[xj. (2.12) 

The formula extends over the whole r JY' by use of standard 
techniques.5 

Treating the expression fr~2(dx) (exp x)g[x], gEr JY', 
as a linear functional, 

o f r~P(dX)(eXpx)g[X]) 
(2.13 ) 

in view of (2.12) we can shortly write a Pettis integral 

g= f r~2(dx)(expx)g[x], (2.14 ) 

getting a coherent vector integral representation for ele
ments of r JY'. 

We shall need the following construction essentially due 
to Nelson.2 
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Theorem 2.1: Let forj = 1,2 Yrj,(,)j be Hilbert spaces 
and r r/lf"j' (,) j the corresponding Bose algebras. Given a 
linear bounded transformation A of Yrl into Yr2, A can be 
extended to a homomorphism r A ofr r/lf"1 into r r/lf"2 and if 
A is a contraction then r A is a contraction as well. 

Proof: Once the result is established for contractions, it 
is easy to extend it over arbitrary bounded transformations. 
In the case of contractions following,2 we easily construct 
r A for orthogonal projections and isometries and then use 
the well-known Halmos result that represent an arbitrary 
contraction as the composition of isometries and an orthogo
nal projection. ( • ) 

Theorem 2.1 will be used here only for Yrl = Yr2 = Yr. 
For example, given a bounded operator A in Yr, we have for 
eachxE.iY': 

rA(expx) = exp(Ax). 

III. SQUEEZED STATES 

A. Squeeze gauges 

Given x,~ we write 

p(x,y) =!( (x,y) + (y,x», 

u(x,y) = - F( (x,y) - (y,x». 

(2.15 ) 

(3.1) 

(3.2) 

Phase sensitivity introduced by (3.1) and (3.2) is essen
tial to squeezing. 7 

We shall denote by !f (Yr) the set of Hilbert-Schmidt 
conjugate-linear operators L that are strict contractions and 
are real self-adjoint, i.e., 

IlL II <1 

and 

p(x,Ly) =p(Lx,y), (3.3) 

for x,yEJY'. Let us denote by K the Cayley-like transforma
tion: 

KA=(l+A)-I(l-A), (3.4 ) 

where A is an operator on Yr such that the operator 
(l + A) - I exists. It is easy to see that K = I, i.e., K is a 
symmetry. We shall denote by K!f(Yr) the image of 
!f(Yr) by K. 

A real-linear operator Min Yr shall be called symplectic 
iff it holds u invariant, i.e., if for any pair x,yEJY' we have 

u(Mx,My) = u(x,y). (3.5) 

We have the following proposition. 
Proposition 3.1:5 The elements of K!f (Yr) are exactly 

the symplectic operators M that are real self-adjoint non
negative such that /-M is a Hilbert-Schmidt operator. (.) 

The operators from !f (Yr) shall be called squeeze 
gauges. 

B. Squeezed states of Bose Fock space 

Take LE!f (Yr). It is easy to check that the series 

'" 
hL = I (Len )en, (3.6) 

n=l 

where {en} is an orthonormal basis in Yr, converges for 
Hilbert-Schmidt operators L and that 
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'" 
~lhL 12 = I ILen 12 = IlL IIHS2, (3.7) 

n=1 

where II'IIHS denotes the Hilbert-Schmidt norm. 
We shall introduce the element 

(3.8) 

Both in Refs. 15 and 5 it is shown that the series (3.8) 
converges and that we have 

It5L 12 = det(l- L 2) - 112. (3.9) 

One can easily check that 

t5L [z] = exp - !(z,Lz). (3.10) 

When L approximates a conjugation, 15 L considered in 
the real wave representation (Ref. 5, Sec. III B) approxi
mates the Dirac 15 function that accounts for the adopted 
notation. Normalizations It5L I-I t5L of the elements 
t5L Er Yr shall be called the squeezed states of Bose Fock 
space. 

Since hLllhL I is a two-boson state, squeezed states in 
quantum optics are also termed two-photon coherent 
states.9 In Ref. 5, t5L are called uItracoherent vectors. 

For LE!f(Yr) and/ErlYr the products t5L /are well 
defined so that one can talk about the mUltiplication opera
tor a + (t5L ). 

For/Er ~theterms a« - !hL )n}f are identically zero 
for almost all n so that the series 

'" 
a(t5L ) = I n!-la«-!(hLW) (3.11 ) 

n=O 

converges trivially on r ~ providing the adjoint a(t5L ) of 
a + (15 L ) on r ~. Given LE!f (Yr) and xE.iY' we have the 
following easy to check commutation on r ~, 

[a(qhdm),a + (x)] = ma(qhdm-l)a(Lx), (3.12) 

which at once yields also on r ~ the intertwining 

a(t5L )a+(x) =(a+(x) -a(Lx»a(t5d. (3.13) 

We use (3.13) to show that rlYr is contained in the 
domain of the closure ofa(t5L ) and that we have the follow
ing intertwining on r IYr: 

a(t5L )a + (exp x) 

= exp - !(Lx,x)a + (exp x)a(exp - Lx)a(t5L ). 
(3.14 ) 

c. Relation between a(bN)a+(bM), a+(bM)a{bN), and rA 
We start this section with exposing an elucidating iden

tity which is easy to check and will be useful later on. Given 
an LE!f (Yr) and a bounded linear operator A such that A 
and L have a common basis of eigenvectors, we have on 
rlYr 

(3.15 ) 

Proposition 3.2: Consider M,NE!f(Yr) with common 
basis of eigenvectors. Then for j,gEr IYr we have 
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(a + (8M )f,a + (8N )g) 

= det(l- MN) -112(a(8N )r(l- MN) -1I2f, 

a(8M )r(l- MN) -1I2g), (3.16) 

where 
det(l- MN) -112 = (8N ,8M ). (3.17) 

Proof Takel = exp x and g = exp y, where x,~. For 
this choice of f,g the second term of (3.16) can be easily 
computed with help of (3.14). Using (2.12) one can write 
the first term of (3.16) as an integral that can be explicitly 
computed. This verifies (3.16) for the specially chosen f,g. 
To extend it over the whole r IJf' we substitute x + tu for x, 
y + sv for y and differentiate with respect to s,t in 0 m,n 
times, respectively, getting the relation checked for I 
= urn exp x,g = vn expy. Since both sides of (3.16) areses-
quilinear, the proposition follows. (.) 

Transporting in (3.16) all the operators from the right 
to the left sides of the scalar products and observing that 
r IJf' is dense in r Jf' we obtain the following corollary. 

Corollary 3.3: Given M,Ne.!f (Jf') with a common ba
sis of eigenvectors, the identity 

a(8M )a + (8N ) 

= det(l- MN) - 112r(l_ MN) - 1I2a + (8N ) 

Xa(8M )r(l- MN) -112 

holds on rlJf'. 
Given an Le.!f (Jf'), we write briefly 

L= (I_L2)112 (3.19 ) 

and define the operator S L transforming r IJf' into r Jf' set
ting 

SL = det L 112a + (8L )rLa(8 _ L). (3.20) 

Substituting in (3.16) M = N = L and setting 
rLa(8 _ L)I forland rLa(8 _ L)g for g we conclude that 
S L is an isometry. It is easy to see thatthe adjoint S! of S L 

fulfils on r IJf' the identity 

(3.21 ) 

which yields the following theorem. 
Theorem 3.4: Given Le.!f (Jf'), the transformation S L 

extends to a unitary mapping of r Jf' and 

SL-I=S_L' 

where we denote the extension by the same symbol. 
We shall call SL the L-squeeze operator. 
We conclude this section with a formula for composi

tion of squeeze operators. 
Proposition 3.5: Given commuting M,Ne.!f(Jf'), we 

have 

(3.23) 

Proof It easily follows if we apply (3.18) together with 
(3.15) and its dual on the left side of (3.23). (.) 

D. Bogoliubov transformations associated with the L
squeeze operator 

In this section, we present a mathematical frame for 
considering the squeezed state as a new vacuum. 9 Let us fix 
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an Le.!f (Jf'). To each xeJf' we assign a pair of transforma
tions at (x) and aL (x) of rlJf' into itself setting 

at (x) =a+(L -IX) +a(LL -IX), 

aLeX) =a+(LL -IX) +a(L -IX). (3.24) 

It is easy to see that (3.24) are adjointto each other. We shall 
denote their closures by the same symbols. It is easy to ob
serve that S L (r IJf') is contained in the domains of the clo
sure of the operators (3.24) and that the following intertwin
ings on r IJf' are valid, 

SLa + (x) = at (x)Su 

SLa(x) = aL (X)SL. (3.25 ) 

The transformations (3.24) are usually called the Bogo
liubov transformations. 

Consider the space Jf'L of all the elements of the form 
1= SLX, xeJf', the L-squeeze space. Now, the Bose algebra 
r #t'L of the L-squeeze space Jf'L is 

r #t'L = Sdr #t'), (3.26) 

with the product (jg)L off,ger #t'L given by the formula 

(jg)L =Sd(SL -1j)(SL -Ig» (3.27) 

and with the new unit element, which is the squeezed vacu
um, 

S v 112£ 
ilL = LIl = det L UL. (3.28) 

From (3.25) and (3.27) we can see that the creation by 
aeJf'L in r #t'L consist of application of the operator 
at (SL -Ia ). 

From (3.25) it easily follows that on r IJf' we have 

Sda + (x) - a(x»SL -I 

= a + «KL) I12x) - a( (KL) I12X ), (3.29) 

where KL is given by (3.4). Taking the exponential on both 
sides we arrive to the intertwining 

(3.30) 

It should be mentioned that this and some other algebra
ic identities considered here, have been derived in Ref. 16 in 
the single-mode case and by use of other techniques. 

The displacement operator does not alter the quantum 
uncertainty properties, therefore the term squeezed states 
also embraces displaced squeezed states in the physical liter
ature. From (3.30) we see that these states may also be ob
tained by squeezing a coherent state. 

IV. GROUPS OF SQUEEZE OPERATORS AND THEIR 
GENERATORS 

A. Unitary groups of squeeze operators 

For every Le.!f (Jf') there can be found an orthonor
mal system {en} such that 

00 

L = L t n < . ,en ) en' (4.1 ) 
n=1 

where Itn 1 < 1 and ~Itn 12 < 00. Clearly, there exists an ortho
normal system such that in (4.1) all tn are positive real 
numbers. We have then 
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A = KL f (rnP(en, len + r;; Ip(ien, )ien), 
n=1 

(4.2) 

Since for any pair of commuting operators 
A,BEKX' (,jf"), 

(KA + KB)(I + (KA)(KB»-I K(AB), (4.3) 

we have from (3.23) 

SKASKB SK(AB)' (4.4) 

which shows that the function 

I - 00, + 00 [ :3 t ..... SK{A ') e{unitary operators}, (4.5) 

where 

00 

AI = L (rn p(e", len + rn - pUen , )ie,,), (4.6) 
n=1 

constitutes a unitary group. Due to Lemma 3, p. 616 of Ref. 
17 the group (4.5) is also continuous and we can search for 
its infinitesimal generator iHL , i.e., we search for a self-ad
joint H L with the domain D(H L ) such that 

SB(t) = exp itHL , 

where we write briefly 

co 

(4.7) 

B(t) = K(A ') = L (1 - rn')( 1 + rn'> -I( ',en}e", 
n=1 

(4.8) 

so that, using (3.15), its dual and (3.18), we have 

SB(I) = det(I _B(t)2)1/2a + (8B(I) )r(J B(t)2)111a(8_ B(t» 

= det(I - B(t)2)lllr(J - B(t)2)1I1a + (8B(t)(1 _ B(I)')- 1 )a(8 - BU) ) 

= det(I - B(t)2) - 112a(8B (t) )a + (8B(')(1_ B(I)')-I )r(J - B(t)2) - 112. (4.9) 

Let LeX' (,jf") be given by (4.1) and consider A = KL: so that applying (2.12) to the right side of (4.14) we obtain 

log A f (logrn)(p(e",)en -p(ien,)ie,,) 
n=1 

00 

= L (logr,,)(',en)en , 
(4.10) 

n=1 

where t n in (4.1) are real and r n are as in (4.2). It is easy to 
see that the definition oflog A does not depend on the choice 
of orthonormal system {en}. Due to (4.2) the sequence 
{log rn} is square summable so that 10gA is a Hilbert
Schmidt operator. Since it is also conjugate linear, 

h10gA f (log rn len 2 
n 1 

(4.11) 

is a well-defined element of~. Now we are ready to exam
ine the unitary group of squeeze operators. 

B. Generators of the squeeze groups 

Theorem 4.1: The domain D(HL ) contains r w,jf" and 
on r w,jf" we have 

iHL =! f (log rn)(a + (en 2) - a(en 2» 
" 1 

=!<a + (hlOgA ) - a(hlogA » 

= li(a + ( - ih lOgA ) + a{ - ihlOgA » (4.12) 

whereh'ogA is defined by (4.10). 
Proof Takef,ger oJY. Using the last part of (4.9) we 

obtain 

(f,SB(I)g) det(I - B(t)2) - 112(8 - B(t)f,8 B(I)(/ _ B(I),)-I 

Xr(J - B(t)2)- I12g ). (4.13) 

For ler oJY we have 

(r(J - B(t)2) I12I)[z] = I [(I - B(t)2)- 1/2 z] (4.14) 
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(f,SB(I)g) = det(I - B(t)2)- 112 

J l[z]exp!«B(t)z,z) - (z,B(t) 

XCI - B(t)2) Iz})g[(I - B(t)2)zlyij2(dz), 
(4.15) 

the exponent term that originates from (3.10) is here under
stood continuously extended to a suitable Hilbert-Schmidt 
enlargement of ,jf". 

Using the Lebesgue dominated convergence theorem 
we differentiate in t = 0 the integral on the right side of 
(4.15). Since d /dt det(I - B(t)2)1121,=o = 0 this provides 
the derivative of the whole (4.15) in t = O. It is relatively 
easy to compute the derivative explicitly and conclude that 
iHL on r ~isas given by (4.12). 

To show that ( 4.12) holds on r w,jf" as well, we observe 
that due to (2.2) the operator a + (hlogA ) is continuous from 
~ into,jf"n + 2 and its adjoint is continuous from ,jf"n + 2 

into,jf"n for all n and the theorem follows. (_) 

Write 

(4.16) 

Lemma 4.2: The closure of the restriction of iH L to 
r w,jf" contains in its domain S BU) r w,jf" for all (;;;.0 and we 
have 

tHL (8Mr w,jf") C~Mr w,jf" 

Proof For MEX' (,jf") we define 
n 

(4.17) 

8Mln = LJ1 I( -!hM)j. (4.18) 
j= 1 

Using the dual of (3.14) together with (3.7) of Ref. 5 we 
easily show that for a square summable {sm}CC and any 
.fer w,jf" we have 
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'" 
= OM L Sm(a(em) - a + (Mem »2f 

m=l 

and the lemma follows. 
Theorem 4.3: The subspace r oK constitutes a core for 

illL • 

Proof Due to the remark at the end of the proof of 
Theorem 4.1 the generator ill L extends from r oK to r w ~ 
and it follows from Lemma 4.2 that it can be further ex
tended over to the linear hull ofallSB(t) r w~' But this hull 
is S B( t) invariant so by Theorem X.49 of Ref. 18 it is a core 
furillL · (-) 

Hence, for t = 1 we have 

SL = exp 1<a + (hlogKL) - a(hlogKL» 

= det L 112exp -!a + (hL )rL exp - !a(hL ). 
(4.20) 

Observe that definition (3.6) does not require that log KL is 
a strict contraction. It is sufficient that it is a Hilbert
Schmidt operator. 

To obtain the normal form of SL we only have to derive 
the following. 

C. The normal form of r{ 

Let us write N for the set of all finite tuples A 
= (kt, ... ,kn ). Given an orthonormal basis {en} in ~, we 

construct an orthonormal system {e.(.}, setting 

e.(. = AI- I12e*, 
where 

and 

(4.21 ) 

(4.22) 

Al = kt!...kn!. (4.23) 

For any fixed d the elements e.(. with 
IA I = kl + ... + k n, length of the tuples, equal to d form an 
orthonormal basis in ~d • 

Theorem 4.4: Given a bounded operator R in ~, (,), we 
have on rl~ 

r(l + R) = La + (rRe.(. )a(e",). 
"'EN 

Proof Observe that 

a(a/')" 'a(an k,,)xm 

{

m(m -IAI)I-I(at,x)k'···(an,X)k"Xm-I.(.1 

= for IAI<m, 
0, otherwise. 

(4.24) 

(4.25) 

Furthermore, due to the continuity of ~3z .... zm eJYm we 
have 

where we write briefly 

(e,z)'" = (el,z) k, . .. (en ,z) k". (4.27) 
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Consequently, for k<m we have 

> Al -1(rRe*)a(e*)zm 
I~k 

= ml(m -IAI)I-I(rR > Al-I(e,z).(.e*)~-k 
lil=k 

= ml(m - k)I-I(Rz)kzm-k. (4.28) 

Summing over k we get 

> a + (rRe.(. )a(e.(. )zm = r(l + R)~. 
l4<'m 
Since r R is a homomorphism in r I~' we have 

n 

La + (rRe.(. )a(e.(. )zm L Jl-I~ 
'" j=O 

n 

= L L a+(rRe",)a(e",)zmJl-1~ 
j=O 1"'14+m 

n 

= L r(l + R)(zmJl-I~) 
j=O 

= (t/-I[(l +R)XF)r(l +R)zm. 

Since due to (4.29) and (2.2) we have 

I L a+(rRe",)a(e",)~;1-I~1 
1.(.14+ m 

= Ir(l +R)~Jl-lxjl 

« m ,: J) 1121 r(l + R )zm~l- I lxii, 

(4.29) 

(4.30) 

(4.31 ) 

the series of the last term of (4.30) converges so that passing 
to the limit we obtain 

~ a+ (rRe.(. )a(e", )zm expx = r(l + R)(zm expx), 

(4.32) 

where the left side of ( 4. 32) is defined as the limit of the first 
term of (4.30). Since the powers of elements of ~ span the 
whole r oK, the theorem follows. (_) 

In the case of Lvsqueeze we are interested in writing the 
middle operator r L = r (I - L 2) 112 of S L in the normal 
form. In this case the operator R of Theorem 4.4 is chosen as 
the Hilbert-Schmidt contraction, 

v '" 
R=L-1= - L t/[1 + Cl-tn

2 )112]-I(en ,·)en • 

n=1 

(4.33 ) 

From Theorem 4.4 we obtain at once the following. 
Corollary 4.5: The identity 

S L = det L 112 ~ (t 2 [1 + (1 _ t 2) 112] - I)'" 

(4.34) 

wheres'" = s/' " 'Sn k", represents the normalform of SL on 
rl~' 

D. Coherent vector representations 

Theorem 4.6: Given a bounded linear operator R in 
~,(,), we have on rl~the following identity: 
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r(l + R) = f y~(dx)a + (exp Rx)a(exp x), (4.35) 

where on every jEr IJY the right side is the usual Pettis inte
gral. 

Proof Take anjEr IJY and xEK. We have 

(f r~(dx)a + (exp Rx)a(exp x)j )[z] . 

= f y~(dx) (exp z,(exp Rx)a(exp x)j) 

X f r~2(dx) (exp R *z) [x](a(exp x)j)[z], 

(4.36) 

and using (2.12) we arrive to the desired result. (.) 
Take LEY (JY) and consider its representation given 

by (4.1), 
00 

L= L In(·,en)en, 
n=1 

where {en} are chosen such as to make all In real. Let us 
define a conjugate - in JY setting 

00 

x = L (x,en)en, (4.37) 
n=1 

so that 

L= - T= T-, (4.38 ) 

where 
00 

T= L In(en")en (4.39) 
n=1 

is a Hilbert-Schmidt operator in JY. 
Let us write H for the real part of JY relative the conju

gation - , 

H = {x: x = x} (4.40) 

We shall need a Gaussian measure YH sitting on Hil
bert- Schmidt enlargements of H and such that writing YK 
for the projection of Y H on an arbitrary finite-dimensional 
linear subset KCHwe have 

(4.41) 

Theorem 4.7: Consider a trace class LEY (JY) and 
choose a conjugation - in JY such that T = - L = L - , is a 
self-adjoint operator in H. Then 
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(4.42) 

where on the right side we have the Pettis integral and the 
integration takes place on a Hilbert-Schmidt enlargement of 
H. 

Proof We assume first that L is finite dimensional. By 
explicit integration we get for an arbitrary yE.:W': 

f YH(dx)exp - !(x,T(l- T) -IX) 

X (exp iTI12(l- n Il2x)[y] 

= f YH(dx)exp( - !(x,T(l- n -IX) 

+ (y,iT II2(l- n 1I2X» 

= det(l- n 1I2t5dy] = det(l- n 1/2exp - !(1ji,y), 
(4.43) 

where the continuous extension over a suitable Hilbert
Schmidt enlargement of H is implicitly anticipated under the 
integral sign. Using the dominated convergence theorem on 
the right side, we extend our result over arbitrary trace class 
LEY (JY). (.) 
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ERRATUM 

Erratum: On the Cauchy problem for Yang-Mills equations with external 
current [J. Math. Phys. 30, 1699 (1989)] 

Z. Swierczynski 
Institute of Physics, Jagel/onian University, Reymonta 4, 30-059 Krakow, Poland 

(Received 4 January 1990; accepted for publication 28 February 1990) 

The gauge group we would like to consider is G 
= SO(n) or G = SU(n) [not G = GIR (n) or G = Gle (n) 

as we wrote on p. 1700]. 
We replace the space.7t'r with 

7t'? = {(A,E,r): Ak Ellr + I, 

EkEllr, jOEllrn WXIS}, 

where 

W: = {f (~qf (Tr(aK /)2y12 d 3x yIP < oo} 

O<q<r-l 

[this is necessary since the function J defined by formula 
(9c) does not map .7t'r into .7t'r]' Now, if O<q<r- 1, 
r = 1, 2, ... , and the components of the external current 
j k treated as functions of time with values in the space 
Hr+ I n WX/~ I are continuous, then the function J is also 
continuous. With suitably changing considerations con
tained in the paper [the spaces.7t' ~ + 2 are needed in consid
erations concerning the regularity of the solution; in order to 
prove the global existence of the solution it should be shown 
that the .7t' ~ norm of the solution is bounded on each finite 
time interval, the L 6/5 estimation follows from Eq. (I e) and 
the inequality II/gIIL"!, <II/IILh/' IIglk ], one can prove that 
for any initial data satisfying the conditions A k (O,x) Ell ~~ 3, 

EdO,x)Ell~~ 2' DkEk (0,X)Ell~~2' r = 1,2, ... , and the ex
ternal current being a C S function of time with values in the 
space H~~ 3 for s = 0, 1, ... ,r, there exists a global solution. 
The potentials and electric field treated as functions of the 

variables t, x t, x2, x3 are of C r + I and C r class, respectively. 
Formulas (9b), (23), (33), (42), and (44) should read: 

I(p) = r .!. Tr {.!. (F1w }I'm v
)2 

JKp 2 4 

+ Atl (Fl'vll'e~)2 + (Fl've'te;Y} d 3x, 

ILprdrdO f dA A 2 [X]y (Ax),Fap (x>] I 

< ( C3 I1jo(0) ilL + C4 rO f" IIHs) II~, ds 

(9b) 

(23) 

+ Cs (IIA(O) ilL + 2ro f"E(S)dS) ro f" IU(s)IIL ds 

+ C6r~ f" IIj(s)lit ds)(r~ f" IIF(s) lit dsy12, 

(33) 

IIF(t) lit <It(r) +I{(t) f IIF(s) lit ds 

+ I ;(t) f IUo(s)IIL ds, 

N(t) = IIF(r) lit + lIjo(t) lit· 

(42) 

(44) 
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